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Doctoral Dissertation title: IMPACT OF THE CALIBRATION PERIOD ON
PARAMETER ESTIMATES IN CONCEPTUAL HYDROLOGIC MODELS

ABSTRACT

Conceptual hydrologic models are commonly applied for flow forecasting, estimation of
design flows and assessment of climate change impact on water resources. Therefore,
reliability of hydrologic simulations obtained by employing these models is crucial.
However, these simulations are fraught with uncertainties, which stem, inter alia, from
parameter estimates. The parameter estimates are affected by data errors, objective
functions and optimisation algorithm employed for model calibration, but also by
properties of the calibration period. Namely, model calibration over different periods may
result in quite different parameter estimates because parameter optimality does not hold
outside the calibration period. This temporal variability of optimal parameter estimates
yields deterioration in model performance outside the calibration period. Therefore,
variability of optimal parameter estimates is major issue when it comes to application of
hydrologic models, because these models are primarily used for runoff simulations

outside the calibration period.

In this Thesis temporal variability in parameters of the 3DNet-Catch model is analysed.
The AMALGAM algorithm, aimed at multi-objective optimisation, is applied for model
calibration. The model is calibrated in dynamic manner, over all 1- to 25-year long
calibration periods, with one water year prior to every calibration aimed at model warm-
up. Prior ranges of the parameters and settings for the optimisation algorithms (e.g.
population size, mutation probability, etc.) are kept constant through all simulations for
given catchment. The analysis of temporal variability in model parameters is based on the
non-dominated, or Pareto-optimal sets, which are selected subsequent to the optimisation
of the initially sampled population of parameter sets. Impact of combination of objective
functions used for model calibration and model structural complexity on temporal
variability in the Pareto-optimal parameters is also examined in this research. To isolate
temporal variability in parameters from anthropogenic effects (e.g. urbanisation or river
engineering works) three catchments that have not undergone human-induced changes

are considered in this research: the Kolubara River catchment upstream of the Slovac



stream gauge, the Toplica River catchment upstream of the Doljevac stream gauge and

the Mlava River catchment upstream of the Veliko Selo stream gauge.

The results reveal considerable temporal variability in the Pareto-optimal parameters. The
variability is somewhat lower in the parameters to which the model is sensitive, although
strong correlation between parameter sensitivity and temporal variability has not been
detected. Also, correlation between parameter estimates and hydro-meteorological
characteristics of the calibration period is shown rather weak. Temporal variability in the
Pareto-optimal parameter persists regardless of the objective functions used for model
calibration, although an increase in the number of objective functions appears to lead to
more consistent parameter estimates and better model performance. Comparison among
different versions of the 3DNet-Catch model suggests application of spatially-distributed
parameters and reduction in number of free model parameters (parameters that are to be
estimated in the model calibration). Spatial distribution of the parameters has to be
accompanied by the temporal data resolution, whereas reduction in the number of free
model parameters has to be supported by the results of the sensitivity analysis.
Additionally, empirical cumulative distribution functions derived from all Pareto-optimal
parameters obtained over all calibration periods are shown different from the distribution
functions obtained from the Pareto-optimal parameters optimised over the full record
period. This result indicates that dynamic model calibration enables extraction of more
information form the observations available, and assumedly it could result in more robust
parameter estimates and consequently to more reliable simulations outside the calibration
period. As for model performance, the results indicate that overall water balance can be
properly simulated by the model regardless of the calibration period, while model’s
ability to reproduce dynamic in catchment response exponentially decreases with the

length of the calibration period.

A comprehensive analysis of temporal variability in the Pareto-optimal parameters and
model performance is presented in this Thesis, along with the recommendations for model
calibration and development in order to obtain more consistent parameter estimates and

the model performance. Recommendations for further research are also presented.
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Hacnos nokropcke nucepranuje: Y TULAJ TIEPUOJJA KAJIMBPAIIMJE HA OLIEHE
ITAPAMETAPA KOHIEIITYAJIHUX XUAPOJIOIKMX MO/IEJTA
PA3JIMYUTUX CTPYKTYPA

PE3UME

KoHmenTyanHn XHIPOJIOMIKA MOJEIU Cy HalUIM IIUPOKY TMPHUMEHY Yy HU3paau
XUJPOJIOIIKUX MPOTHO3a U NMPEIUKLHUja, U Y aHAIN3M YTHUIIaja KIMMATCKUX IPOMEHa Ha
BosiHE pecypce. Crora je moy3/1aHOCT cuMyJjanyja Jo0MjeHUX MPUMEHOM OBUX Mojena
BeoMa BakHa. Mel)yTuM, y XHIPOJIONIKUM CHMYJalHjaMa MOCTOje HEU3BECHOCTH, Koje
MOTUYY U O] OIIeHa MmapamMeTapa Mojena. Ha orjene mapamerapa Mojena yTudy rpenike y
nojanuMa, u300p KPUTEPHjyMCKHX (YHKIHja M ONTHMHU3AIMOHOT alTOpPUTMa, ald U
KapaKTepUCTUKe KanuOpamuoHor mnepuona. Hamme, kammOpanuja Mojesa TOKOM
pa3nuuuTUX nepuosa nahe pa3InunTe OLeHE mapaMeTapa, 3aTo IMTO MapaMeTpH KOju Cy
ONTHMAJHU TOKOM jEHOT MepHoa He MOpajy OUTH oNTUMallHU U3BaH wera. [locneania
BapHjabUITHOCTH ONTHMATHHX MapaMerapa y BpeMeHy je H Jolrja euKacHOCT Mo/iena
Tj. Mamke TOy3/]aHe CUMYJIalldje BaH KamuOpanuoHor nepuoja. Mmajyhu y Buay na ce
XUIPOJIOIIKA MOJIEM KOPHUCTE 3a XHIPOJIOIIKE CHUMYyJalMje BaH KaluOparroHOT
Nepuoja, 3a BUXOBY MPUMEHY KJbYYHO j€ M3y4yaBame MPOMEHJbUBOCTH ONTHMATHUX

napamMeTapa MmoJ€jia TOKOM BpEMEHaA.

Y 0BOj mucepranyju aHaIW3UpaH je YTHUIA] KaaTuOpaIMoHOr Tepuojia Ha OIICHE
napamerapa xujapoiomkor moaena 3DNet-Catch. 3a kanubpanujy Mojena kopuiheH je
CaBpEMEHH alropuTaM 3a BHUIICKPUTEPHjyMCKy ontummzanndjy AMALGAM, koju
npeAcTaB/ba KOMOWHAIM]y HEKOJIUKO TJO0ATHUX ONTHMHU3AIMOHHX —alrophTaMa.
XUIpONOMKH MOAEN je KamuOpucaH Ha CBUM IEpHOAMMA IY>KWHE OJ jeaHe Ao 25
Y3aCTONHUX XHUAPOJOUIKUX TOJMHA, y3 JeIHY XHWAPOJOIIKY TOJMHY HAaMEHECHY
,»3arpeBamy* Mojiena. OBakaB NMPUCTYM je Ha3BaH ,,JMHAMHUYKA KanuOpanuja Mojena.
[TouetHu orce3n mapamerapa, Kao ¥ MOJAEIIaBamkba 32 ONTUMU3ALMOHH ajIropuTaM (HIIp.
Opoj wiaHOBa MoMyJalyje, BepoBaTHONA MyTall¥je U JIp.) UCTH CY 3a CBE KalIMOpaIuoHe
nepuoje 3a pasMaTpaHu ciuB. HakoH onTmMu3anuje mapamerapa M3BOjeHa Cy T3B.
mehycoOno HemommuaHTHa pemema (IlapeTo onTuManHu CKynmoBH Tapamerapa HIiIu

ckymoBu ca Ilapeto ¢hpoHTa), HA OCHOBY KOjUX j€ BpIIICHA aHAIN3a MPOMEHJbUBOCTH



ONTUMAITHUX TapaMeTapa y BpeMeHy. Y OBOM HCTPaXHBaWby aHAJIM3UpPAH je YTHUIA]
n300pa KpUTEPUjyMCKUX (YHKIMja M KOMIUIGKCHOCTH CTPYKType MoJena Ha
BapujabmiaHocT [lapeTo onTuManHMX mapamerapa y BpemeHy. Kako Ou ce MCKIbY4IHO
YTHUIIa] BEIITAYKUX ITPOMEHA Ha CIWBY Ha OIICHE IMapamMerapa (Hmp. ypOaHU3aIuja WIn
dbopMupame akymyJaiuja), oBaj MPUCTYN je MPUMEHEH Ha TPU MPHUPOJHA CIMBA Y
Cpbwuju: cnus peke Konybape 1o Bogomepne cranuiie (B.c.) Cnopair, cnuB peke Torumiie

1o B.c. JJospeBan u ciuB pexe Mnagse 10 B.c. Benuko Ceno.

Pesynratu cy mokaszanu u3pasuty BapujabuiaHocT Ilapero onTumanHuX mapamerapa.
OceT1sbuBH apaMeTpH (OJHOCHO OHM KOJU 3HATHO YTUUY Ha €(pUKACHOCT MOJIeNa) HELITO
Mamkbe Bapupajy, MaJa 3aBHUCHOCT H3Mel)y OCETJPMBOCTH Tapamerapa U HHUXOBE
BapHjaObUITHOCTH y BpeMeHy HUje ytBpheHa. Takohe, kopenmucanHocT usMmel)y oreHa
napameTapa U XHIpO-METEOPOJIOIKHX KapaKTEPUCTHKA ATOT KaJuOpanoHOT mepruoaa
je Beoma ciaba. BapujabuHocT mapamerapa y BpeMeHY IMOCTOjH 3a CBE aHAIIM3UpPaHE
KOMOMHaIW]je KpuTepujyMckux ¢pyHkiuja. Melytum, cBeoOyxBaTHa aHanu3a pe3yiTara
ykazyje Jnaa kanuOpamuja MoJiena ca BHIIE KPHUTEPHjYMCKHX (QYHKIHja Jaje
KOH3UCTEHTHH]j€ OlleHe MapaMerapa u eduxacHuje mozene. [lopehemem pazauuuTux
cTpykrypa mogena 3DNet-Catch mpegHocT ce naje cTpykTypama ca IMPOCTOPHO
JTUCTPUOYHpaHUM IapamMeTpuMa M ca MamuM OpojeM mapamerapa mojena. HapaBHo,
cMameme Opoja mapamerapa KOjU ce KaauOpHIly Mopa ce OINpaBIaTH aHAIN30M
OCETJPMBOCTH, a TPOCTOPHA pE30yLHja Yy AUCTPUOYHPAHOM MOJEIYy BpPEMEHCKOM
pe3osiynijoM ylIasHMX TojaTaka. JemaH o] pe3ynrara OBOI HCTPaXUBama Cy |
emnupujcke pacnozgene Ilapeto onTumanHux mnapamerapa JOOMjEHHX U3 CBHUX
kanuOpanuonux nepuoga. OBe pacrozene MOry 3HaTHO Ja OJACTYMajy OJ pacnojena
[Mapero onTUMamHuUX TapaMerapa KoOju Cy JOOWjeHH KamuOpaiijoM Mojiena 3a IIeo
MEPHOI, IITO YKa3yje Ha Moryhy 00Jby HCKOpHITIEHOCT HHPOPMAIIH]ja YKOIHKO CE MOIEI
JMHAMUYKH Kanuopuie. Pesynraru cy Takole mokasamnu 1a MoJIeNl MOKe Ja PETpoIyKyje
Ounanc Boja Ha ciouBy Oe3 003Mpa Ha KanuOpalMOHW TIEPHOJ, JOK Cllarame
CUMYJIHDaHUX M OCMOTPEHHMX XHJpOrpaMa EKCIIOHCHIMjalTHO omajaa ca JIyKHHOM

KaJ'II/I6pa]_II/IOHOF nepuoaa.

VY 0BOj AucepTanMju MpUKa3zaHa je cBeoOyXBaTHA aHAIHM3a BPEMEHCKE MPOMEHJbUBOCTH
OIleHa TIapaMeTapa Koje Cy J00HjeHe BUIIEKPUTEPH]yMCKOM KaJTMOPAIlijoM MOJeNa, Kao

n aHajiu3a e(bI/IKaCHOCTI/I Mozacia. HOHpI/IHOC OBOI' UCTpaXKMBakba Cy IMPCIOPYKE 3a

vi



BUIICKPUTEPHJYMCKY KanuOpamujy © pa3Boj Mojela y ULWbY TNOCTH3ama MITO
KOH3UCTEHTHHjUX OIEHa IMapaMeTrapa Koje OW BOIWIE TMOY3JaHUjUM XHUIAPOJIOIIKUM
CUMyJalljaMa BaH KalMOpamuoHOT mepuoaa. Ha kpajy cy maTu ¥ mpeasiosu 3a Jrajba

HCTpaXKHBama.

Kwoyune  peuu: KOHIIETITYaTHU XUAPOTOITKH MOJICIIH, 3DNet-Catch;
BUIICKpUTEpHjyMcKa kanuoOpamnja; AMALGAM; kanuOpanyioHn Mepuo; BpeMEHCKa
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1. INTRODUCTION

1.1. Hydrologic cycle and runoff generation mechanisms

Water circulation near the surface of the Earth!, i.e. hydrologic cycle, consists of many

processes, which are illustrated in Figure 1.

Water evaporates form the surface water bodies (oceans, lakes, etc.), soil and canopy.
Evaporation is driven by the Sun radiation (Chow et al., 1988; Shaw, 2005). The water
vapour condenses in the atmosphere, and precipitates on the land and surface water
bodies. The precipitation that reaches the land is partly intercepted by the vegetative cover
(up to 30% of precipitation may be intercepted, Beven, 2001b), one part comprises
depression storage, while the remaining amount of infiltrate into the unsaturated soil
layer, or becomes an overland flow. Interception capacity changes over the growing
season, and it also depends on the vegetation type, precipitation and wind conditions, and
vegetation age (Jovanovi¢ & Radi¢, 1990; Fenicia et al., 2009). Partition between
infiltration and overland flow depends on the land use type, soil type and soil moisture
conditions. For example, infiltration rates increase after prolonged dry periods (due to
soil crusting, which enables preferential macropore infiltration) and after freezing of dry
soil, as opposed to saturated soils, frozen wet soil or crusted soil, as shown in Figure 2
(Beven, 2001b; Stdhli & Hayashi, 2015). Preferential infiltration through macropores is
higher than the infiltration through soil matrix (Weiler et al., 2005). Precipitation onto the
saturated soil results in quick surface runoff (saturated overland flow). Soil saturation
may occur if there is a soil layer of low permeability (e.g. with high clay content)
underneath the surface soil layer (perched subsurface stormflow). Infiltration also
depends on the precipitation intensity: high rainfall intensities that exceed soil infiltration
capacity, results in prompt overland flow (Hortonian overland flow, infiltration-excess
runoff generation) (Leibundgut et al., 2001). Runoff dependence on the soil moisture and

rainfall intensity is illustrated in Figure 3.

Part of the infiltrated water percolates deeper (groundwater recharge) and groundwater

eventually seeps into effluent streams (subsurface flow). Considering catchment area,

115 km up in the atmosphere and 1 km down in the lithosphere (Chow et al., 1988).



total runoff at the catchment outlet is a sum of the overland (surface, direct, fast) and
subsurface runoff. Amount of water that comprises the overland flow is determined by
the precipitation within a catchment area, while the subsurface flow may originate beyond

the waterdivide.

Precipitation

Figure 1. Hydrologic cycle (Tarboton, 2003).

surface crust

Figure 2. Soil crusting impact on the infiltration rate and surface runoff.
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Figure 3. Runoff dependence on the soil moisture conditions and rainfall intensity (Vivoni

etal., 2007).
1.2. Rainfall-runoff modelling

Hydrologic (rainfall-runoff, deterministic) models are convenient tools to provide
hydrologic predictions. As such, they have wide range of applications in design of water
infrastructure and water resources management (e.g. water supply, hydropower

generation, irrigation, flood forecasting, etc.) (Blasone, 2007; Pechlivanidis et al., 2011).

There are many “types” of hydrologic models according to numerous classifications.
Essentially hydrologic models enable estimation of flows, soil moisture and other
hydrologic variables over some period, for the given input data (usually precipitation and
temperature). According to Beven (2001b), development of a hydrologic model consists
of the following stages:

(1) Perceptual model: identification of the hydrological processes that are in

control of runoff generation in a particular catchment.

(2) Conceptual model: mathematical description of the identified processes. The

results of this stage often includes partial differential equations.



(3) Numerical model: numerical approximation of the equations of the conceptual

model.

(4) Procedural model is a code to be run on a computer, and it is based on the
numerical model. It should be verified to assure that the numerical model

equations are properly reproduced within the code (Beven & Young, 2013).

(5) Estimation of model parameters that do not represent directly measurable
variables is necessary, to achieve a satisfactory degree of agreement between
the simulated and corresponding observed variables according to some
goodness-of-fit measure(s). The parameters that have to be estimated are
referred to as the free model parameters. Methods for parameter estimations are

elaborated in chapter 1.3.

(6) Model evaluation (validation): a calibrated model should be applied for runoff

simulations over an independent period to test its robustness.

Hydrologic models are commonly classified according to their structure and the manner

of treating spatial variability of the catchment properties (Chow et al., 1988).

Sivapalan et al., (2003) distinguish between upward (bottom-up) and downward (top-
down) approach. The former implies a perceptual model based on the processes identified
at small scale (e.g. hillslope). These processes are scaled-up, considering possible
interactions among the processes at the catchment scale (Beven, 2001a). In the latter
approach the processes at the catchment scale are inferred from the observed catchment

reésponses.

The bottom-up approach is adopted in the physically-based (or white-box) models. These
models are usually comprised of partial differential equations describing processes of
runoff generation. These equations are applied to the computational grid. An issue about
this model type is the scale-up of the processes itself. Namely, the processes that are
important on small scales do not necessarily have to be important at the catchment scale
(for example, heterogeneity of the soil properties may be averaged out at the catchment
scale), and vice-versa: key processes at the catchment scale may not be captured at the
hillslope scale (e.g. large-scale lateral subsurface pipe flow) (Sivapalan et al., 2003). The
parameters of these models carry a physical connotation (such as the saturated hydraulic

conductivity) and theoretically could be inferred a priori (chapter 1.3).



The conceptual (or grey-box) models are based on the top-down approach. These models
imply approximating the runoff cycle components by the reservoirs (e.g. canopy or soil
reservoirs). The mass conservation equations holds for the reservoirs, whereas the fluxes
among the reservoirs are approximated by empirical relations (e.g. linear or non-linear
reservoir equations) (Shaw, 2005). There are two implications of such a setup: (1)
conceptual models are less data demanding than the physically-based models, and (2)
some of the model parameters do not represent physically meaningful, measurable
variables (e.g. reservoir coefficient or non-linearity coefficient of a non-liner reservoir),
so they have to be estimated from the observations (Ebel & Loague, 2006; Todini, 2007;
Pechlivanidis et al., 2011). These models may vary in complexity to considerable extent,
but their complexity should be justified by the available data (Sivapalan et al., 2003;
Wagener et al., 2003; Ebel & Loague, 2006). Clark et al. (2008) developed the FUSE
methodology, which enables development of new model structures, by combining the
building blocks of the existing ones (e.g. modules for simulation of E7, saturated soil
zone storage, overlandflow, etc.). Box and Jenkins (1970) introduced principle of
parsimony, meaning that simpler models with fewer parameters are preferred over the
more complex ones. It was demonstrated by van Esse et al. (2013) that the models with
simple structure may perform as satisfactorily as more complex models. Thorough review

on the conceptual models is presented by Daniel et al. (2011).

Beven and Young (2013) refer to both physically-based and conceptual models as

“deductive”, since their model structure is defined prior to model application.

Further, there are data-driven (black-box or empirical) models that do not rely on
description of the runoff generation processes. These models are based on the functional
relationship between the input (i.e. meteorological forcing) and the output (e.g. flow),
where these relationships do not carry any physical meaning. Since the structure of these
models is identified based on the observed data, Beven and Young (2013) refer to these
models as “inductive”. For example, in the neural network models the number of layers,

number of neurons and type of transfer functions are determined from data.

Regarding treatment of spatial variability, the parameter sets in the /umped models apply
to an entire catchment, and the model forcing datasets (precipitation and temperature) are

spatially averaged (e.g. Chow et al., 1988; Shaw, 2005). Consequently, these models



result in the spatially averaged values of the simulated variables and in the integrated
catchment response (Yilmaz et al., 2010). The model parameters are usually estimated
only against the flows observed at the catchment outlet. The models that include a single
parameter set for an entire catchment but spatially distributed input forcing have been
known earlier as the semi-distributed models, but more recently are termed the semi-
lumped models (Ajami et al., 2004; Khakbaz et al., 2012; Schaefli et al., 2014). In the
fully-distributed models simulations are performed on a grid (which may be composed of
irregular cells), resulting in spatially distributed simulated variables. Every computational
cell may be assigned a different parameter set, and the observations at many interior
points in a catchment may be used for parameter estimation: for example, nested stream
gauges, groundwater levels across the catchment and maps of soil moisture from remote
sensing sources (Ajami et al., 2004; Ivanov et al., 2004). Since this approach results in
large number of parameters to be estimated, the regularisation techniques are employed
for calibration of distributed models (chapter 1.3.5). Recalling the definition of

physically-based models, these models are at the same time spatially distributed.

As a compromise between the lumped and the fully-distributed models, semi-distributed
models emerged. These models imply model application to the individual sub-
catchments, where different input data and parameter sets are appointed to each sub-
catchment (Schumann, 1993). The semi-distributed models are less data demanding
compared to the fully-distributed ones. They also enable estimating the parameters
against the flows observed at the nested stream gauges (Ajami et al., 2004; Khakbaz et
al., 2012).

Hydrologic models can be applied for simulations of isolated events or for continuous
simulations (e.g. Pechlivanidis et al., 2011). The former implies simulation of
hydrographs caused by a single precipitation event, while the latter includes simulation
of direct runoff over precipitation events and simulation of baseflows between them.
Models aimed at continuous hydrologic simulations involve more processes (for example,
evapotranspiration, which is commonly neglected in the event-based modelling). Event
based modelling is hampered by the subjective nature of streamflow partitioning into the

direct runoff and baseflow (Boughton & Droop, 2003).



1.3. Estimation of hydrologic model parameters

Model parameters enable a model of predefined structure to be adjusted for simulations
of runoff from a particular catchment. The parameters can be estimated a priori or a
posteriori: a priori parameter assessment is based on the catchment properties, while a
posteriori estimation implies parameter conditioning on the observations (Beven 2001a;
Blasone 2007; Sorooshian et al., 2008; Yilmaz et al., 2010). Only directly measurable
parameters (so called “physical parameters”, such as catchment area, share of urbanised
area in the total catchment area, slope of a stream section, etc.) can be estimated a priori.
However, majority of the parameters, especially those of the conceptual models, are not
directly measurable due to simplification of the highly complex runoff generation
processes (e.g. linear outflow equations) and due to spatial aggregation of the processes
(e.g. Gupta et al., 2005; Renard et al., 2010). These parameters are named “process” or
“conceptual” parameters, and they are estimated indirectly (e.g. Vrugt et al., 2003; Gupta

et al., 2005; Vrugt et al., 2006; Blasone 2007).
1.3.1. Approaches to parameter estimation

There are two approaches to parameter estimation (Figure 4): the frequentists and the
Bayesian approach (Daniel et al., 2011). In the former approach the parameters are
assumed to have optimal values that result in minimum discrepancy between the observed
and simulated variables (point estimates of the parameters). This approach is referred to
as “model calibration”, “parameter optimisation” or “inverse modelling” (Blasone 2007).
The latter approach is grounded in the Bayes theorem: the parameters are considered
random variables with their posterior probability distribution function (pdf), inferred from
the prior distribution and likelihood of the simulated variables for the given observations
(Montgomery & Runger, 2003). Both approaches rely on the maximum likelihood theory.
The objective functions for parameter optimisation stem from the maximum likelihood
estimator (Sorooshian et al., 1983), while the likelihood function in the Bayesian
approach is a generalisation of the maximum likelihood estimation method (Kottegoda &
Rosso, 2008). Razavi et al. (2010) entitled the former approach “optimisation-based”

calibration, and the latter one — “uncertainty-based” calibration, which suggests

application of these methods for parameter uncertainty assessment.



Both approaches require flow observations in a catchment. For ungauged catchments
model parameters are inferred from corresponding parameter estimates at adjacent
gauged catchments and their properties. Namely, empirical relations between the
parameter estimates and catchments’ characteristics are established and applied to
estimate values of the parameters for the ungauged catchments; this approach is known

as the regional approach (e.g. Gupta et al., 2005; Yilmaz et al., 2010).

IL Frequentist Bayesian
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Figure 4. Approaches to estimation of hydrologic model parameters.

Optimisation-based calibration

Optimisation-based calibration implies adjustment of the parameter values to achieve the
best possible fit between the simulated and observed variables over some period
(parameter optimisation) (e.g. Gupta et al., 2005; Yilmaz et al., 2010). The models are
commonly calibrated against the observed flows, although groundwater levels or
conservative tracer concentrations may be used as well (e.g. Leibundgut et al., 2001;

Seibert 2003).

Calibration is referred to as “inverse modelling” because the input and output are known,
while the model parameters are to be inferred (Sorooshian et al., 2008). The initial
conditions (e.g. soil wetness or canopy reservoir storage) are assumed. Impact of the
erroneous assumptions about the initial states is mitigated by excluding the first part of
the simulation period (warm-up or spin-up period) from process of parameter assessment

— calculation of the objective function(s).

Agreement between the simulated and observed variables is quantified by means of the

goodness-of-fit measures (model efficiency or performance measure), which in context



of the parameter optimisation become objective functions of the optimisation algorithms
(e.g. Yilmaz et al., 2008). A goodness-of-fit measure is basically an aggregate statistic of

the residuals (differences between the simulated and observed variables), e (7):
e(=y()-y @) (1.3.1)
f(0)=f(e(t)) (1.3.2)

where y(f) denotes observed, 7 (r) simulated hydrologic variable (e.g. flow) and f (0)

goodness-of-fit measure. One of the commonly used objective function is Mean square

error, MSE:

n 2
MSE:E[(y_j,)ZJ: % 3 (Cuoss ~ o) (1.33)
i=1

In the model calibration, MSE is to be minimised with respect to the model parameters 6

min MSE (y, §
(2SC)]

x,0) (1.3.4)

where © denotes plausible ranges of the parameters 6. Simulated variable 7 (z) is

conditioned on the model input x and the parameter set 6.

An overview of the objective functions most frequently used for hydrologic model

calibration is given in chapter 1.3.3.

Calibration can be performed manually or automatically by employing an optimisation

algorithm.

- Manual (“trial and error”) calibration is performed by an expert hydrologist and,
as such, inevitably involves subjectivity (e.g. Vrugt et al., 2003; Yilmaz et al., 2010).
Agreement between the simulated and observed variables is estimated subjectively, based
on visual inspection of the results (e.g. hydrographs) (Boyle et al., 2000). Also, the values
of optimised parameters heavily depend on the hydrologist’s experience, thus two
hydrologists may come up with quite different parameter estimates (e.g. Vrugt et al.,
2003; Yilmaz et al., 2010). This procedure is time and labour consuming, and it becomes

virtually inapplicable to highly parameterised, complex models (e.g. Lindstrom 1997;



Gupta et al., 2005; Yilmaz et al., 2008). For these reasons, manual calibration has been

replaced by automatic one (Liu & Gupta, 2007).

- Automatic calibration. In addition to calibration data, an automatic model
calibration requires prior ranges or distributions of model parameters, objective
function(s) (chapter 1.3.3), an optimisation algorithm (chapter 1.3.4) and the convergence
criteria (Figure 5). Parameter values are sought within the pre-specified ranges aiming at
minimisation (or maximisation) of particular objective function(s). The optimisation
procedure lasts until convergence criterion is fulfilled. Convergence criteria may be
expressed as the maximum number of iterations, or the minimum relative change of
objective function(s) or parameter estimates between consecutive iterations (Madsen
2003; Blasone et al., 2007; Blasone 2007). Two types of automatic calibration can be
distinguished depending on whether the model is calibrated with respect to one or more
objective functions: single- objective calibration and multi-objective one. Since the multi-
objective calibration is employed in this research, particulars of this approach are

discussed in detail in chapter 1.3.2.

An automatic model calibration can result in the unrealistic parameter estimates because
the parameters are adjusted to obtain the best-fit model, regardless of their hydrologic
connotation (Yilmaz et al., 2008). This problem can be approached through the plausible
prior parameter ranges. For example, the SCS Curve number CN can take values from
approximately zero to one hundred. Yet, the initial range of this parameter should be
reduced based on the land use and soil types in the catchment (for example, CN equal to

95 for a natural catchment is questionable).
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*Model selection

*Selection of free model parameters (to be estimated through calibration) and
their prior ranges

*Setup of the values of the remaining model paramters

*Selection of goodness-of fit measure(s)

*Selection of the optimisation algorithm(s)
*Convergence criteria

*Selection of the calibration period and data collection

*Model calibration - parameter estimation
*Evaluation of the calibrated model (over an independent period)

Figure 5. Overview of the steps of automatic model calibration procedure.

After the parameters are estimated, the obtained model is tested over an independent
period. Poor model performance outside the calibration period generally indicates
overcalibration, i.e. a large prediction uncertainty (e.g. Schoups et al., 2008; Remesan and
Mathew 2013). It is a consequence of noise in the observed data, low information content
of the observations or high model complexity, which is not supported by the available

data (Andréassian et al., 2012; Remesan and Mathew 2013).

Uncertainty-based calibration (Bayesian approach)

Uncertainty-based calibration aims at identification of the parameter posterior pdf, based

on the prior distribution and the likelihood function (e.g. Liu & Gupta, 2007; Kottegoda

and Rosso 2008). According to Bayes equation, the parameter posterior pdf, p (6 | D), is

estimated as following (e.g. Kuczera & Parent, 1998; Renard et al., 2010):
»(D]0)-p(0)

p(6|D)= jp(9|D)-p(9) = « p(D|6)-p(6) (1.3.5)

where D stands for the data set, p (D | 6) is the likelihood, and p (6) is the parameter prior

distribution. The prior distribution enables a hydrologist to incorporate their knowledge
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on the parameter values into the calibration procedure by imposing a particular

distribution. The parameter prior distribution is commonly assumed to be uniform.

According to Todini (2007), certainty about a parameter is represented by the Dirac delta
function at the parameter value, total uncertainty is represented by the [-00, +o0] interval,
and the parameter uncertainty (i.e. partial knowledge about the parameter value) is
represented by pdf. A peakier pdf indicates smaller variability and less uncertainty.
Hence, the parameter posterior distribution, p (8 | D), enables quantification of the
parameter uncertainty (Kuczera & Parent, 1998) and this approach is therefore referred
to as the uncertainty-based calibration (Razavi et al., 2010). Prior parameter distribution
is updated with the new observations (Engeland et al., 2006). There are two types of these
methods, depending on the likelihood function: formal and informal ones (Engeland et

al., 2006; Vrugt et al., 2008; Jin et al., 2010; Sadegh and Vrugt 2013; Shafii et al., 2014).

— In the formal Bayesian methods the likelihood functions are based on the
stochastic properties of the residuals (e.g. for autocorrelated residuals with homoskedastic

variance?

, an AR(1) error model can be used to derive the likelihood function).
Additionally, these functions can include various sources of uncertainty: for example,
multiplicative error term can be used to correct input rainfall data (Kuczera et al., 2006;
McMillan et al., 2011). Despite being statistically sound, these likelihood functions rely
on strong assumptions on the residual stochastic properties (Vrugt et al., 2008). The
SCEM (Shuffled Complex Evolution Metropolis algorithm) and DREAM (DiffeRential
Evolution Adaptive Metropolis) are some formal Bayesian methods commonly employed

in hydrological modelling (Vrugt, 2003; Vrugt et al., 2008).

- Application of the informal Bayesian methods does not rely on derivation of the
likelihood functions that reflect various sources of uncertainty. For example, in the most
frequently used informal Bayesian method, the Generalised Likelihood Uncertainty

estimation (GLUE?) introduced by Beven and Binly (1992), the likelihood functions are

2 Homoskedasticity is defined in relation to regression analysis as independence of the residuals on the
magnitude of the independent variable (as opposed to heteroskedasticity). Homoskedasticity or

homogeneity of variance means that all sequences of the series have the same variance.

3 The GLUE method is based on the Regional Sensitivity Analysis (RSA) by Spear and Hornberger (1980).
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based on the model performance measures (less formal likelihood). Therefore, no strong
assumptions on the stochastic properties of the residuals are required. However, all
sources of uncertainty are lumped together into the parameter uncertainty, resulting in
smoother posterior parameter pdfs (Vrugt et al., 2008). Montanari (2005), Mantovan and
Todini (2006) and Todini (2007) argued about disadvantages of the GLUE method. First,
they pointed out the subjectivity in selection of the behavioural (good, acceptable)
parameter sets that could significantly affect the estimated parameter uncertainty. Second,
they pointed out the improper likelihood functions, which do not ensure equivalence
between batch and sequential learning incoherency in learning. However, due to
simplicity of the GLUE method, it has been widely applied and reported in the literature
(e.g. Campling et al., 2002; Choi & Beven, 2007; Coron et al., 2012; de Vos et al., 2010;
Fenicia et al., 2008; Muioz et al., 2014).

Comparison between the formal (DREAM) and informal (GLUE) Bayesian methods is
reported in several papers (e.g. Vrugt et al., 2008; Jin et al., 2010), while Nott et al. (2012)
and Sadegh and Vrugt (2013) compared GLUE with the approximate Bayesian
computation (ABC) methods. Vrugt et al. (2008) demonstrated that the formal Bayesian
approach (DREAM) results in considerably peakier posterior pdfs of the HYMOD
parameters, higher percentage of the observations encompassed by ensemble band,
narrower spread of the band and better overall performance over calibration and
evaluation periods, than the GLUE method. Sadegh and Vrugt (2013) argued that the
GLUE is type of the ABC method, what is suported by similar results of these two

approaches.

1.3.2. Issues concerning parameter estimation

Hydrologic model calibration is rather difficult task, regardless of the approach to
parameter estimation. Goal is to obtain robust parameter estimates that result in strong
performance over the calibration and evaluation periods (parameter transferability in
time) (KrauBle et al., 2012). Some issues about parameter estimation in hydrological

modelling are briefly discussed in this chapter.

13



Stochastic nature of the residuals

Objective functions are derived from the maximum likelihood estimator, with certain
assumptions on the stochastic properties of the residuals. For example, if the residuals are
assumed to be independent and normally distributed with constant variance
(homoskedasticity) and if the sample size is sufficiently large, the maximum likelihood
estimator reduces to the mean squared error (MSE) (e.g. Sorooshian et al., 1983; Gupta et
al., 2005; Schoups et al., 2008). Instead of MSE, its root square value is frequently used
(RMSE), which is expressed in the same unit as the simulated variable. RMSE is sensitive
to extreme values (i.e. it primarily depends on the model efficiency in the high flow
domain). Therefore, modified versions of this objective function with transformed flows
are used for model calibration (Fenicia et al., 2007). Other objective functions based on
the squared difference between simulated and observed flows are also introduced and

applied, depending primarily on the modelling purpose (chapter 1.3.3).

However, when it comes to hydrologic modelling, such the assumptions about the
residuals (normal distribution, randomness and homoskedasticity) are not usually valid
(e.g. Gupta et al., 2005; Schoups and Vrugt 2010). Ignorance of the stochastic nature of
the residuals leads to the parameter estimates that do not result in optimal model
performance in the calibration and evaluation periods and significantly vary with the
calibration period (Sorooshian et al., 1983). Sorooshian et al. (1983) compared the results
obtained with HMLE (Maximum Likelihood Estimator for Heteroskedastic Error Case)
and with AMLE (Maximum Likelihood Estimator for Autocorrelated Error Case).
Parameter estimates obtained using HMLE resulted in higher model efficiency, indicating
that heteroskedasticity* in the residuals is more important to be recognised in an objective
function than autocorrelation. In addition to HMLE, various monotonic (e.g. logarithmic,
root, reciprocal, Box-Cox) transformations can be applied to the variables to stabilise
heteroskedasticity. The objective functions are calculated from the transformed series

(Sorooshian et al., 1983; Yilmaz et al., 2010).

4 Heteroskedasticity is defined in relation to regression analysis as dependence of the residuals on the
magnitude of the independent variable. Here, heteroskedasticity is dependence of the residuals on the flows.
Usually the absolute residual values increase with the increasing flow magnitude and therefore residuals in

high flows have greater impact on the value of the objective function.
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The Box-Cox transformation of flows y reads (Box & Tiao, 1973):

ﬂ’_
(v, A)= (y 1% » A#0 (1.3.6)

ln(y) , =0

where A is a parameter to be estimated from the data.

Response surface

Another major concern about hydrologic model calibration is the response surface or the
fitness landscape. The response surface is a hypersurface defined by the values of model
parameters and objective function. For example, axes of the response surface in Figure 6
represent values of two model parameters, while the contour lines denote values of the

objective function (in this example, the Nash-Sutcliffe efficiency).

Duan et al. (1992) highlighted several features of the response surfaces of hydrologic

models:

(1) The response surface does not take convex shape with a single optimum. On the
contrary, there are numerous regions of attraction spread throughout the

parameter space.

(2) There are a lot of local optima within each basin of attraction which can be

rather remote from the global optimum region (Figure 6).

(3) Response surface contains numerous ridges, which indicate non-linear

interaction among model parameters (e.g. Kavetski & Clark, 2010).

(4) The response surface is not smooth: there are discontinuities in the first and

second derivatives of the response surface with respect to the parameters.

(5) The parameter sensitivity, represented by the local slope of the response surface,
varies across the response surface. Flat areas of the response surface indicate
low parameter sensitivity (parameters that have negligible influence on model

output). Such behaviour may be detected in the vicinity of the optima.
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The aforementioned properties of the response surface impose severe limitations to the

optimisation algorithms (chapter 1.3.4).

Multiple optima and ridges in the response surface indicate that different parameter sets,
which may be scattered throughout the parameter hyperspace, result in approximately
equal value of the objective function. Despite similar performance in the calibration
period, these sets may result in quite different predictions in an independent period
(Seibert, 1997). This is referred to as equifinality among different parameter sets (Beven
and Binly, 1992). Parameter interaction (i.e. correlation between the parameters) is
represented by the ridges of the response surface and means that the effects due to changes

in one parameter can be compensated by changes in another parameter.

Discontinuities in the derivatives of the response surface may be attributed to the
threshold processes in the model, to the objective functions or to the numerical scheme
implemented within the model (e.g. Sorooshian et al., 1983; Kavetski et al., 2006;
Kavetski & Clark, 2010). Derivatives of the response surface also reveal local parameter
sensitivity. The parameter sensitivity signifies how changes in the parameter affect model
output and the response surface. Small changes in sensitive parameters result in
considerable changes of the objective function, and vice-versa. Low parameter sensitivity
may be due to poor parameter identifiability, which means that the optimum parameter
values cannot be inferred because a flat response surface indicates similar model
performance. Poor parameter identifiability can be attributed to parameter
interdependence, parameter insensitivity, data noninformativeness (there are no
hydrologic conditions required to activate the parameter), inadequacy of the criterion (the
objective function does not enable sufficient extraction of information from the data), or
inadequacy of model structure (e.g. Sorooshian et al., 1983; Yapo et al., 1996, Beven,
2001b; Abebe et al., 2010). Conversely, well identified parameters converge to a narrow

interval and they are considered well defined within the model structure.

Correlation among the model parameters produces ridges in the response surface. It may
lead to poor parameter identifiability and hinder parameter optimisation and sensitivity
analysis. Blasone at al. 2007 considered that weaker correlation among the parameters

and absence of the ridges in the response surface indicate better model parameterisation.
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Figure 6. Response surface of the 3DNet-Catch model for the Kolubara River catchment
(calibration in the 1988-2013 period): the Nash-Sutcliffe efficiency NSE as a function of

two model parameters (precipitation gradient o and filtration coefficient Ka).

1ll-posedness of the calibration problem — model overparameterisation

Model overparameterisation signifies discrepancy between a great number of free model
parameters and the number of the observed variables (usually, there is just one output
variable — flow). This is a “one-to many” mapping problem, so many different parameter
sets may result in similar simulated hydrographs and in similar values of the objective
function(s) (Sorooshian et al., 2008). This is an ill-posed problem also called the
parameter equifinality (Ebel and Loague 2006).

The discrepancy between dimensionality of the parameter space and the number of

observed variables may be mitigated by (Blasone, 2007):

- Sensitivity analysis. The results of a sensitivity analysis indicate how changes in
some parameters affect model output and model performance (Marino et al., 2008). It is
commonly employed to detect the most influential (or sensitive) parameters, allowing to
exclude insensitive ones from the calibration procedure. In this way, ill-posedness of the
calibration is mitigated (Blasone, 2007; Muleta, 2012). Sensitivity analysis may be

performed to quantify impact of input data and its uncertainty, boundary conditions, etc.
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A review of the techniques used for sensitivity analysis is given by Razavi and Gupta
(2015).

— Subsequent to the sensitivity analysis, two-step calibration may be performed. In
the first step only the sensitive parameters are optimised. In the second step values of
these parameters are set to the optimum values, and the remaining parameters are
optimised. An issue related to this approach are interactions among parameters, which are

neglected if all parameters are not optimised simultaneously (Blasone, 2007).

- Regularisation techniques, which are commonly employed to reduce parameter
dimensionality in the distributed models. These techniques are briefly discussed in

chapters 1.3.5 and 2.3.2.

— Linking the parameter values to physically-based limitations. Schoups et al.
(2008) have shown that if such limitations are imposed on the model (e.g. head-flow
relations), an increased number of model parameters does not lead to an increased

uncertainty of model predictions.

Irrespective  of the technique applied, hydrological models are generally
overparameterised, which means that there is no single optimal parameter set, but several
acceptable sets (chapters 1.3.1 and 1.3.5). Therefore, “point” estimates of flows or other
hydrologic variables are replaced by an ensemble of simulations produced with all

acceptable parameter sets (Beven & Young, 2013).

Selection of the calibration period

The model parameters should be calibrated over a period that is sufficiently long so that
it contains enough information on the catchment responses to enable “excitation” of all
processes included in the model (Sorooshian et al., 1983; Beven 2001a; Wagener et al.,

2003).

Wagener et al. (2003) demonstrated that information content for the identification of
model parameters varies in time. For example, a parameter that represents fast overland
flow can be identified during peak flow periods, whereas the highest information content

for base flow takes place over prolonged droughts. Juston et al. (2009) calibrated the
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model against the “informed-observer” data, sampled once per month or once per week,
so that the information-rich events are captured. Performance of the model calibrated in
this manner was slightly lower compared to the efficiency of model calibrated over the
full record period, which means that most of the information in the full record period is
redundant and that a model could be calibrated using discontinuous observations (also
Perrin et al., 2007 and Kim & Kaluarachchi, 2010). Generally, the calibration period
should include wet periods, as they contain more information and result in better
identification of model parameters (e.g. Sorooshian et al., 1983; Yapo et al., 1996; Vrugt
et al., 2006; Melsen et al., 2014). For example, Kim and Kaluarachchi (2010)
demonstrated that a period comprising at least 36 wet months results in reliable model
calibration. Xia et al. (2004) showed that different lengths of the calibration period are
required to obtain consistent parameter estimates (for example, soil-moisture related
parameter requires longest calibration period). Perrin et al. (2007) suggested that a
parsimonious model requires fewer data and shorter calibration period for parameter

optimisation.

There are numerous recommendations in the literature regarding length of the calibration
period. Merz et al. (2011) considered that 5 years are the shortest calibration period
sufficient for proper model calibration with the global SCE-UA optimisation algorithm
(Shuffled Complex Evolution, Yapo et al,, 1996). Yapo et al. (1996) calibrated a
conceptual hydrologic model over 1-, 3-, 5-, 8- and 11-year long calibration periods by
employing the SCE-UA. Their results suggested that at least 8 years is necessary to obtain
parameter estimates that do not vary with the calibration period. Kim and Kaluarachchi
(2010) demonstrated that model calibration with a global optimiser over periods longer

than 10 years does not lead to any further reduction in parameter uncertainty.

Vrugt et al. (2006) calibrated the Sacramento SMA Model using the SCEM-UA global
optimization algorithm over periods of increasing number of years. The posterior
parameter pdfs indicated that 2-3 years of calibration suffice for obtaining stable pdfs.
However, parameters obtained over longer calibration period resulted in more consistent
performance. Wriedt and Rode (2006) demonstrated that calibration periods up to two
years contain enough information to optimise sensitive model parameters using the
GLUE method. Brigode et al. (2013) calibrated parsimonious models over the 3-year long
periods using both the DREAM and GLUE methods.
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As for the model performance, Luo et al. (2012) suggested that a longer calibration period
(e.g. longer than 20 years) does not necessarily lead to an improvement of model
performance. On the other hand, models calibrated in shorter periods perform well over
the calibration period, but can result in a considerable decrease in model efficiency over
the evaluation periods. Coron et al. (2014) demonstrated that models calibrated in the full
record period reproduce water balance in sub-periods equally good as the models
calibrated in any 10-year long sub-period. Romanowicz et al. (2013) compared model
calibration over periods of increasing length to the problem of smoothing in statistics

since the model performance is averaged over various hydrologic responses.

Clearly, there is a wide range of recommended lengths of calibration period in the
literature. Recommendations depend on the model, parameter estimation method and
catchment properties. Regardless of the record period length, it should be split into
periods aimed for model calibration and evaluation. This imposes additional restrictions
on the selection of the calibration period. Generally, as much information as possible
should be used for model calibration, assuming that observations are reliable and diverse

hydrologic responses are included in the calibration period.

Model overcalibration

Andréassian et al. (2012) identified two problems in the process of model calibration:
miscalibration and overcalibration. Model miscalibration means that an optimisation
algorithm failed to detect global optimum in a calibration period. On the other hand,
model overcalibration means that the model does not perform well with optimal

parameters outside the calibration period.

Model overcalibration is a major issue for model application. Merz et al. (2011) and
Thirel et al. (2014) pointed out that it is crucial to understand the reasons for such model
behaviour, especially if the model is to be used for simulations under conditions outside
the range of the observed ones (for example for hydrologic forecasting and in climate

change impact studies).

Impact of the calibration period on the parameter estimates and model performance, and

model overcalibration problems are discussed in detail in chapter 1.5.
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1.3.3. Objective functions

The objective functions in hydrological modelling are optimised with respect to model
parameters in order to obtain the best possible agreement between the observed and
simulated hydrologic variables (usually flows). Table 1 lists the objective functions

commonly applied for hydrologic model calibration and evaluation.

Some objective functions indicate systematic errors (under- and over-estimation) or
dynamic errors (timing). For example, presence of bias indicates under- and over-
estimation of flows or runoff volume. Various hydrographs may result in the same bias
because this performance measure is insensitive to dynamics of the simulated response.
On the other hand, low coefficient of correlation indicates only dynamic errors; therefore
it could take a maximum value even if the simulated flows were negative because it does
not recognise bias (Criss and Winston 2008). However, majority of the objective
functions reflect both types of error (Krause et al., 2005). For example, Gupta et al. (2009)
separated the Nash-Sutcliffe efficiency NSE in two parts: ratio between the mean
simulated and observed flows, which indicates bias, and the correlation coefficient, which

quantifies the dynamic error.

Moriasi et al. (2007) categorised the most frequently used objective functions into
regression-based, dimensionless and error indices. The first group of objective functions
is comprised of the correlation coefficient, linear regression slope and interception.
Dimensionless indices provide relative estimation of model efficiency and include e.g.

NSE, index of agreement d, etc. Error indices are based on the mean square error, MSE.

Criss and Winston (2008) analysed ability of several objective functions to capture errors
in timing and proportional increase / decrease of a hydrograph. They suggested that some
objective functions do not properly reflect these errors, and proposed the volume error

VE.

It has been recognised that the objective functions based on squared residuals (such as
RMSE or NSE) are sensitive to outliers. The values of such the objective functions are
principally determined by the model efficiency in high flow domain (e.g. Legates &
McCabe, 1999; Krause et al., 2005). To improve robustness of the NSE, various

modifications have been proposed in the literature. For example, in order to reduce
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sensitivity to high flows, NSE can be calculated from the logarithms of flows, square root
of flows or their reciprocal values’ (Oudin et al., 2006; de Vos and Gupta 2010; Pokhrel
etal., 2012; Seiller et al., 2012; Thirel et al., 2014). Lindstrom (1997) introduced a penalty
to NSE in order to reduce NSE due to the runoff volume error. For balanced representation
of systematic and dynamic errors in NSE, Gupta et al. (2009) proposed the KGE efficiency
measure. Legates and McCabe (1999) suggested a general form of NSE, which enhances
sensitivity to low flows. NSE can also be calculated for the flow duration curves. To cope

with heteroskedasiticity in the residuals, Sorooshian et al. (1983) introduced HMLE.

The objective functions can be used as the evaluation criteria as well. This means that
these functions are not included in model calibration, but they are employed to measure
model performance instead. In addition to the objective function, Euser et al., (2013)
proposed several “signatures” to test the realism of a hydrologic models, such as

autocorrelation in the flow time series, rising limb density or peak distribution.

Further, Crochemore et al. (2015) studied the agreement between objective functions and
expert judgement on model performance by conducting a survey among the hydrologic
modellers. They revealed that the objective functions based on the squared or absolute
error corroborate expert judgement about high flows. As for low flows, objective

functions based on the log-transformed flows best reflect the expert judgment.

None of the objective functions is sufficiently versatile to reflect all aspects of agreement
between simulated and observed flows. Model calibration should therefore employ
several complementary performance criteria (e.g. Gupta et al., 1998; Moriasi et al., 2007).
Recommendations on the acceptable values of NSE and flow bias are presented by

Moriasi et al. (2007).

5 Reciprocal values are calculated as (1/(Q+¢)), where ¢ is small constant (usually one per cent of mean

flow value) to avoid dividing by zero (Thirel et al., 2014).
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Table 1. An overview of the most frequently used objective functions for hydrologic model calibration against observed flows.

Objective function

Equation Dimension Target value Comments and references

Relative flow bias

Zn: (Qobs,i - Qsim,i )

bias,y =—=— 100 %
z Qobs,i
i=1

Insensitive to dynamic errors.
Bias which is not normalised is expressed in units of
flow or runoff.

2
n — —
Coefficient of R2 _ g’ (QObS i QObS )(QSim’i B QSim’i ) Insensitive to differences between simulated and
determination R? - P — P — ) observed flows (bias).
\/Zl(Qobs,i_Qobs) \/_zl(Qsim,i_Qsim,i)
= =

MAE lower than one half of standard deviation of the

Mean absolute error observed flows is considered low.

MAE MAE = z Oobs.i — Dsim, l-‘ m¥/s MAE is less sensitive to outliers than RMSE,
therefore it is preferred over RMSE if outliers are
present in the flow series (Legates & McCabe, 1999).

Root mean square | 2 Appropriate when data errors are uncorrelated and

q RMSE = | — Z( ) m’/s homoscedastic (Gupta et al., 1998; Romanowicz et
error obs i 51m,z
n g al., 2013).
1 ?
RMSE r=,| — —O0.. ) W
Transformed Root HF ~ n z Qabs,i = Dsim ) HF, D . .
i=1 3 Flow weighting puts more emphasis to high flows
mean square error for m’/s

high flows

obs i
WHF,i =

Qobs max

(Fenicia et al., 2007).
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Table 1 (continued). An overview of the most frequently used objective functions for hydrologic model calibration against observed flows.

Objective function  Equation

Dimension Target value Comments and references

2
1 n
RMSE = " Z(Qobs,i _Qsim,i) “WLF,i

Transformed Root P
mean square error for

2
low flows

W _ Qobs,max_Qobs,i
LEi— |~
Qobs,max

m’/s

Flow weighting puts more emphasis to low flows
(Fenicia et al., 2007).

Nash-Sutcliffe Z ( Qobs,i - Qsim,i )

efficiency coefficient NSE=]1-— -
NSE

n 2

1
n

Z (Qobs,i _Qobs)

=

LN

Negative values indicate that mean value of the
observed flows is better predictor than the model.
NSE is rather sensitive towards high flows due to
square values of the differences.

NSE can be calculated using transformed flows (e.g.
log-transformed or reciprocal values of flows).

NSE can take low values if the observed flows
exhibit small variability (Criss & Winston, 2008).

i (Qobs,i - Qsim,i )
i=1

n
Z Qobs,i
i=1

Linstréom measure LM LM = NSE — w

LM is obtained by modifying NSE to account for
error in simulated runoff volume.
Value of w is commonly set to 0.1 (Lindstrom, 1997)

KGE =1-\/(r=1)* +(a—1)>+(B-1)°
Z(Qobs, i = Oubs )(Qsim, i Qsim)

Kling-Gupta "= = 2 A 2
efficiency KGE \/ Z ( Qobs, i = Oobs ) Z ( Qsim, i = Osim )

a= L?Qsim ;ﬂ — _sim
S Qobs QObS

1Q

KGE is obtained by balancing model performance in
reproducing mean flows and flow variability and
linear correlation between observed and simulated
flows (Gupta et al., 2009).




Table 1 (continued). An overview of the most frequently used objective functions for hydrologic model calibration against observed flows.

Objective function  Equation

Dimension Target value Comments and references

2

n
Z (Qobs,i - Qsim,i )
Index of agreementd ¢ =1— i=l

i( Qobsz Qobs ‘Qmmz Qslm‘)

Poor model performance may yield high values of
this index (e.g. over 0.7) (Krause et al., 2005).

i=
n
Z( obs,i 51m z)
=1
Z Qobs,i
i=1

Volume error VE VE =1-

VE denotes the flow volume common to the
simulated and observed hydrograph and its
complement denotes volume mismatch (Criss &
Winston, 2008).

2
7ZW ( obs,i 51mz)

Maximum Likelihood HMLE = i=l
Estimator for n 1
Heteroskedastic Error (H WiJ 4
Case HMLE j
2(2-1)
Wi = obs,i

HMLE is calculated from the flows that are
transformed applyign Box-Cox transformation (Box
& Tiao, 1973).

A is paramter of the Box-Cox transformation that has
to be estimated in the calibration along with the free
model paramters (Sorooshian et al. 1983).
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1.3.4. Optimisation methods used for hydrologic model calibration

Automatic model calibration implies parameter optimisation by employing a numerical
optimisation procedure, which may be local or global. Prior to the optimisation procedure,
the ranges of free model parameters should be restricted to a plausible parameter space ®

thus creating a constrained optimisation problem (Vanrolleghem, 2010).

Local optimisation methods start from a randomly sampled parameter set. These methods
include derivative-based (gradient) and derivative-free (direct) methods. Gradient-based
methods rely on the first- (e.g. steepest descent) or second-derivatives (e.g. Gauss-
Newton algorithms) of the response surface with respect to the model parameters (Yilmaz
et al., 2010). These methods can locate the optimum, provided that the response surface
has convex or concave shape. For example, Duan et al. (1992) argued that the
optimisation algorithms for the rainfall-runoff model calibration must be able to avoid
trapping in the local optima regions and should not therefore rely on the derivatives of
the response surface. Direct methods (e.g. Simplex or Pattern Search methods) explore
the response surface in a systematic manner without calculating its derivatives. Since
these methods are prone to trapping in a local optimum region, it is recommendable to
repeat the optimisation procedure with different initial sets. Due to complex nature of the
response function in hydrological modelling (chapter 1.3.2), local optimisation methods
are not considered sufficiently robust for hydrologic model calibration because they are
likely to fail in finding the optimal parameter set (Duan et al., 1992; Gupta et al., 2005;
Yilmaz et al., 2010).

Nevertheless, some researchers believe that local optimisation methods could be applied
for reliable hydrologic model calibration in case of smoother response surfaces. For
example, smoother response surface can be obtained if the model is calibrated with
HMLE as the objective function since this measure recognises heteroskedastic nature of
the residuals (Sorooshian et al., 1983). Kavetski et al. (2006) advocated smoothing of the
thresholds in a model to obtain smoother response surface and thus enable application of

the gradient-based optimisation methods.
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Global optimisation methods work with a large number of sampled initial parameter sets,
which are iteratively moved towards the optimum regions (Figure 7). In this way,
probability of the algorithm being trapped in a local optimum region is significantly
decreased. Considering features of response surfaces in hydrological modelling, global
optimisation methods have replaced local ones in the past few decades (e.g. Gupta et al.,

2005).

Some combinations of the global and local methods also have been used for hydrologic
model calibration (e.g. Seibert, 2000). Global algorithms narrow down the search to an
optimum region, and the results of global optimisation are used as the starting point for

the local ones.
Details on the global optimisation methods may be found in Weise (2009).

It has been recognised that a single global optimisation method cannot be efficient® in
various optimisation problems. Vrugt and Robinson (2007) presented the AMALGAM,
which contains several global optimisation methods, aiming at more effective and
efficient parameter optimisation. The AMALGAM is employed in this research and it is

therefore it is elaborated in chapter 2.2.

o, 0, 0,

0, 6, 0,

Figure 7. Global optimisation: multiple initial points in the parameter space (reproduced

form the lectures by John Doherty, given in Belgrade in September 2013).

6 Optimisation algorithms should be consistent, effective and efficient. Consistency implies algorithm’s
ability to locate the same optimum region of an optimisation problem in different repeated simulations;
effectiveness refers to the probability of locating optimum region, and efficiency to the convergence speed

(Duan et al., 1992; Blasone, 2007).
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1.3.5. Multi-objective calibration

Multi-objective model calibration is performed with respect to two or more objective
functions, thus enabling extraction of more information from the data (Gupta, et al., 1998;

Wagener et al., 2003; KrauB3e et al., 2012; Shafii et al., 2014).
There are three types of multi-objective calibration (Madsen 2003):

(1) Multi-variable calibration involves several observed variables (e.g. flows,

groundwater levels, concentration of tracers).

(2) Multi-site calibration relies on the data observed at several locations (e.g. flows
at nested stream gauges in the catchment or groundwater levels at multiple

wells)’.

(3) Multi-response calibration implies parameter optimisation with respect to
several objective functions, based on one observed variable. Multi-response

calibration is employed in this research and it is briefly discussed here.

Multi-response calibration

Hydrologic models contain a considerable number of free parameters to be inferred from
a single observed variable (i.e. flow). Ill-posedness of the calibration (chapter 1.3.2) can
be mitigated if several objective functions are used. Single objective function cannot
capture all aspects of model performance, but including several complementary objective
functions increases extraction of information from the data. For example, NSE is aimed
at assessment of the model performance in high-flow domain, but NSE calculated with
the log-transformed flows quantifies model efficiency in the low-flow domain. Hence,
some researchers consider manual calibration as the multi-objective calibration (Gupta,
et al., 1998; Vanrolleghem 2010) because the modellers are usually looking at different

aspects of agreement between the observed and the simulated hydrographs.

Multi-response calibration is defined as the optimisation of a set of m objective functions:

7 Multi-site calibration cannot be applied with the semi- or fully-distributed hydrologic models.
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where fi (k= 1, 2, ..., m) are the individual objective functions and 6 is a parameter set.

One parameter set cannot be optimal according to several objective functions. Multi-
response calibration therefore yields several parameter sets, which represent a trade-off
among the objective functions. For example, one parameter set, 61, would reflect some
aspect of the hydrograph (e.g. flow volume) better than other parameter sets, but 81 would
not accurately quantify other aspects of model performance (e.g. model’s ability to
reproduce peak flows). These parameter sets are referred to as “non-dominated” or
“Pareto-optimal”, which means that one objective function cannot be further improved

without deteriorating other objective functions. In other words, it is not possible to find a
Pareto-optimal set §; such that fi (6)) < fi (6i), Vke {l, 2,..., m} , where 6; denotes other

Pareto-optimal sets (Gupta et al., 1998). Figure 8A shows the Pareto-optimal parameter
sets (of two parameters 81 and 62) which include the best values of two objective functions
(A and B) and trade-off sets between them. The non-dominated sets make the so called
Pareto front (Figure 8B) if the parameters are optimised according to two objective

functions, or the Pareto surface if more objectives are used in calibration.

A) B)
6, : (8 )

6, )

Figure 8. Pareto-optimal parameters in A) parameter space, and B) in the space of

objective functions (reproduced from Blasone, 2007).

There are two ways to obtain optimum sets according to m objective functions: (1) to

aggregate all objective function into a single, composite one (classical approach), or (2)
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to optimise parameters according to all objective functions simultaneously. The former
approach implies assigning weights to each objective function, such that all weights sum
up to one. In this way, multi-objective optimisation is converted to a single objective
optimisation problem. However, this approach inevitably involves subjectivity in
assessment of the weights (Gupta et al., 1998). If the weights are systematically varied,
the Pareto front may be obtained. In the latter approach the parameter sets are optimised
and ranked according to the values of the objective functions and selected according to

the definition of the Pareto-optimal solutions.

Efstratiadis and Koutsoyiannis (2010) discussed possibilities to recognise model issues
from the properties of the Pareto front. For example, the Pareto fronts which resemble
right angle indicate a significant trade-off between two objective functions and it is
difficult to reach good values of both objective functions simultaneously because the

parameters are rather sensitive to both of them (also Madsen, 2003).

Multi-objective vs. uncertainty-based calibration

It is important to distinguish between the multi-objective and uncertainty-based

calibration, and between the Pareto-optimal and the GLUE behaviour solutions.

Uncertainty-based calibration is statistically grounded approach that aims at deriving
posterior parameter pdf, thereby quantifying the parameter uncertainty from various
sources (chapter 1.3.1). Multi-objective calibration does not rely on the Bayes theorem,
nor it accounts for different sources of uncertainty such as the input data or model
structure (Liu and Gupta 2007; Matott et al., 2009). However, some researchers (e.g.
Engeland et al., 2006, Blasone, 2007 and Dotto et al., 2012) considered this approach

relevant to estimate the parameter uncertainty.

Difterence between the GLUE behavioural and Pareto-optimal solutions is illustrated in
Figure 9. These sets may overlap, but generally they will not be identical (e.g. Gupta et
al., 1998; Efstratiadis and Koutsoyiannis 2010). Namely, not all Pareto sets are GLUE
behavioural, and vice-versa: some Pareto-optimal sets are not behavioural and they would

be discarded within the GLUE method.

30



0.9

0.8
N

0.7

' L ]

'f.*’ 0. :o H o &

0.6 : e \.. = '. ind -

» - . .v'
0.5 o % o .

o LH sample ¢ GLUE behavioural xPareto o Pareto non-behavioural

Figure 9. Pareto-optimal and GLUE-behavioural parameter sets of the 3DNet-Catch
model for the Mlava River catchment (1988-2013).

Further details on the multi-objective calibration may be found in the literature (e.g. Yapo
et al., 1998; Gupta et al., 1998; Madsen 2003; Vrugt et al., 2003; Engeland et al., 2006;
Efstratiadis and Koutsoyiannis 2010; Shafii et al., 2014).

1.3.6. Calibration of distributed hydrologic models

Fully-distributed models contain a large number of free model parameters (chapter 1.2)
and discrepancy between number of parameters and observed variables is substantial (ill-

posednsess of the calibration problem), so calibration of these models is challenging.

Even in the physically-based models, whose parameters could (theoretically) be inferred
a priori from the catchment properties (such as land use, soil types, topographic and
geologic information etc.), still require calibration (“fine-tuning”). Regardless of fine
spatial discretisation applied, the model cannot capture natural heterogeneity of the
catchment properties, and the catchment properties may be averaged in the scale-up (e.g.

Beven 2001a, Beven 2001b; Tucker et al., 2001; Bloschl and Zehe 2005; Gupta et al.,
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2005; Schuol and Abbaspour 2006; Yilmaz et al., 2008). For example, value of the
hydraulic conductivity inferred experimentally from the soil samples may considerably

differ from the value that would result in the best model performance (Beven, 2001b).

To mitigate ill-posednsess of the calibration problem, various regularisation techniques®
have been proposed in the literature. There are two approaches to mitigate calibration ill-

posedness:
(1) Introducing additional information to the calibration procedure.
(2) Reduction of the dimensionality of the parameter space.

In the first approach, physically-based distributed models are commonly calibrated using

the observations from the nested stream gauges or wells’.

Reduced number of free parameters is easily achieved by detecting the areas (cells) that
exhibit hydrologically similar behaviour and assigning a unique parameter set to each of
them. These areas are called Hydrologic Response Units — HRUs (Beven, 2001b). HRUs
are identified based on catchment topography, land use, vegetation or soil types, etc.

Identification of HRUs can be facilitated by the Geographic Information System (GIS).

Commonly used regularisation techniques are based on the a priori parameter fields and
the super-parameters that are optimised to achieve best fit to the observations. The super-
parameters alter the entire parameter field, i.e. its spatial distribution. Location, variance
or the entire parameter spatial distribution can be altered depending on the type of the

super-parameter. At least one super-parameter is assigned to a free model parameter.

The simplest regularisation technique is based on scalar multipliers:

éi,j =my; - 0PRIOR,i,j (1.3.8)

8 Regularisation techniques are aimed at stabilisation of an ill-posed optimisation problem (Yilmaz et al.,

2010; Pokhrel & Gupta, 2010; Pokhrel et al., 2012).

9 Seibert (2000) calibrated the conceptual HBV model against observations in the wells by employing an
auxiliary variable that links soil storage and groundwater levels, since the HBV model is not aimed at

simulation of groundwater levels.
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where 6’, ;j stands for the estimate of the i" parameter (out of N, free model parameters)

in the /" computational cell (out of Ng), m;: denotes the superparameter of the i parameter

scalar multiplier) and 6, . . is the preset value of the /" parameter in the ;™
p PRIOR, i, j p p J

computational cell. This transformation changes both mean and variance of the parameter
field. It contains N, super-parameters to be optimised, thereby reducing the number of

free parameters by Ng times (Pokhrel & Gupta, 2010).

A more complex regularisation techniques may also be applied in the following manner:

ei,j =m;: (QPRIOR,I',] _gpmo&i)"'ai (1.3.9)
n b
@,‘;me(ﬁmomj) ‘+a; (1.3.10)

where Oy op ; is mean value of the i parameter in the catchment, a: is an additive term

and b; is the power term of the i parameter. The linear transformation implies 2 N, super-
parameters, and the non-linear transformation implies 3 N, super-parameters. Pokhrel and
Gupta (2010) compared several regularisation techniques and obtained the best model

performance with the regularisation given in equation 1.3.9.

In three aforementioned regularisation techniques additional constraints should be
imposed to assure that transformed parameters take plausible values. A regularisation
technique that enables non-linear transformation of the parameter field without imposing
these constrains, presented by Yilmaz et al. (2008), is employed in this research and it is

described in detail in chapter 2.3.2.

Other commonly applied regularisation techniques are the Tikhonov regularisation,
which is based on the modification of the objective function to introduce penalty for the
parameters that departure from the prior values, and the Singular Value Decomposition,

which relies on the Principal Component Analysis (Yilmaz et al., 2010).
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1.4. Uncertainties in rainfall-runoff models

Incomplete knowledge of hydrologic variables or models gives rise to uncertainty
(Todini, 2007). Uncertainty can be considered as either aleatory or epistemic (Beven &
Young, 2013; Beven, 2009; Blasone, 2007). The former is due to natural randomness of
hydrologic and meteorological variables, and it is irreducible. This uncertainty can be
represented by a probability function. The epistemic uncertainty stems from the limited
knowledge, and it could be mitigated to a certain extent by enhancing the understanding
of hydrologic processes, or by new measurements. These two types of uncertainties are
not mutually exclusive (Beven and Young, 2013). For example, epistemic component of
rainfall observations arise from negligence in the rainfall spatial heterogeneity, whereas
the aleatory one steams from gaging errors, impact of wind, etc. Therefore, some
uncertainty in hydrologic simulations always remains regardless of the model reliability

(Gupta et al., 2005).

In hydrological modelling uncertainties stem from the input data, hydrologic model

structure and parameters (Renard et al., 2010).

Uncertainty in input data is related to measurement errors or inadequate spatial and
temporal resolution of the data. For example, Bardossy and Das (2008) showed that the
number of rain gauges included in model calibration and consequently the precipitation
spatial distribution significantly affect hydrologic model performance. Input-related
uncertainties also stem from the rating curves, since flows are usually estimated from

observed river stage using rating curves.

Model induces uncertainty on three levels: the perceptual, conceptual and numerical
models. Perceptual model does not necessarily have to include all processes that
participate in runoff generation at a particular catchment. Also, a conceptual model
commonly represents approximate mathematical description of perceived processes: for
example, effective precipitation depends on soil moisture, and vice-versa, which is
linearized in the conceptual model. Numerical models are approximations of the partial
differential equations of the conceptual model, and therefore introduce additional
uncertainty. To account for uncertainty due to model structure, numerous multi-model
combinations have been developed recently (Ajami et al., 2006; Clark et al., 2008; Fenicia
et al., 2007; Li & Sankarasubramanian, 2012).
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Model parameters are information integrators, meaning that they are affected by various
sources of uncertainties: data errors, model structural inadequacies, lack of robustness of
model calibration method (Todini, 2007, Figure 10). Parameter estimates also depend on
the calibration period, i.e. calibration over different periods would result in different
parameter estimates. Therefore, calibration period is also a source of uncertainty (Deletic
et al., 2012). There are also secondary sources of uncertainty, such as the parameters’
dependence on the state variables that are simulated using these parameters (e.g. soil
moisture), but these dependencies are commonly neglected in hydrological modelling

(Abebe et al., 2010).

According to Mantovan and Todini (2006) and Todini (2007), the parameters are
considered as “dummy”, uncertain quantities, which reflect various sources of uncertainty
(e.g. input data or model structure). Marginalisation of their posterior pdf that represents
parameter uncertainty, i.e. its integration over the entire feasible parameter space in every

time step yields predictive uncertainty in that step (e.g. uncertainty in the simulated flow).

Parameter posterior pdf can be inferred following the uncertainty-based calibration
methods, outlined in chapter 1.3. An alternative to these Bayesian (Monte Carlo,
probabilistic) methods are local deterministic methods, such as the Taylor series
expansion methods. In this approach higher order terms are discarded from the expanded
Taylor series. These methods result in statistical moments of parameters rather than
posterior pdf. To calculate derivatives of the model output (or an objective function),
numerical differentiation is commonly applied. Nevertheless, these methods are based on
the assumption of linearity of model response with respect to the model parameters, which
is not valid in hydrological modelling. Therefore these methods have been replaced by
the Bayesian ones (Kuczera & Parent, 1998; Vrugt et al., 2006). As pointed out in chapter
1.3.5, some researchers estimated parameter uncertainty by employing multi-objective
calibration, which is not founded on the Bayesian statistics. An overview of the methods

for estimation of the uncertainty in hydrologic modes is given by Matott et al. (2009).
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Figure 10. The key sources of parameter uncertainties in automatic model calibration

(Deletic et al., 2012).

1.5. Hydrologic model transferability in time

As discussed in previous chapters, estimation of hydrologic model parameters remains a
challenging task despite the robust optimisation algorithms and available computational
resources. An issue about the rainfall-runoff models is deterioration in model
performance and in reliability of the simulated hydrologic variables outside the
calibration period. One of the reasons for such model behaviour may be the fact that the
optimality of the parameter sets does not hold outside the calibration period. This

undesired property of hydrologic models imposes constraints on their applicability.

Research on hydrologic model transferability in time has been conducted by analysing:
(1) model performance over different periods, and (2) parameter variability in time, i.e.
with the calibration period. The results of these analyses are thoroughly reviewed and
presented in chapter 1.5.1. Attempts to improve model transferability in time that have

been made so far are elaborated on in chapter 1.5.2.
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1.5.1. Assessment of the consistency in model performance and model parameter

estimates

Assessment of consistency in model performance

A framework for assessment of model performance consistency was established by
Klemes (1986) and it is outlined in Table 2. Model robustness is commonly assessed
using Split Sample Test (SS7) or Differential Split Sample Test (DSST). DSST is
considered more robust compared to the Split Sample Test one (SS7) and more suitable
if temporal transferability of a model is to be evaluated (e.g. Klemes, 1986; Seibert, 2003;
Thirel et al., 2014; Refsgaard et al., 2014). However, a significant decrease in model
performance in DSST has been reported in the literature (e.g. Klemes, 1986; Seibert, 2003;
Vaze et al., 2010; Li et al., 2012). Details on application of DSST are elaborated by Thirel
et al. (2014).

Table 2. Parameter transferability tests (Klemes, 1986)

TEST APPLICATION

Model calibration and evaluation over two independent, but

Split Sample Test (S57) climatically similar periods.

Climatical transposability: model calibration over a period, and
evaluation in period markedly different from the calibration one
(e.g. dry-wet, cold-warm). If a model is intended to simulate
runoff under dry conditions, it should be calibrated over wet and
evaluated on dry periods, and vice-versa (Brigode et al., 2013).

Differential Split Sample Test
(DSST)

Geographical transposability — model calibration against
Proximity Basin Test observations at one, and evaluation against observations at the
other, similar catchment.

Proximity Basin Differential Split

Sample Test Evaluation of model overall transposability.

To estimate model ability to reproduce peak flows over periods wetter than the calibration
one, Seibert (2003) calibrated the HBV model within the GLUE framework over dry
years (lower peak flows) and evaluated on years with higher peak flows. The results

indicated systematic underestimation of peak flows.

37



To increase validity of their conclusions, many researchers performed model evaluation

using data from numerous catchments and /or different hydrologic models.

Le Lay et al. (2007) evaluated lumped GR4J model over various sub-periods, sampled
from the full record period. They assumed that if the model parameters properly reflect
catchment behaviour, the model efficiency over sub-periods with similar characteristics
should be consistent and have minimum deviation from the model efficiency over the
entire period. They calibrated the model and calculated variances of model efficiency
over 200 sub-periods. Models calibrated in two sub-periods consisting of consecutive
years with similar runoff coefficients (detected by applying Hubert’s segmentation
method) resulted in negligible deviation from the mean model performance, as opposed
to the models calibrated in the periods with highest and lowest precipitation rates. They
concluded that similarity of the simulation periods in terms of precipitation depths is

crucial for consistent model performance.

Vaze et al. (2010) calibrated four lumped conceptual hydrologic models (SIMHYD,
Sacramento, SMARG and IHACRES) over 10, 20, 30 and 40 consecutive driest and
wettest years for 61 catchments. Every model was evaluated over the complementary
periods. The results revealed a drop in model performance in the evaluation periods (NSE
and flow bias), which increases in magnitude with the difference in annual precipitation
depths. Provided that the evaluation periods are up to 15% drier or up to 20% wetter than
the calibration one, the decrease in model performance is acceptable (flow bias is smaller
than 20%). Model evaluation over periods drier than the calibration one resulted in larger
decrease in model performance than other way round. Models calibrated over short
periods performed poorly over long ones (even if the annual precipitation amounts are
similar), and vice-versa. Differences among the results obtained by alternative model

structures were subtle.

Merz et al. (2011) calibrated the HBV model over six 5-year long periods, and evaluated
every parameter set over the remaining five periods. The results clearly indicated that bias
in the simulated flow volume increases with the time lag between the calibration and an

evaluation period.

Liet al. (2012) calibrated two lumped, conceptual models (DWBM and SIMHYD) for 30

catchments over two wettest and two driest periods, selected according to annual
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precipitation. Models were calibrated using the GLUE method and NSE as the objective
function. Each model was evaluated over the remaining three periods. The best models’
performance was obtained in wet calibration period, whereas the lowest efficiency was

obtained in dry period with models that were calibrated over wet period.

Luo et al. (2012) calibrated lumped conceptual SYMHID model for 12 catchments
following four different calibration strategies. These strategies include: (1) periods of
various length, (2) full record period, (3) periods of various climatic characteristics, and
(4) monthly-based calibration. Periods with different climatic characteristics were
selected according to the annual precipitation depths (wet, normal and dry years) and
ENSO index (EI Nifio, La Nifia and neutral years). The results revealed that “analogue”
calibration strategies did not lead to any improvement in model performance over
evaluation periods at most of the catchments. Model calibration on monthly basis was
shown to enhance model performance at the catchments with distinct seasonality,

provided that no significant shifts in seasonality occur.

Seiller et al. (2012) conducted the DSST with an ensemble of twenty lumped, conceptual
model. Four 5-year long periods were selected according to the precipitation depths and
temperature: dry/warm (HC), dry/cold (DC), humid/warm (HW) and humid/cold (HC).
Transferability of the ensemble was higher than the transferability of the individual
models, although some of the individual models outperformed the ensemble in some

periods (e.g. GR4J yielded higher NSE value than the ensemble on HC-DW test).

Brigode et al. (2013) calibrated two lumped, conceptual hydrologic models (GR4J and
TOPMO) for 89 catchments. The models were calibrated over three 3-year long periods
(wet, intermediate and dry) which were selected according to the aridity index, and in the
full record period by employing the DREAM algorithm (Vrugt et al., 2008). All models
were evaluated over the driest period. The model calibrated over the wet period resulted
in the highest decrease in model performance over the evaluation period. Simpler (GR4J)
model slightly outperformed the TOPMO over the evaluation period in terms of both NSE
and flow bias. They compared evaluation performance of individual optimum sets and an
ensemble sampled form the posterior pdf, both being obtained over the full record period.
The results of the simpler model were almost identical, whereas TOPMO ensemble

outperformed individual optimum sets.
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In order to further enhance robustness of the model transferability assessment, Coron et
al. (2012) proposed the Generalised Split Sample Test (GSST). In GSST the model was
calibrated over all 10-year long moving periods, shifted successively by one year. The
obtained sets were tested over all remaining non-overlapping periods, resulting in
increased number of SS7s. They analysed model performance over evaluation periods
along with the meteorological characteristics of the calibration and evaluation periods:
precipitation depths, temperatures and potential evapotranspiration rates (PET). The
results revealed that the drop in evaluation efficiency increases with the difference
between precipitation in the calibration and evaluation periods, but no correlation with
the differences in temperature or PET rates was detected. This lack of correlation was
attributed to the fact that the catchments considered were water-limited. Model
performance was represented by the ratio of a composite objective function obtained in
the calibration and evaluation periods. The flow bias is affected by rainfall depths and

PET rates, which was confirmed at almost all catchments considered.

This research was further extended by Coron et al. (2014) who calibrated three models of
increasing complexity in the same manner (10-year sliding windows) for 20 catchments
with the Kling-Gupta efficiency (KGE) as the objective function. After simulating the
flow with all parameter sets obtained in calibration, 10-year moving averages of the
simulated and observed flows are compared. When plotted, the ratios Qosears for all
10 years
parameter sets constituted nearly parallel curves shifted along the ordinate. The simplest

model resulted in larger vertical spread in the curves.

Since consistent model performance has become major issue in hydrology, Thirel et al.
(2014) presented a framework for assessment of model performance outside calibration
period. They suggested that the model should be calibrated over the full record period and
over five distinct sub-periods of equal length, resulting in six calibrated models. Every
model should be evaluated over the remaining periods. Various graphs aimed at
facilitating effective and adequate representation of the results are suggested in the paper.
The methodology presented was followed by e.g. Li et al. (2014) and Magand et al.
(2014).
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In the literature reviewed, the models were tested using flow observations. However,
model robustness can also be evaluated by analysing the model performance in simulating
variables against which the model was not calibrated (e.g. ground water levels) or at
different sites (e.g. simulation of flows at nested stream gauges) (Muleta, 2012; Seibert,

2003).

Assessment of consistency in the parameter estimates

The parameter estimates are affected by the properties of the period that they were
calibrated over. Therefore, model calibration in different periods yield different parameter
estimates. If model calibration over different periods yields approximately the same
parameter values or posterior pdfs, it is referred to as the parameter consistency (Vrugt et
al. 2006), parameter stability (e.g. Niel et al., 2003; Merz et al., 2011; Brigode et al.,
2013), parameter sensitivity to calibration period (Yapo et al., 1996; Singh & Bardossy,
2012) or uncertainty due to calibration period (Deletic et al., 2012). Assuming that model
calibration yields optimal parameters in that period, parameter variability with the

calibration period may be considered equivalent to the parameter temporal variability.

Consistency in parameter estimates is quite important since it warrants model
transferability in time (extrapolation), i.e. model ability to properly reproduce
catchments’ behaviour outside the calibration period (e.g. Seibert 2003, Hartmann and
Bardossy 2005). Andréassian et al. (2012) distinguished between “hydrologic optima”
and “mathematical optima”. The latter term denotes the optimal parameter sets for the
given the objective function, optimisation method and calibration period, while the
“hydrologically optimal” parameter sets result in high model performance within and

outside the calibration period.

Along with analyses of model performance over various periods, consistency in

parameter estimates, posterior pdfs, identifiability and sensitivity have been examined.

One of the first attempts to investigate temporal parameter variability was made by Wolf
and Ostrowski (1982). They calibrated a model in each month over 10 years for 3
catchments and analysed intra-annual parameter distributions. They demonstrated

resemblance among intra-annual distributions of the surface and subsurface reservoir
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coefficients, but no systematic periodicity was detected. More importantly, they indicated
that the data errors result in the parameter variability (uncertainty) having the same order

of magnitude as the parameter temporal variability.

Wagener et al. (2003) pointed out that residual aggregation in time leads to loss of
valuable information in the observed data. They proposed methodology for detection of
“high information content” periods, entitled DYNIA (DY Namic Identifiability Analysis).
This methodology is based on the Regional Sensitivity Analysis (RSA by Spear and
Hornberger, 1980), which is applied in dynamic manner over 11- to 101-days long
moving windows. In this way posterior parameter pdfs are obtained for all windows. They
used a parsimonious model (RRM) with 5 free parameters. The results indicated that the
posterior pdfs (measured by the 90% confidence bounds of the posterior pdfs) and the
parameter optimum values (pdf modal value) vary in time. They related parameter
identifiability with the narrow and peaky posterior pdf. Their results suggest that
information required for identification of linear reservoir coefficient for direct runoff
simulation are contained within peak flow periods, while linear reservoir coefficient for
baseflow can be inferred in prolonged dry periods. Wriedt and Rode (2006) employed the
DYNIA method with 101 days long time frames. They analysed the pdfs with respect to
the magnitude of observed flows over the corresponding time window. They
demonstrated that e.g. interflow-related parameter is identifiable within low flow domain
since its posterior pdf becomes narrower with flow decrease. Abebe et al. (2010) applied
the DYNIA method using the HBV model and fine temporal resolution data. Their results
supported the previous findings: optimal parameter values (posterior pdfs’ peaks) and

uncertainty bounds varied in time.

Niel et al. (2003) assumed that if precipitation, flow and runoff coefficient (annual) time
series were stationary model calibration over a sub-period would result in similar
parameter estimates, and vice-versa. The proposed method consists of two steps: (1)
detection of break points in the time series (by the Pettit test) aiming at detection of
stationary periods, and (2) model calibration over different (contrasted) periods.
Consistency in the parameter estimates is assessed by comparing the confidence regions
of parameters optimised over contrasted calibration periods. If the confidence regions
overlapped, the parameters were considered consistent. Conversely, if the regions of

parameters were disjoint, the parameters were considered inconsistent. The method was
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applied on 17 catchments in West Africa known for significant drop in water yield after
1970s, with the parsimonious GR2M model. The results revealed that non-stationarity in
the time series does not necessarily imply inconsistency in model parameters. This
research was further extended by Le Lay et al. (2007) who analysed parameter
consistency by employing two methods. The first method implied: (1) sampling of 100
sub-periods form the full record period and selection of 100 sub-periods that are
complements to the sampled ones, and (2) model calibration over these periods. Absolute
differences between the parameters obtained over a sub-period and its complement were
calculated and the pdf of differences was derived for each model parameter. The
differences obtained for two stationary periods in terms of runoff coefficient and two
contrasted periods regarding precipitation rates were near to the pdf modal value for all
parameters. The second method involved derivation of posterior cdfs of the behavioural
parameters using the GLUE method for the contrasted periods and implementation of the
¥’ test to examine whether the cdfs for contrasted periods were significantly different.
Three out of four model parameters were significantly different for contrasted period,

while the fourth one was insensitive over all periods.

Merz et al. (2011) examined the long-term trends in the HBV model parameters by
calibrating the model over 5 consecutive years for 273 Austrian catchments. They
indicated that some parameters of the soil and snow routines exhibit trends, but the
correlations between the parameters and climatic variables (e.g. temperature) were
catchment specific. This research was extended by Osuch et al. (2014) who calibrated the
HBV model by employing the SCEM method and quantified correlations between
parameter estimates and climatic indices in terms of the Pearson and weighted Pearson
correlation coefficients. They revealed the surprisingly strong correlations between some
parameters of the HBV model and climatic indices. For example, maximum soil storage
was correlated to precipitation depths and standard deviation of precipitation; reduction
factor for PET and percolation rate were correlated to mean PET and its standard
deviation. Similarly to Merz et al. (2011), their results were catchment specific. Results
of Li et al. (2014) are consistent with the results presented in these two papers in terms of
the parameter variability with the calibration period: soil-related parameters exhibit
largest variability, whereas the coefficient of linear reservoir of upper soil zone varies

slightly.
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Li et al. (2012) calibrated two lumped, conceptual models by employing the GLUE
method with composite objective function over two wettest and driest periods for 30
catchments. The y? test was carried out to compare posterior parameter pdfs obtained over
the wettest and driest periods. The pdfs of all parameters were significantly different at
least for 10% of the catchments. The soil-related parameters were found to be the most
sensitive to the calibration period since these posterior pdfs are significantly different in

over a half of the catchments considered.

Luo et al. (2012) calibrated the SYMHID following four different calibration strategies,
as elaborated in previous subchapter. Estimates of majority of parameters were shown to
vary in time. The parameter variability depends on the calibration strategy. The greatest
parameter variation was obtained with monthly-based calibration. The interflow-related

parameter exhibited slightest variability.

Sieber and Uhlenbrook (2005) analysed change in parameter sensitivity in time (two
consecutive rainfall events). They quantified parameter sensitivity in terms of the
standardised regression coefficients (chapter 2.3.2) and by employing the Regional
Sensitivity Analysis (RSA). The results of both approaches revealed considerable
temporal changes in sensitivity in most of the parameters. For example, sensitivity of

some parameters abruptly increased or decreased over the precipitation events.

Sorooshian et al. (1983) argued that some parameters should vary in time due to
seasonality in hydrologic cycle and long-term changes, such as urbanisation or
deforestation. Merz et al. (2011) consider that the parameter variability may be due to the
“secondary” processes which are not explicitly simulated by a hydrologic model (e.g.
variable infiltration rates due to soil freezing or cracking (Beven 2001; Tian et al. 2012),

or variable evapotranspiration due to vegetation aging (Fenicia et al. 2009).

1.5.2. Improvement of consistency in model performance and parameter

estimates

To improve consistency in hydrologic models performance several approaches have been
proposed in the literature: increasing parameters temporal transferability, ensemble model

weighting, time variable parameterisations and enhancement of model structure.
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Model calibration improvement

Hartmann and Bardossy (2005) proposed a linear combination of Nash-Sutcliffe
efficiency coefficients (NSE) calculated not only for daily flows, but also for flows
averaged over longer periods (e.g. weeks, months, seasons, years) and for the transformed
flows (e.g. square root transformation). They carried out DSST with calibration over wet
period and evaluation in dry one to appraise several calibration strategies — combinations
of flow series according to which NSE was calculated. Parameter estimates obtained with
NSE with daily and annual flows resulted in high model performance in terms of smaller

decrease in NSE and flow bias in the evaluation period.

Gharari et al. (2013) advocated multi-objective calibration over several sub-periods of
equal length, resulting in several Pareto fronts. They assumed that minimisation of the
Euclidian distance to all sub-period Pareto fronts would result in the Pareto sets (so-called
Minimum Distance Pareto Front — MDPF) that would perform consistently. The
performance of MDPF over the sub-periods of the short testing period was almost as good
as the performance of the Pareto fronts obtained over each sub-period. The MDPF
performance over the long testing period was consistent, although suboptimal in some

years compared to the Pareto front obtained over the full calibration period.
Conditional parameterisations

To obtain more consistent model performance some researchers applied time variable
parameterisations (e.g. on monthly or seasonal basis). To obtain these conditional
parameterisations, the model parameters are optimised in various climatic conditions (e.g.

wet or dry periods).

Fenicia et al. (2009) assumed that changes in catchment properties would reflect in
changes in the model parameters. They tried to explain a rainfall-runoff anomaly in the
Meuse catchment behaviour (i.e. decrease in runoff from 1930 to 1965) by varying the
model parameters in time. They calibrated the conceptual FLEX model with 10 free
parameters using the GLUE method over consecutive 4-year long periods by employing
three calibration strategies. All model parameters were allowed to vary with the
calibration periods in the first strategy, while in the second and in the third strategy the

number of such parameters was reduced to five and two, respectively. The results
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indicated that two time variable parameters could explain the anomaly: namely, time to
peak and the parameter relating changes in forest transpiration to the forest age. They
attributed the decrease in the former parameter to the catchment urbanisation and river
engineering works. Variability in the latter parameter was attributed to forest rotation i.e.

changing age of the forests and consequently E7.

Muleta (2012) carried out a sensitivity analysis (SA) of the SWAT model parameters over
wet and dry seasons and in entire calibration period. The wet and dry seasons were
selected according to mean monthly runoff. The SA revealed that sensitivity of some
parameters related to soil conductivity, evaporation and interception capacity changes
between wet and dry seasons. He optimised the principal model parameters and obtained
two version of the model. The first version comprised temporally invariant parameters,
while the parameters of the second one varied over the seasons. Two versions of the
model were evaluated by conducting SS7. The model with varying parameters

outperformed its counterpart in most of the evaluation periods.

Choi and Beven (2007) calibrated the TOPMODEL using the GLUE framework and
various objective functions. Behavioural parameter sets were updated according to model
performance over the years after the calibration period (globally conditioned models).
There were numerous behavioural parameter sets in individual years, but only a few sets
were behavioural over the full record period. To account for seasonal shifts in runoff
generations mechanism, they calibrated the model in a dynamic manner (multi-period
conditioned models) over 15 fuzzy clusters of time. The clusters were sampled according
to precipitation, precipitation variance, maximum daily precipitation and PET.
Behavioural parameters’ posterior pdfs varied considerably over the clusters and none of
the parameter sets was behavioural over all clusters. Minimum number of the behavioural
sets was obtained over dry clusters due to poor model performance in dry periods, which
was attributed to the model structural deficiencies. In the evaluation period, the multi-
period conditioned model resulted in significantly higher percentage of flow observations

within the prediction band than the globally conditioned one.

Zhang et al. (2011) calculated six aridity indices for each water year of the hydrologic
record. They performed the principal component analysis (PCA) of the indices to reduce

redundancy in data since all aridity indices are based on daily temperatures. The fuzzy C-
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means clustering method was applied to the principal components resulting in five
clusters. Every year was assigned to a particular cluster and split into the warm and cold
seasons. Distributed SWAT model was calibrated in every season over all clusters (i.e.
ten model calibrations) by employing the SCE calibration algorithm. The number of free
parameters was reduced after the sensitivity analysis prior to the model calibration. The
results in the calibration and evaluation periods were compared to the results of the model
calibrated in the full record period. The “multi-period” model outperformed the “single-
period” model in both periods in terms of NSE and flow bias. In addition, “multi-period”
model resulted in narrower prediction intervals and in larger percentage of observation

encompassed by the prediction band.

Model ensemble and model averaging

Oudin et al. (2006) applied dynamic weighting of two model parameterisations obtained
with NSE calculated with flows and log-transformed flows. . They examined four
different weighting strategies: (1) equal weights, (2) sinusoidal weights, (3) weight that
is equal to normalised soil moisture (form 0 to 1) and its complement, and (4) weights
calculated using the nonlinear functions of simulated soil moisture. The fourth weighting

strategy resulted in the highest model performance.

Weighting of the outputs from different hydrologic models within Hierarchical Mixtures
of Experts framework (HME) is employed by Marshall et al. (2007). HME is based on
their individual models and gating functions that control weighting, i.e. probability of
using the individual models. The gating function relates probability of using a model with
the predictor variables, such as antecedent precipitation. HME allows that model with the
same structure but different parameters have different weights — probabilities. Marshall
et al. (2007) used HME with parsimonious models (3 free parameters) and simple gating
functions. The results obtained by employing HME with three models outperformed those

of the single model.

Hsu et al. (2009) applied Bayesian model averaging in a dynamic manner. Namely,

probability of each version of the ARX model was conditioned on the model performance
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over previous computational time step. Model ensembles obtained in this way

outperformed individual models in calibration and evaluation periods.

Model structure improvement

Time variability of model parameters is assumed by de Vos et al. (2010) to be due to
model structural inadequacy. These authors calibrated the lumped conceptual model
HyMod in (1) single- (traditional calibration) and multi-objective manner over entire
calibration period, and (2) over 12 clusters of time (dynamic calibration). The clusters are
selected according to daily precipitation, 10-day moving average of precipitation and soil
moisture simulated by the GR4J model. They successively improved the model structure
by introducing a parameter for correcting the observed precipitation rates, upgrading
linear reservoirs to the nonlinear ones, and introducing the routing function to the model.
The corrections to the model are made so that traditionally calibrated model performs as

well as the dynamically calibrated one.

Efstratiadis et al. (2014) enhanced the lumped hydrologic DMO model to account for
catchment urbanisation. They proposed two alternatives: (1) the liner reservoir coefficient
for direct runoff simulation which was proportional to the share of urbanised areas (model
DM1), and (2) application of a distributed version of the model DM2 which involved
Hydrologic Response Units (HRUs). In the distributed model the catchment is delineated
in two HRUs. One HRU included urbanised and the other non-urbanised areas in the
catchment. Different parameter sets are assigned to the HRUs. They tested the models
following the protocol presented by Thirel et al. (2014). The performance of the models
DMO and DM1 was similar, while the distributed model DM2 performed considerably
better.
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1.5.3.  Model transferability in time and assessment of the climate change impact

on water resources

The model ability to reproduce catchment behaviour under various climatic conditions is
very important if the model is to be used for climate change (CC) impact on water
resources (Hartmann and Bardossy 2005; Wilby 2005; Vaze et al., 2010; Peel and Bloschl
2011; Luo et al., 2012; Brigode et al., 2013; Thirel et al., 2014). Apart from the projected
increase in temperature, issues in hydrologic model application stem from the unknown
precipitation intensities and patterns (Steenbergen and Willems 2012) and from the
unknown vegetation response to the enhanced CO2 concentration (Vaze et al., 2010).

These changes may also affect rainfall-runoft relations (Li et al., 2014).

Few attempts have been made to estimate uncertainty in hydrologic projections under
climate change due to the parameters of rainfall-runoff models. As Jiang et al. (2007) and
Bastola et al. (2011) pointed out, these uncertainties have not been sufficiently

investigated and that further research in this domain is needed.

Wilby (2005) calibrated the lumped and semi-distributed version of the CATCHMOD
hydrologic model in the wettest and the driest year, in the year that was considered
analogue to the conditions projected for 2050s, and in the full hydrologic record period
using the GLUE method. The results suggested that (1) the parameter estimates and
identifiability vary with the calibration period, (2) the model calibrated in dry years results
in poor performance, and (3) flow projections with semi-distributed models are less
sensitive to the calibration period. He recommended that DSST should be conducted prior

to model application to CC impact assessment.

Brigode et al. (2013) calibrated two hydrologic models over the full record period, and in
the wettest, intermediate and dry 3-year periods selected according to the aridity index.
They demonstrated that the flow projections depend on the model calibration period,

either when a single optimal parameter set or an ensemble of parameter sets is used.

Magand et al. (2014) calibrated semi-distributed CLSM model in a multi-objective
manner over consecutive 9-year periods and in the full record period. They used only one

Pareto-optimal parameter set from each calibration period to obtain hydrologic
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projections. Although these sets had similar performance in the DSST, projected flows

and ET rates were quite different.

1.6. Research aims and objectives

1.6.1. Conclusions from the literature review

The results presented in the papers reviewed in the previous chapter can be summarised

as follows:

- Parameters identifiability, posterior pdfs or optimised values vary with the

calibration period.

- Consequently, model performance decreases outside of the calibration period.
Larger differences between calibration and evaluation periods (in terms of meteorological

characteristics, primarily precipitation) lead to greater decrease in model efficiency.

- Soil- (infiltration), snow-, and vegetation-related (PET) parameters are proven to
be sensitive to selection of the calibration period (Wilby 2005; Fenicia et al., 2009; Merz
et al., 2011; Li et al., 2012; Luo et al., 2012). Variability in parameters of the response
routines may also be detected if the catchment has been urbanised or if the river

engineering works have been implemented (Fenicia et al., 2009).

- Climatic non-stationarity (trends or jumps in e.g. precipitation and temperature
time series) does not necessarily imply inconsistency in parameter estimates (Niel et al.,
2003, Le Lay et al., 2007). Generally, strong correlation between model parameters and

climatic variables has not been found, although the results are catchment specific.
— Values of the optimised parameters depend on the objective function(s) used.

— Inclusion of the parameter temporal variability in the modelling procedure (e.g.
assigning different parameter sets to distinct clustered periods, dynamic weighting of
parameter sets, etc.) is shown to yield better model performance over calibration and

evaluation periods. However, these approaches have not been widely applied.

The literature review also reveals several gaps in the existing research in parameter

variability with the calibration period:
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- Variability in parameter estimates obtained by multi-objective model calibration

has not been examined.

- Consequently, impact of selection of the objective functions on parameter

consistency has not been analysed.

- The analysis of calibration period length on parameter variability should be
extended, especially when it comes to parameter estimation in the multi-objective
framework. Presumably, inclusion of more periods of varying length in the analysis could
reveal some patterns in the parameter variability (e.g. correlation to meteorological

characteristics of a calibration period).

— Impact of the model structural complexity on the variability in model parameters
with calibration period has not been sufficiently explored. The variability in spatially

distributed models has not been explored heretofore.

1.6.2. Specific aims and hypotheses

Considering wide practical application of hydrologic models, it is quite important to
analyse sensitivity of parameter estimates to the calibration period. Goal of this research
is to further examine consistency in conceptual hydrologic model parameter estimates.

To this end the following will be analysed:

- Temporal variability in optimal parameters obtained by multi-objective model
calibration i.e. Pareto-optimal parameter set. Which Pareto-optimal parameters are the
most variable with (sensitive to) the calibration period? What consequences for model

performance may arise from such variability?

- Possible causes of the parameter estimates’ variability with the calibration
period. Are there any patterns in the parameters’ variability with the calibration period

(e.g. length of the calibration period or its hydro-meteorological characteristics)?

- Influence of the selection of objective functions on variability in Pareto-optimal
parameters. Does selection of the objective functions or increase in their number affects
variability in the parameter estimates and, if so, which combination of objective functions

results in the lowest variability?
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- Impact of the model structural complexity and spatial distribution on the optimal
parameters’ variability. Does an increased model structural complexity (free model
parameters), or spatial distribution of the parameters, affect the variability of Pareto-

optimal parameters with the calibration period?
Therefore, the hypothesis to be evaluated in the research are as follows:

(1) Hydrologic model parameters depend on the calibration period, i.e. different

calibration periods yield different estimates of the same parameter;

(2) Variability of the optimised parameters may be explained by the variation in the

meteorological properties;

(3) Values of Pareto-optimal parameters and their sensitivity to the calibration

period depend on the objective functions used in calibration;

(4) Variability of the Pareto-optimal parameters with the calibration period depends

on the hydrologic model structural complexity.

Data (measurement) errors, and data (spatial and temporal) resolution are known to affect
parameter estimates (e.g. Yapo et al., 1996; Gupta et al., 1998). However, in this research
it is assumed that these errors do not affect sensitivity of the parameters to calibration

period, thus this aspect is not considered.

1.6.3. Thesis outline

In this research, temporal variability of the Pareto-optimal parameter sets, i.e. their
variability with the calibration period is examined. It is implicitly assumed that the Pareto
sets reflect optimal parameters over given period. To obtain Pareto-optimal sets, novel
3DNet-Catch hydrologic model is calibrated in dynamic fashion by employing the
AMALGAM algorithm. The model calibration results are analysed to test the hypotheses
formulated in chapter 1.6.2.

The methodology employed in this research is presented in chapter 2.

The novel conceptual distributed hydrologic model 3DNet-Catch is presented in

chapter 2.1. Model routines, along with their parameters, are described in detail.
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Alternative model structures (three semi-lumped and a distributed one) are also

elaborated on in this chapter.

The AMALAGAM, algorithm aimed at multi-objective model calibration, is briefly
described in chapter 2.2.

The model setup (including the regularisation method for calibration of distributed
version of the model), sensitivity analysis and evaluation of the 3DNet-Catch model are

given in chapter 2.3.

Dynamic calibration procedure, adopted in this research, is presented in chapter 2.4,

while the methods, used for analysis of the results, are outlined in chapter 2.5.

The methodology presented is applied to three (relatively) unchanged catchments in
Serbia, namely the Kolubara River, Toplica River and Mlava River catchments. These

catchments are described in chapter 2.6.
The results are presented and discussed in chapter 3.

Conclusions and recommendations for further research are given in chapter 4.
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2. METHODOLOGY
2.1. The 3DNet-Catch conceptual hydrological model

The 3DNet-Catch is a conceptual, fully-distributed hydrological model aimed at
continuous hydrologic simulations. The model comprises routines for vertical water
balance simulation and runoff routing to the catchment outlet (horizontal water balance).
Vertical water balance is simulated by employing the vegetation, snow and soil routines
(Figure 11). The equations of these routines are applied to every cell of the computational
grid. A grid cell is referred to as Hydrologic Response Unit — HRU'?, Simulated runoff,
which consists of the surface flow, fast shallow aquifer response and baseflow, is
transformed through linear and nonlinear reservoir of the response routine. Neither lateral
surface nor subsurface flow among HRUs is simulated, but from a HRU to the catchment
outlet. Optionally, the surface runoff outlet does not have to coincide with the baseflow
outlet, what is specified by the user. This option is rather convenient for karst catchments,
enabling “soft” data (Seibert & McDonnell, 2002) on groundwater flow to be
incorporated in the model. In addition, flow propagation along river reaches is simulated

by employing the flow routing routine.

2.1.1. Model description: equations and model parameters

Model equations and parameters are presented in this chapter. All state variables are
estimated at the end of a computational time step (denoted by subscript (7)), while the
fluxes represent mean values over the time step (denoted by 7). All water balance

equations of the interception, snow and soil routines refer to the unit area of a catchment.

10 HRUs are comprised of points that exhibit hydrologically similar behaviour (Beven,

2001b).
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Figure 11. Routines of the 3DNet-Catch model.
Interception routine

Interception of precipitation depends primarily on the type of vegetative cover (Jovanovi¢
& Radi¢, 1990; Musy & Higy, 2011). The vegetative cover in the 3DNet-Catch model is
represented by a single reservoir (canopy or interception storage) with maximum capacity
equal to CAN (Figure 12). Maximum capacity of the canopy storage varies over the
growing season along with the leaf development, which is quantified in terms of the Leaf
Area Index (LAD):
LAl

LAl

max

CAN ;) = CAN (2.1.1)
CAN() and LAl denote capacity of the canopy reservoir and the value of the Leaf Area
Index in the i" time step, respectively. Correspondingly, CANmax and LAImax represent
maximum capacity of the canopy reservoir and maximum value of the Leaf Area Index
in the growing season. LA values can be introduced to the model as input time series, or

they can be calculated as a sine curve over the growing season.
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Figure 12. The 3DNet-Catch model: the canopy reservoir.

‘ interception of
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Figure 13. The 3DNet-Catch model: processes of the interception routine.

Water balance of the canopy reservoir consists of precipitation as the input, and
throughfall and evaporation as the reservoir output (Figure 12). These processes are
simulated according to the scheme given in Figure 13 by employing the following

equations:

- Throughfall over the i™ time step, Ri:

1

R =min[max(0; Sie 1) +B—CAN ) } 2.12)

In the above equation Sint, (i-1) denotes the canopy reservoir storage at the end of the
previous time step, P is observed precipitation depth in current, i, time step and CAN)

is the capacity of the canopy reservoir in current time step.

- Canopy storage after interception, Sint()":

*

Sint, (i) = Sine, -y TH—R; (2.1.3)

- Evaporation from the canopy reservoir over the i" time step, Ecan,i:
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E,. :min( S i) PETZ.) (2.1.4)

can, i

Ecan; denotes actual evaporation form the canopy reservoir, and PET ; is potential

evapotranspiration over the i time step.
- The canopy reservoir storage at the end of the i time step, Sint, () :

S =S _E (2.1.5)

int,(i) - int,(i) can, i
Variables, parameters and initial conditions of this routine are given in Table 3.

Table 3. Overview of the state and dependent variables, fluxes, free parameters and initial

conditions of the interception routine.

State variables

Sint Canopy reservoir storage [mm)]

Dependent variables

CAN Current maximum capacity of the vegetation reservoir [mm]
LAI Current Leaf Area Index value [m’m™2]
Fluxes

P Total precipitation depth over a time step [mm At']
R Throughfall over a time step [mm At']
Ecan Evaporation from the canopy reservoir [mm At
Parameters

CANmax Maximum interception reservoir capacity [mm]
LAILyax Maximum Leaf Area Index value [m’m?]

Initial conditions

Sint (i=0) Amount of water in the interception reservoir at the beginning of a simulation [mm]

Snow routine

Precipitation that occurs at air temperature below Ts.r (threshold temperature) is
considered snow; otherwise it is treated as rainfall. Mixture of rainfall and snow (sleet) is

not recognised in the model.

This routine of the 3DNet-Catch model is similar to the snow routine of the SWAT model
(Neitsch et al., 2011). It is based on the degree-day method, which is preferred over the
energy-balance methods because of modest data requirements (only air temperature is

required), overall satisfactory performance and computational simplicity (He et al., 2014).
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According to the degree-day method, snow ablation is proportional to the difference
between air temperature and temperature at which snow melts (e.g. Bergstrom et al.,
1992; Beven, 2001b; Anderson, 2006; Seibert and Vis, 2012, He et al., 2014), which is
usually a free model parameter. Water balance in the snowpack (Figure 14) consists of
the following components: interception of precipitation, snow sublimation and snow melt
(Neitsch et al., 2011). Snowmelt refreezing and meltwater retainment by the snowpack
are not taken into account in the model. The processes of this routine are simulated
according to scheme given in Figure 15. Water balance components of the snowpack

routine are expressed in millimetres of water equivalent.

- -
M,
=
Esub, i R.
S i
Ssnow, (D) oS
Ssnow, (i-1)

Figure 14. The 3DNet-Catch model: the snowpack reservoir.

P —

interception of  ‘reservoir storage, S’

precipitation *snowpack temperautre, Tsnow, 0
snowmelt
o Y

sublimation

' storage at the end
of a time step

Figure 15. The 3DNet-Catch model: processes of the snow routine.
The governing equations of the snowpack routine are:

- The snowpack storage after intercepting the precipitation P;, Ssnow,() :

*

S, = Ssnow, (i-1) + Pz (2. 1 .6)

snow, (i)
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where Ssnow, (i-1) 18 the snowpack storage at the end of previous time step, and P; denotes
total observed precipitation depth over current time step. The amount of precipitation
intercepted by vegetation is assumed negligible because of leaf abscission (prevailing
deciduous forests are assumed). Therefore, the interception routine is not invoked at
temperatures below Ts.z (as shown in Figure 11) and total precipitation depth appears in

the balance equation instead of throughfall.

- Temperature of the snowpack at the end of current time step, Tsnow.(;) , is obtained
by weighting the snowpack temperature at the end of previous time step, Zsnow,(i-1)and mean

air temperature in the current time step (Beven 2001a; Neitsch et al., 2011):

T,

snow, (i—

T A (2.1.7)

Snow

snow, (i) = (1 - ﬂ’snow) ’

where 7o denotes mean air temperature over a time step and Asnow is the snowpack
temperature lag factor which takes value between 0 and 1 (Zhang et al., 2009). Larger
values of this factor imply greater influence of air temperature (Neitsch et al., 2011). The
impact of the air temperature is inversely proportional to the snowpack thickness, and
therefor smaller values of the Asnow factor correspond to thicker snowpack, and vice-versa

(Melloh, 1999).

- Snow melt in the i time step, Mi:

. Tsnow i +Ta i *
M; =minymax | 0; by - snowgey ;| —————— T | |5 S snow.i (2.1.8)

where Tment is the threshold temperature at which snow ablation begins, and it is free
model parameter. The value of this parameter should be set depending on what 7% in
equation 2.1.8 stands for, either maximum or mean daily temperature. If 7, stands for
mean daily temperature, Tmeit should approximately be 0°C, otherwise, if maximum daily
temperature is used, the value of Tmeit should be somewhat larger, up to 4.4 °C (U.S.

A.CE., 1994).

The bmerr parameter is the melt (degree-day) factor [mm°C-!day!] and it shapes the
relation between air temperature and snow ablation. This relation is highly nonlinear, so
the values of hmeit vary in time (Hock, 2003; He et al., 2014). For example, bmelt increases

vastly in rainy conditions (rain-on-snow events) (Melloh, 1999; Hock, 2003). Also bmelt
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increases over the melting season due to increasing albedo (Beven, 2001b; Anderson,
2006; Neitsch et al., 2011). In addition to climate conditions, the melt factor heavily
depends on catchment properties. For example, bmelt increases with elevation, and
depends on land use in the catchment (e.g. bmelt takes smaller values in forest-prevailed
areas, and larger values in the urbanised areas) (Neitsch et al., 2011; He et al., 2014).
Correlation of bmeir With net shortwave radiation, wind velocity, vapour pressure,
insolation, albedo, terrain elevation, aspect and shading has been reported in the literature

(Hock, 2003).

In the 3DNet-Catch model bmeit is assumed to vary seasonally, from the 215 of December
(minimum value) to the 21% of June (maximum value), according to the sine curve (Braun

et al., 1993; Hock, 2003; Anderson, 2006):

(2.1.9)

b +b b -b 2
bmelt,i _ melt, 6 5 melt,12 " melt, 6 . melt,12 sm(%i_ (Dn,l' _81)j

where D, denotes ordinal number of day in a year, while bmelt, ¢ and bmelt, 12 are

free model parameters.

Variations in bmeit due to other factors (primarily an increase over rainy periods)

are not modelled in the 3DNet-Catch.

- The snowcov variable represents share of the catchment area covered with snow

over the i time step, and it is estimated as:

SHOWgqy,; = Min {S—W 1} (2.1.10)
snow, 100

The snowpack thickness is rarely uniform over a catchment due to topography, wind drift,

vegetation, aspect, etc. (Beven, 2001b; Anderson, 2006; Neitsch et al., 2011), meaning

that not the entire catchment area is necessarily covered in snow. To account for this, the

Ssnow,100 parameter is introduced. This parameter is a threshold value of the snowpack

storage (expressed in millimetres of water equivalent) at which the entire area of a

catchment is certainly covered in snow (Neitsch et al., 2011).

— The snowpack storage after snow ablation, Ssnow,)"":

snow, (i)~ “snow, (i i

(2.1.11)
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— Sublimation from the snowpack over current time step, Esub,i:

Egyp,; =min (S

Snow, i

**; +COV - 1.
PET[ soil,i 2.1.12

where covsoi 1s the soil cover index that quantifies the share of bare soil (not covered with
vegetation) in the catchment area. Soil cover index equal to 1 implies bare soil. If Ssnow, i
exceeds 0.5 mm, the value of covsei, i is set to 0.5 (Neitsch et al., 2011). Otherwise, it is

calculated based on the LA/ value:

cov =exp (—0.4-LAI;) (2.1.13)

soil i

— The storage of the snow reservoir at the end of the current time step Ssnow, ():

S = Synow (i) ~E

SnOW,(i) — “snow, sub,i (2114)
The variables, parameters and initial conditions of the snow routine are given in Table 4.

Table 4. Overview of the state and dependent variables, free parameters and initial

conditions of the snow routine.

State variables

Ssnow, (i) Snowpack storage expressed in mm of water equivalent [mm]

Tsnow, (i) Temperature of the snowpack [°C]

Dependent variables

Dumelt Melt (degree-day) factor [mm°C'day]
COVsoil Soil cover index [-]
Fluxes

P Total precipitation depth over a time step [mm At']
M Snow melt over a time step (in mm of water equivalent) [mm At']
Esp Snowpack sublimation over a time step (water equivalent) [mm At]
Parameters

Tsr Boundary temperature [°C]
Ssnows100 Threshold snowpack storage at which the entire catchment is covered in snow [mm)]
A Snowpack temperature lag factor [-]
Timelt Threshold temperature at which snowmelt begins [°C]
brmelt. 6 Melt factor on 21% of June [mm°C'day]
Drmelt, 12 Melt factor on 21% of December [mm°C'day]

Initial conditions

Ssnow, i=0) ~ The snowpack storage at the beginning of simulation [mm]

Tsnowi=0)  Temperature of the snowpack at the beginning of a simulation [°C]
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Soil moisture routine

The soil column is represented in the 3DNet-Catch by a surface layer and N, sub-surface
ones (Figure 16). The processes simulated within the soil routine are evapotranspiration,
surface runoff and percolation. Surface runoff, which consists of the infiltration excess
overland flow and saturation excess flow, is generated in the surface soil layer. As for ET,
water evaporates from the surface layer, whereas transpiration takes place in the sub-
surface ones (Figure 16). Water percolates from every layer into a deeper one, and,

eventually into the nonlinear groundwater reservoir.

Surface layer

E‘mn']
A ] ET
Subsurface

layers Gsurt N |
i /} h\-.:\:‘ /

Groundwater
reservoir

Figure 16. The 3DNet-Catch model: the soil column representation in the soil moisture

ik
~\/

routine (surface and subsurface soil layers and the groundwater reservoir).

(1) WATER BALANCE OF THE SURFACE SOIL LAYER:

Water balance of the surface soil layer consists of precipitation (throughfall or sum of
precipitation and snowmelt), surface runoff, percolation into deeper soil layers and soil

evaporation, as shown in Figure 16 and in Figure 17.
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Figure 17. The 3DNet-Catch model: processes of the soil routine — surface soil layer.

- Surface runoff (q"sur) is estimated by applying the SCS method (e.g. Chow et al.,
1988; Maidment, 1993; Yu, 1998; Beven, 2001b; Neitsch et al., 2011):
12
# —(P’ L) ; P >1,
qsurf,i: P[_Ia +S,' (2115)
0 ; B <1,

where /; stands for initial abstraction, S is potential soil retention in a time step (mm) and
Pi denotes equivalent precipitation: throughfall or precipitation and snowmelt over a time

step, depending on the meteorological conditions (Schaefli et al., 2014).

Initial abstraction /, varies with the precipitation amount (e.g. Jovanovi¢ and Radi¢, 1990;
White et al., 2009), and it is commonly assumed to be 0.2 of potential soil retention, S
(Chow et al., 1988; U.S. A.C.E., 1994). Since /. encompasses, inter alia, rainfall
interception by the vegetative cover, which is explicitly simulated in the 3DNet-Catch,

value of I, is reduced by the simulated interception:
I,;=max(0; I, 4, S;—(P—R;)) (2.1.16)
1. rer denotes assumed initial abstraction value (dimensionless, as multiplier of S) and it

is a free model parameter. Difference (P: — Ri) represents the amount of precipitation

intercepted by vegetation.

Maximum potential soil retention S is related to the Curve Number (CN):
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§=254 [@—mj
CN

(2.1.17)

The value of the CN depends on the land use type, soil properties, antecedent soil
moisture, slope of the area, etc. (e.g. Chow et al., 1988; Maidment, 1993; Beven, 2001b;
Neitsch et al., 2011). CN values that may be found in the literature are estimated for the
5% slope areas and average antecedent soil moisture conditions (AMC II). Hence, two
corrections to CN value are made in the model to account for actual terrain slope and soil

wetness (Neitsch et al., 2011):

(o] Correction to account for actual terrain slope, ST [-]:

S, =8-|1.1- 5T (2.1.18)
‘ ST +exp(3.7+0.02117ST)

-1

CN,g = 1000-{SA+10}

254 (2.1.19)

o Correction to account for actual soil moisture conditions:
100—CN.
CN; = CN,, —20- 25 (2.1.20)
100— CN, +exp(2.533-0.0636-(100—CN,, ))

CN; = CN, exp (0.00673 (100—CN,, )) (2.1.21)

where CNi corresponds to the minimum soil wetness (permanent wilting point) and CN3

corresponds to maximum soil wetness (Neitsch et al., 2011; Zhang and Shuster, 2014).

Maximum and minimum potential retentions are calculated using the obtained CN values:

Sy = 254 1290 49 (2.1.22)
N,
s =254 000 (2.1.23)

The SCS method is aimed at event-based modelling. To enable continuous runoff
simulations, potential soil retention S should vary with the soil moisture content (Neitsch

etal., 2011):
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N+l
S,=Y s,(S10,-5W, ) (2.1.24)
Jj=1
where SWj,i-1) denotes storage of the j soil layer (j = 1 refers to the surface layer) at the
end of previous time step, STO; is maximum storage capacity of the /™ layer, i.e. the
product of the soil layer thickness (D)) and its effective porosity (p;), both being free
model parameters. Share of the /™ soil layer in the active soil layer, s; (Figure 18), are

estimated as following:

¢ = Smax_ZDj(pj—WWP,j) 5 Sax >D1 (pl—WWP’l) (2.1.25)

where wwp,1 stands for the wetness at permanent wilting point, which is minimum
volumetric soil water content at which plant would not wilt (Shaw, 2005) and it is
commonly estimated at pressure of -15 bars (Campling et al., 2002; White et al., 2009;
Scorza Janior and Silva, 2011; Diallo and Mariko, 2013; Yang and You, 2013). In the
3DNet-Catch, permanent wilting point wwe is a free model parameter that may vary with
the soil layer.

Thickness of the active soil layer (layer that determines surface runoff) is then:

N;+1

D, ss=2, 5D, (2.1.26)

Storage of the surface soil layer after surface runoff has taken place is:

S, (i)* =SW oy + (B _q*surf,i) (2.1.27)
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Figure 18. Thickness of the active soil layer.

Percolation (Wyere) is simulated assuming that water percolates into deeper soil

layers until the residual wetness (wres) is reached (Figure 19). At soil wetness less than

Wres,

water can be removed from the surface soil layer only by evaporation.

Percolation rate depends on the soil moisture (the largest rate occurs at soil saturation)

and it is calculated as:

perc
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1
Ko AT,y +(STO, -WR)| S —S(”M&( ~1)AT, s s
_ sat,1 = sat,i 1 1 rl,i rl,i STQ—VW n unsat,i s L) res
Li = 1
0 s SW iy e

(2.1.28)

Index 1 in the previous equation means that variables and parameters refer to the
surface soil layer. The first term in the right-hand side of the equation quantifies
percolation from the saturated soil layer. Ksa stands vertical permeability
(hydraulic conductivity) at soil saturation, and it is a free model parameter. A7sa

denotes duration of percolation form the saturated layer (Figure 19):



AT,

sat,i — sat,1

[ sm  -STO, \
min ’K—; At |; SWI,(:‘) > STO,

(2.1.29)
0 s SW.q) <STO,

The remaining term in equation 2.1.28 denotes percolation from the unsaturated
soil layer, which is obtained by solving Richard’s equation for vertical direction,
with saturated hydraulic conductivity being estimated using van Genuchten
equation'!. The residual water content 6, in the van Genuchten equation is
assumed equal to the wetness at permanent wilting point, wwe,1 (van Genuchten,

1980).

The residual soil wetness (Wres), which limits percolation, is estimated based on

the soil wetness at field capacity (wrc) and at permanent wilting point:

w %
Wm=4EL—El (2.1.30)

P—Wywp
The wetness at field capacity (wrc), i.e. at the equilibrium of the capillary and
gravitation forces, is estimated at 0.33 bar (Yang and You, 2013; Diallo and
Mariko, 2013) In the 3DNet-Catch wrc is a free model parameter.

W..=w

res

res'Dl (2131)

In equation 2.1.28, S1, stands for the ratio between the available and maximum

amount of water for percolation in a time step:

(2.1.32)

STO, -WP, ’

SW, " —WP
Sy = min[—l’(') L 1}

where WP is estimated from the wetness at wilting point and the layer thickness:

WP, =w,, Dy (2.1.33)

I Simulation of flow in the unsaturated zone is carried out in similar manner in the MIKE SHE model

(Madsen, 2003).
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Parameter 71 in equation 2.1.28 is van Genuchten pore-size distribution index, and
it is greater than 1 (van Genuchten, 1980; Schaap et al., 2001). The values of this
dimensionless parameter decrease with increase of clay and silt content in the soil
(finer soil textures) and increase with the sand content (Schaap at al., 2001;
Porébska et al., 2006). However, no systematic change with soil depth has been
proven (Porébska et al., 2006; Scorza Junior and Silva, 2011). This parameter can
take values up to 10 (van Genuchten, 1980; Yang & You, 2013), although values
greater than 2 are not recommended for finer soils (Schaap at al., 2001; Durner

and Fluhler, 2005).
ATunsar 1s the complement of AT« to the length of simulation time step:

AT

unsat,i

=At—-AT

sat,i

(2.1.34)

After percolation has taken place, the surface layer storage is calculated as the following:

Wy =SW.q) W, (2.1.35)

perc 1,i

If simulated storage SW1,)"" exceeds maximum capacity STO1 of the layer, storage is set
to the value of STO1 and the excess water is added to surface runoff ¢”suf, mimicking

saturation excess runoff generation mechanism (Beven, 2001b):

kK

*
surf,i qsurf,i

zqrurf,z+(SVI/vl,(l)** _STOI) 9 SVVL(Z)** >ST01

STy > 4 SSW, ) <STO,

3k

W) = (2.1.36)

Kk

STO,, ¢

surf,i

I
(mm/h)

Wperc_sat

Figure 19. Percolation from the soil.
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- Evaporation from the surface soil layer Esoil over the i time step is calculated

using:

Esoii =PET; cov (2.1.37)

soil i

The soil cover index, covsei, is estimated based on the LA/ value (equation 2.1.13), while

PET;" is potential ET after evaporation form the canopy or snowpack reservoir occurred:

PET, =PET,—E

can,i

E

sub, i

(2.1.38)

Additionally, actual evaporation is limited by available amount of water in the surface

layer. Therefore, Esoil, i is reduced if the water content is below FC1 (Neitsch et al., 2011):

E

otk S

E -

soil, i

o 25 (W o) —FQ)
oil,i "CXP

5 SW (i)*** <FG
FC,—WP, ’

(2.1.39)

Kk

E

soil,

s SWe > FG

FC\ is the storage (in millimetres per unit area) of the surface soil layer at field capacity:

Maximum amount of water that can evaporate from the soil layer is limited to 80% of the

amount of water available to plants'? (Neitsch et al., 2011):

E

soil, i soil, i

= min( g5 0.8 (SW, )" =P (2.1.41)
Having the actual evaporation from the surface layer calculated, storage of the surface

soil layer at the end of current time step SW(; is estimated as:

sokok

SWiy=SWii~E Soili (2.1.42)

(2) WATER BALANCE OF THE SUBSURFACE SOIL LAYERS

Water balance of a sub-surface layer is comprised of percolation from the upper soil layer,
transpiration and percolation into deeper soil layer, if any, or into the groundwater non-

liner reservoir, according to Figure 20.

12 In this model, this value is set to 80%, although it may be a free parameter (as in e.g. the HBV model).
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- A sub-surface layer storage after percolation form upper layer Wyere (1-1),i:

SW Gy =S 60 AW pere (11). 4 (2.1.43)

perc

p
percolation form
upper layer(s)

l percolation to deeper layer or
L groundwater reservoir

L transpiration

e

F-

L reservoir storage at the

end of a time step

Figure 20. The 3DNet-Catch model: processes of the soil routine — subsurface layer.

- Percolation from the I sub-surface layer is simulated in the same manner as the

percolation form the surface soil layer:

1

(17111) [<sat,l q . %
Koy Doy +(STO=WR)| S, 1~ Sy + - (1 =1) AT RUATESLS
W e ri= STO,-WR
perc,l,i
0 D SW ) <FG
(2.1.44)
Sub-surface layer storage after percolation into deeper layer is:
sk *
SVVl,(i) = SVVI,(:) _Wperc,l,i (2145)

If excess water occurs in the sub-surface layers, it is added to surface runoff, similarly to

modelling of the surface layer balance:

*x *k *

s SVV],U) > Qsurt,i = Dsurf,i 5 SVVZ,(,-) < STOZ
Wiy = " " . (2.1.46)
STO] 5 qsurf,l’ = qsurf,i +(SVV1,(I-) —STOI) N SVVI,(Z) > STOI

- Transpiration (water uptake by plants) is a difference between PET and actual

evaporation from the surface layer over the i time step:
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E,,=PET, —E., (2.1.47)

It is assumed that water uptake from /" sub-surface later is proportional to its share in the

total sub-surface thickness:

* El,i
Wi =D, (2.1.48)

up N,
2D
=

Transpiration is limited by available water within the layer, so the following limitations

are imposed (Neitsch et al., 2011):

* SVV],([)** - WP/ sk
. I/Vup,l,i €xp 5 0.25 (FCI—WPZ)_l > (SVV/,(I) —WPI)SOQS (FCI—WPI)

Wup,l i =
Wi : (sw " -wR)>025 (FC,-wR)
(2.1.49)
W,pi =min (Wup,/,i ; (SVVI,(I') —WB); 0) (2.1.50)
Storage in the /" sub-surface layer at the end of i simulation time step is:
Wiy =Wy Wap,t.i (2.1.51)

Features of the soil routine are presented in Table 5.
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Table 5. Overview of the state and dependant variables, fluxes, parameters and initial

conditions of soil routine.

State variables

S Storage of a layer (in millimetres per unit area) [mm)]
Dependent variables

1, Initial abstraction [mm)]
CNys Value of the CN corrected with respect to slope of the area [-]
CN, Value of the CN at permanent wilting point [-]
CN; Value of the CN at field capacity [-]
Stax Potential retention at permanent wilting point [mm)]
Stnin Potential retention at field capacity [mm]
Dgm scs  Thickness of the active soil layer [mm]
WP The 1™ layer storage at permanent wilting point [mm)]
FC The 1™ layer storage at field capacity [mm]
Si1 Ratio between available and maximum amount of water to percolate [mm]
Fluxes

Pi Equivalent precipitation [mm At']
Qsurf Surface runoff [mm At]
Woere,l Percolation into 1" layer from the (I-1)* one (1 >1) [mm At!]
Esoil Evaporation form the surface layer [mm At
W Water uptake (transpiration) from 1" sub-surface layer (1>1) [mm At']
Parameters

CN Curve number [-]
1y relative Initial abstraction coefficient [-]
Dsurr Thickness of the soil layer [m]
PSURF Effective porosity of the surface layer [-]
wwe,sure  Permanent wilting point of the surface layer [-]
wresure  Soil wetness of the surface layer at field capacity [-]
NSURF Pore-size distribution index of the surface layer [-]
Kiat surf Saturated hydraulic conductivity of the surface layer [m At!]
M Number of sub-surface layers [-]
Dsu-sures  Thickness of 1" sub-surface layer (1>1) [m]
psussurr)  Effective porosity of the 1 sub-surface layer (1 >1) [-]
wp1 Permanent wilting point of the 1" sub-surface layer (1 >1) [-]
WEC,I Soil wetness of the 1™ layer at field capacity [-]
m Pore-size distribution index of the 1" sub-surface layer (1>1) [-]
Ksat) Saturated hydraulic conductivity of the 1" sub-surface layer [m At!]
Initial conditions

SW1 ~0) The storage of every soil layer at the beginning of a simulation [mm]
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Response routine

Simulated surface runoff and percolation from the deepest soil layer are routed to the
catchment outlet by applying both linear and nonlinear outflow equations. Surface runoff
resulting in direct flow is routed through a linear reservoir. Water from the deepest soil
layer percolates into a nonlinear groundwater reservoir, and certain amount of that water
(below threshold value Smax) is transformed by the nonlinear outflow equation resulting
in baseflow. The amount of water that exceeds the threshold value Smax is routed through

a liner reservoir (Figure 21), resulting in fast groundwater discharge.

The routing equations are solved analytically in the 3DNet-Catch model instead of
numerically since several problems are associated with numerical solutions. The explicit
numerical schemes are proven to cause non-smoothness of the response surface, which
significantly makes model calibration more complex (e.g. Kavetski et al., 2006; Kavetski
& Clark, 2010). Implicit schemes, on the other hand, are unconditionally stable, but they
require iterative solving procedure, leading to an increased computational burden and

more time consuming simulations (Hirsch, 2007).

As the analytical solutions of the integrals over time are derived, state variables are
denoted as functions of time ¢. For the sake of consistency, the fluxes over a time step are

denoted with (#—¢+At) in the following text.

q :'-\\‘i

Qh (')h fast

_

Figure 21. The 3DNet-Catch: runoff routing.
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(1) Direct flow Qu Surface runoff gsur is routed through a linear reservoir. Surface
runoff from the drainage area is inflow to the reservoir, and direct flow is the outflow.
The linear reservoir differential equation is:

as, (1)
dt

=0, (1) 0, (1) (2.1.52)

where QOsurf is average surface runoff from the drainage area 4 over a time step At,
assuming that surface runoff from the unit area gsurf is constant over the computational

time step:

qsurf t—ot+At A
= 2.1.53
v ( )

qurf,tat+At

Direct flow is obtained from the linear outflow equation:
1
Oy ()=—-8,() (2.1.54)
K,

where K4 stands for the linear reservoir coefficient. Substituting equation 2.1.54 in 2.1.52

yields a first-order inhomogeneous ordinary differential equation (ODE):

ds, @, 1

L ESd () = O (2.1.55)

Multiplying all terms in the previous equation with the integration factor e “%d yields:

d t 1 t
— | S, exp| — || = — exp| — 2.1.56
dt |: d p(Kd jj| Kd qurf p(Kd\J ( )

Direct flow volume Vz in a time step is obtained by integrating flow over a time step:

V,(@t) = I:()At% _ J.;:OAI|:Sd,O exp (KL}FQSM K, (1 —exp (KLJ H dt (2.1.57)
d d

d

The direct flow volume (outflow from the reservoir) within a time step is then:
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1—exp ——
At K,
Vi, t>tear =Sa,0 €XP 1—K— + Que M| 1- —————22 (2.1.58)
d

where S4, 0 denotes storage of the liner reservoir at the beginning of a time step. Based on
the Va4, mean direct flow in a time step and storage of the reservoir at the end of a time

step are simulated:

Va A
Ot 1span = 2 (2.1.59)
At
Sa, tene =Sat = Qaiostens T Oourt, 1>t 4 (2.1.60)
Two previous equations may be written using condensed notation:
0, =12 2.1.61)
di =7y 1.
Sa, (i) =Sa, (1) = Qai + Gourt, i (2.1.62)

Subscript i refers to mean flux over i time step (i.e. mean direct flow over a time step),
while (i) and (i-1) imply values of the state variables at the end of the current and previous

time step, respectively (e.g. storage at the beginning of the i time step).

The K coefficient may be estimated from the average time of concentration, 7¢:

K, = (1—e‘5) (2.1.63)

. 1 Naru _
b = > (1-e2)) (2.1.64)
Nury 55

Subscript j refers to a HRU, and Nuru is the number of hydrologic response units draining

into the outlet (linear reservoir).

Time of concentration consists of overland flow duration (sheet flow and shallow
concentrated flow, to a watercourse) and open duration of the channel flow, which are

estimated by applying the following equations (Maidment, 1993; Wanielista et al., 1997):
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slope

T, =
d 18 Islope

L n0.6
- (2.1.65)

;o 062L,, n, 0"

ch = 40125 1,037 (2.1.66)

where L denotes the length of flow (surface, Lsiope, and channel, Lcr), while I denotes
(dimensionless) slope (of the area, Liope, and riverbed, Icx). These variables represent
topographic properties of a catchment, which can be estimated a priori. Manning’s
roughness coefficient, n, for the catchment surface and the riverbed has to be inferred

through calibration.

The number of the linear reservoirs can also be a free model parameter. Cascade of several
identical reservoirs (i.e. the Nash model, Figure 22) introduces flexibility to the model in

terms of peak flow attenuation and delay.

. Ty

Figure 22. The Nash cascade of linear reservoirs (reproduced from Shaw, 2005).

(2) Baseflow (Qp) is obtained by routing water percolating from the deepest sub-surface
soil layer through a nonlinear reservoir (Figure 21), with the nonlinearity coefficient ¢

and threshold Smax:

1
O, ()= %

NLR b

(S,@®) (2.1.67)

If ¢ = 1, the previous equation reduces to the linear outflow equation. KNLr » represents a

the nonlinear reservoir coefficient, and it is a free model parameter.
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Combining the nonlinear outflow equation with the reservoir water balance equation
yields an nonhomogeneous, nonlinear first-order ODE. Assuming that the inflow to the
reservoir (Vuperc) occurs at the beginning of a time step (in discrete manner) reduces the

equation to the homogenous one:

dSb(t): 1

i = T (8,(0)) (2.1.68)

Integration of the previous equation over a time step results in the base flow volume V5

(Todini, 1996):

(1-¢) 0, o At |-
Vo, tst+00 = Sb,0 {1 _{1 - S i e (2.1.69)
b,0

where Sh, 0 and Ob, 0 denote the reservoir storage and baseflow at the beginning of a current
time step, respectively. The reservoir storage at the beginning of a time step is sum of the
reservoir storage at the end of the previous time step and volume of percolation from the

deepest soil layer in the current time step:
S0 =Sb, 1 +Vipere, 1100 (2.1.70)
If the reservoir storage Sy exceeds threshold Smax, the reservoir storage is corrected:
S0 =Mmax (Sb’o*; Smax) (2.1.71)

The threshold value Smax is calculated as:

S s, A (2.1.72)

max ~ “max

where smax s a free model parameter and 4 is size of the drainage area.

The amount of water exceeding the threshold Smax comprises the volume of fast

groundwater discharge in current time step (Figure 21):

%7fast7LR, At~ max(O; (Sb,O _Smax )) (2173)

Baseflow at the beginning of a computational step O, o is calculated based on the

corrected reservoir storage Sp, o:
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c
S

0,0=B | 22 (2.1.74)
’ N

max

Variable B denotes maximum baseflow value, and it is calculated following:

B=q, A (2.1.75)

where ga denotes maximum specific baseflow yield (in L / s / km?), which is a maximum
baseflow rate per unit area, and is a free model parameter. Maximum baseflow (B) will

occur if the reservoir storage Sp is equal to threshold Smax.

Mean baseflow over a computational time step is obtained by dividing volume of the

baseflow (equation 2.1.69) by the length of the time step:

_ Vh, t—>t+At

O v (2.1.76)

Using the condensed notation, the previous equation may be written as:

Vi

- 2.1.77
v ( )

O,

(3) Fast groundwater discharge — shallow aquifer response (Qp fast) is simulated by
transforming the excess water from the nonlinear groundwater reservoir (equation 2.1.72)
through a linear one. Unlike linear reservoir for direct runoff, the inflow to the linear
reservoir for interflow is added in a discrete manner (at the beginning of a computational
time step). Therefore, the balance equation for the reservoir is reduced to the homogenous

ODE:

dSy, a5 (1)
—= =0 ) (2.1.78)

Substituting the linear reservoir equation into the previous one yields:

dSb_fast (t) " 1
dt Kbifast

Sp_fast 1) =0 (2.1.79)
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Solving the above equation for Qs fast and integrating over a time step results in the fast

groundwater volume in a time step:

t=At At
Vbﬁfast,l—)t-*—At = I -0 Qbifast dt= Sbifast, =0 €XP [_ ] (2 1 80)

! b _fast
Water balance of the reservoir at the end of a time step is estimated from:

Sbﬁfast, t+A :Sbifast, t Vbifast, ttrar T %7fast7LR, (> t+At (2.1.81)

where Vb fast LR denotes the volume of water exceeding the threshold of the nonlinear

reservoir, that is, an inflow to the linear reservoir of the fast groundwater response.

Fast groundwater discharge in a time step is a ratio of volume of the fast groundwater

outflow to the length of a time step:

Vb_fast,t»t+At (2 1 82)

0 b_fast,t—t+At — At

Applying the condensed notations, the previous equation reads:

Vb fast, i
Op fasti= —*Aats (2.1.83)

Total simulated flow at the outlet of the catchment is the sum of the direct runoff,

baseflow and fast groundwater discharge:
0:=04;+Opi Qb rast,i (2.1.84)

Calculated balance of the reservoir at the end of current time step is equal to the water
balance at the beginning of next time step. Reservoir states at the beginning of a
simulation must be imposed on the model (initial conditions). Variables, parameters and

initial conditions of the response routine are given in Table 6.
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Table 6. Overview of the state and dependent variables, fluxes, free parameters and initial

conditions of the response routine.

State variables

SLR_d The surface runoff linear reservoir storage [m?]
SLR b The fast groundwater linear reservoir storage [m?]
SNLR b The baseflow nonlinear reservoir storage [m?]
Dependent variables

Stax Threshold of the non-liner baseflow reservoir [m3]
B Maximum baseflow [m3/s]
Od Direct flow [m?/s]
Ob_fast Fast groundwater response [m¥/s]
O Baseflow [m?/s]
Parameters

Kq Linear reservoir coefficient for direct flow [s]
qa Maximum specific baseflow yield [Ls'ha]
c Non-linearity coefficient for baseflow simulation [-]
Kow-fast Linear reservoir coefficient — fast groundwater response [s]
Smax Threshold of the non-liner baseflow reservoir per unit area [mm]

Initial conditions

S4, (i=0) State of the direct runoff linear reservoir at the beginning of a simulation [m3]

Sb_fast, i=0) State of the fast groundwater response linear reservoir at the beginning of a simulation ~ [m?]

Sb, (i=0) State of the baseflow nonlinear reservoir at the beginning of a simulation [m3]

Flow routing routine

Flood routing is simulated in the 3DNet-Catch with a linear reservoir model. This model
enables peak attenuation (due to friction), but the backwater effect cannot be simulated

(Beven, 2005).

This model is based on the assumption that river reach behaves like a linear reservoir, so
that the volume of the outflow from the reservoir (i.e. downstream node of the reach) in

a time step can be estimated from:

~At
l—exp| —
At ( K )

Vaown, t>t+ar =54 exp(l——K )+ Ouwptstvn At| 1= ———2 (2.1.85)
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where S: is the reservoir storage at the beginning of current (and at the end of previous)
time step, Qup, r—r+ar is mean flow at the upstream node of the reach in current time step,
K is the coefficient of the linear reservoir. The reservoir coefficient depends on the reach

length, slope and roughness quantified via Manning’s coefficient (Pedersen et al., 1980):

~ 075
- 1.76Q0'2510‘375

(2.1.86)

Here L denotes length of the reach (km), n is the Manning roughness coefficient (m'3s),

0 is mean flow (m?/s) and [ is the slope of the reach (per cent).

The reservoir storage at the end of current time step and mean flow at the downstream

node of the reach are calculated from the estimated volume:

Seant =S HVp, 1 eear —Vown, 1 t+ar (2.1.87)

Vd A
Qdown, t—>t+At = % (2188)

Applying condensed notation, previous equation reads:

J down, i
= d 2.1.89
Qdown,z Af ( )

Computational grid — Hydrologic Response Units

Catchment delineation in the 3DNet-Catch model is based on the TIN (triangular irregular
network) elevation model of a catchment. Triangles are generated by the Delaunay
triangulation on given control points (contour maps or sampled elevation datasets, and
stream gauge coordinates), according to specified maximum value of the circumcircle

diameter (Figure 23).

TIN generation is followed by formation of Thiessen polygons (Voronoi diagram), as
illustrated in Figure 23. Flow directions or flowpaths are determined along the steepest
decent of a polygon (Figure 24). This approach is also applied in the tRIBS model (Ivanov
et al., 2004; Vivoni et al., 2007).
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Flow directions comprise a graph over which the Priority First Search algorithm (PFS) is
applied. The algorithm starts from the polygon that contains a stream gauge (or other
computational node) and propagates towards upstream polygons with the steepest slope

(Figure 25), thus enabling catchment delineation.

The delineation results are stored in a database. For example, a sub-catchment (drainage
area of a stream gauge) is an attribute in the database and it is assigned to each Thiessen
polygon, i.e. surface runoff generated in the polygon will be routed towards the assigned
stream gauge. Optionally, other drainage outlet may be attributed to the polygon for

subsurface runoff, which is particularly convenient for karst catchments.

X,m 180 200 0

Figure 24. Flow direction from a Thiessen polygon (Ivanov et al., 2004). Grey areas

represent triangles of TIN and the white one represents a HRU.

In the 3DNet-Catch model generated Thiessen polygons are considered Hydrologic
Response Units (HRUs). All points within Thiessen polygons i.e. HRUs are assumed to

exhibit hydrologically similar behaviour due to their geographical proximity.

82



Every HRU should be assigned unique parameter set based on the prevailing vegetative
cover, soil and land use types in the polygon. However, if there are several polygons
(HRUs) with similar properties, the same parameter set may be attributed to all of them,
resulting in a significant decrease in dimensionality of the parameter estimation problem

(chapter 2.3).

Hpl

Figure 25. Catchment delineation in the 3DNet-Catch model: the PFS propagation

algorithm.

2.1.2. Alternative model structures

In this research four versions of the 3DNet-Catch model are considered: three semi-
lumped and a fully-distributed one. For the sake of simplicity, the semi-lumped versions
are named SIMPLE, BASIC and FULL, implying increasing model complexity. The

distributed version of the model stems from the BASIC version of the model.

The FULL version of the model

The FULL version of the model includes several subsurface soil layers and linear
reservoirs for surface runoff routing (Nash cascade), where the number of sub-surface
soil layers and the linear reservoirs are free model parameters. Since some parameters of
the surface and subsurface soil layers are assumed equal, this version of the model

contains 27 free parameters.

The structure of this model is presented in Figure 26.
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Figure 26. The FULL version of the 3DNet-Catch model.

The BASIC version of the model

In the BASIC version of the model, number of both subsurface layers and liner reservoirs
for direct runoff simulation are set to 1 and the base temperature (7melt) is assumed equal
to the threshold temperature (7s-r). In this way, the number of free parameters is reduced

to 24 (some parameters of the surface and subsurface soil layers are equal).

This version of the model is presented in Figure 27.
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Figure 27. The BASIC version of the 3DNet-Cath model.

The SIMPLE version of the model

In the SIMPLE version of the 3DNet-Catch model, the parameters of the snow routine,

except for Ts-r, are not optimised, since they are shown to be insensitive, i.e. do not affect

model performance significantly (chapter 3.1). The values of these parameters are set to

median values of the corresponding Pareto-optimal parameters, obtained over the full

hydrologic record period. Thus, the number of free parameters in this version of the model

is reduced to 20.
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The distributed version of the model

The distributed model version is based on the BASIC model. Considering coarse temporal
resolution of the available data and goals this research!3, elevation zones are assumed
HRUs. Different parameters sets are assigned to each zone. However, majority of
parameters are kept lumped due to limited information on the catchments. Spatially
distributed parameters and regularisation method for calibration of the distributed version

of the model are given in chapter 2.3.2.

In all versions of the model, seasonal variability in the LA/ and meltrate coefficients
(parameter bmelt) is retained. These parameters are aimed at modelling the processes that
exhibit strong seasonality and therefore the parameter values should vary in time

accordingly. The model setup is described in detail in chapter 2.3.1.

2.1.3. Model input data

In order to delineate a catchment, digital terrain model (DTM), stream network and
catchment divide are required. Data on the land use type, vegetation or soil types can
facilitate establishing prior ranges of some parameters (e.g. CN, CANmax, soil-related

parameters).

Data required for a model run include:

—~ Precipitation depths [mm Az '],

- Potential evapotranspiration [mm Az '],
— Temperature [°C],

- Observed flows [m?/s].

13 In this research impact of model structure on the Pareto-optimaltimal parameter temporal variability is
analysed (chapter 1.6). Therefore, the results of the distributed model version are compared to the results

of the semi-lumped one.
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Input time series should be (dis)aggregated to match the computational time step (e.g.

mean daily temperatures or flows).

Semi-lumped versions of the model. Since topography of the catchments considered in
this research (chapter 2.6) considerably varies in elevation, model forcings (such as
precipitation or temperature) are adjusted for elevation and different input vectors are

estimated for every elevation zone of a catchment.

In this research, every catchment is divided into an arbitrary number of elevation zones
of approximately equal spans. Each elevation zone is represented by its mean elevation,
total area and mean slope. Precipitation depths and temperature are estimated for every
zone, depending on the difference between the mean zone elevation and the reference
altitude zms. The reference altitude zms is assessed as the weighted mean elevation of the

meteorological stations following the methodology presented by Panagoulia (1995):
NS
Zvs = D@ Z; (2.1.90)
i=1

where N; is number of meteorological stations, z; and ; are the elevation and the weight
of the i meteorological station, respectively. Station weights are obtained by applying

the Thiessen polygon method.

In general, temperature exhibits a rather constant lapse rate i.e. decrease with elevation,
while the increase in precipitation depths lessens with the elevation (Bardossy & Das,
2008; Hundecha & Bardossy, 2004). However, the constant gradients of both variables

with elevation are adopted in this research.

Mean precipitation depth P in an elevation zone is calculated according to:

_ a(z. zys)
P= Py | 14— M) 2.1.91
MS { 100-100 J ( )

where Pwms stands for mean catchment precipitation depth estimated by employing the
Thiessen polygon weighting method, without any adjustment for elevation and «
represents increase in precipitation (in per-cent) per 100 m of elevation increase (similar

to e.g. PcaLt parameter of the HBV-light model, Seibert and Vis 2012). The value of a
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can be estimated based on the slope of a linear regression between annual precipitation
depths and meteorological station elevations. Some recommendations on increase in
precipitation with elevation may be found in the literature. For example, Uhlenbrook et
al. (2000) estimated an increase of 6% / 100 m, while Seibert and Vis (2012)

recommended increase of 10% / 100 m for simulations.
Similarly, mean temperature in an elevation zone is calculated as:

T ZMS_ZC

T= TMS + Wnapse (2192)
where Twms is the mean catchment temperature calculated by applying the Thiessen
polygon method. Tiapse is a temperature lapse rate (in °C/100 m). The value of this
parameter is commonly assumed to be approximately -0.6 °C/100 m (e.g. U.S. A.C.E.,

1994; Uhlenbrook et al., 2000; Seibert and Vis, 2012).

In this research o and Tiapse are free model parameters to be estimated in the calibration
procedure. Their prior ranges are assessed for every catchment according to long-term

observations at the meteorological stations.

The PET time series can be calculated externally and introduced into the model as the
input time series, or within the model following the Hargreaves method (Hargreaves and
Samani, 1982; Lu et al., 2005, Oudin et al., 2005; Trajkovic and Kolakovic, 2009; Tabari
et al., 2011). To account for changes with elevation, PET rates are estimated for every
elevation zone independently, using the obtained mean zone temperatures. Since only the
temperature data were available for PET assessment, the PET rates had to be calculated
by some of the temperature- or radiation-based methods, which have modest data

requirement (Maidment, 1993).

Oudin et al. (2005) examined influence of the method for PET assessment on performance
of hydrologic models. They simulated runoff at a lot of catchments using 27 methods for
PET estimation and four lumped, conceptual hydrologic models. They demonstrated that
the use of the temperature- or radiation-based methods may result in the same model
performance as the use of more complex methods (e.g. Penman-Monteith). For example,

models that used the McGuinness, Jensen-Haise (radiation-based) or Hamon methods
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(temperature-based) outperformed models that used the Penman-Monteith method both
in calibration and validation periods. Considering the results of Lu et al. (2005), Trajkovic
and Kolakovic (2009), Rao et al. (2011) and Tabari et al. (2011), the Hamon method is
selected for use in this study. Application of this method for hydrologic modelling
purposes is reported in the literature by Fenicia et al. (2008), Gharari et al. (2012); Gharari
et al. (2013) and Osuch et al. (2014).

According to the Hamon method (Hamon, 1961), daily PET rates are calculated for every
elevation zone as:
2
T
PET = DL exp | &+ (2.1.93)
12 16
where 7. is a mean daily temperature in an elevation zone and DL is a daytime length

(time from sunrise to sunset, in h day™'), which depends on latitude ¢ and declination of

the Sun J, both in expressed in radians (Spitters et al., 1986):

DL= ﬁarccos (—tan (@) tan(5)) (2.1.94)
r

5= 0.4093sin (% (D, +284)) (2.1.95)

where D denotes a day of a year.

In the semi-lumped versions of the 3DNet-Catch model vertical water balance (surface
runoff and percolation into the groundwater reservoir) is simulated independently for
every elevation zone by using a single parameter set common to all zones, with
precipitation, temperature and PET rates estimated for each particular zone. Simulated
surface runoff and percolation generated in individual zones are summed and routed

through the reservoirs at the catchment outlet.

Distributed model version. Generally, precipitation depths and temperatures are
estimated in the 3DNet-Catch model for every HRU by employing the inverse-distance
weighting method (Figure 28). Precipitation and temperature data are estimated based on

the observations from up to 4 nearest meteorological stations.
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In this research, however, the catchment elevation zones are considered HRUs. The input
data obtained for semi-lumped versions of the model are therefore used in the distributed

version as well.

@ Meteorological Station

Figure 28. The inverse-distance weighting for estimating mean precipitation depths or

temperature for a HRU in the 3DNet-Catch model.

2.2. Model multi-objective calibration with the AMALGAM algorithm

Properties of a response surface in hydrologic modelling impose difficulties on parameter
optimisation. As elaborated in chapter 1.3.2, global optimisation algorithms are generally
considered capable of coping with these difficulties (e.g. Yapo et al., 1996; Vrugt et al.,
2009). However, it has been argued in the literature that a single optimisation algorithm
cannot be efficient at various optimisation problems, i.e. different optimisation algorithms
perform better for specific optimisation problem (Vrugt & Robinson, 2007; Vrugt et al.,c
2009). Hence, employing several optimisation algorithms in the calibration procedure is
expected to locate global optimum basins of the response surface more efficiently and
effectively. Therefore, an algorithm that combines several global optimisation algorithms,
namely AMALGAM — 4 MultiAlgorithm Genetically Adaptive Multiobjective, is used for

model calibration in this research.

The AMALGAM employs several global optimisation algorithms (mostly operators for
population evolution) simultaneously, so every algorithm is in control of a certain number

of (initial) parameter sets. The number of sets allocated to each optimisation algorithm is
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altered dynamically in the calibration procedure, so that the algorithms with the highest
reproductive success in previous iterations are allowed to generate more offspring in the
current iteration. This peculiarity of the AMALGAM algorithm makes it superior
compared to the individual global optimisation algorithms, especially in presence of
multidimensionality of the optimisation problem (large number of free model parameters)

(Vrugt et al. 2009).

The AMALGAM starts with the initial population sampling, which is based on the Latin
Hypercube method — LHS (Vrugt and Robinson, 2007). The LHS is a type of stratified
Monte Carlo sampling method without replacement (Keramat & Kielbasa, 1997; Marino
et al. 2008). The parameter prior range is split into N non-overlapping intervals of equal
probability (i.e. width of an interval amounts 1/N if the uniform probability is assumed).
A random value of the (uniform) cumulative distribution function (cdf) is sampled from
every interval and the corresponding value of the parameter is assessed from the sampled
cdf values. In this way, N values of every model parameter are obtained. This procedure
is repeated for all model parameters and the sampled parameters are combined together
into N different (initial) parameter sets. Being computationally cheap (Gentle, 2003;
Keramat & Kielbasa, 1997; Sieber & Uhlenbrook, 2005), the LHS is rather convenient
for calibration of hydrologic models, which are known for multidimensionality. For
example, the required number of model runs for assessment of a parameter uncertainty
bounds is reduced by 90% if the LHS is applied compared to random sampling (Sieber &
Uhlenbrook, 2005).

The number of parameter sets to be assigned to an optimisation algorithm i in current

iteration (generation) #, N}, depends on the number of sets allocated to i algorithm in

(1)

the previous iteration, N; , and the number of sets which are generated by i

algorithm in previous iteration and participate in the current generation, f? (Yilmaz et

al., 2010):

. q .
Nt =N-Li > i (2.2.1)
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Ratio between P? and N l(-t_l) represents reproductive success of the i algorithm. N

denotes total number of parameter sets (size of population) and ¢ denotes number of

optimisation algorithms employed within the AMALGAM.

Change in the number of parameter sets allocated to individual optimisation algorithms
throughout parameter optimisation procedure is illustrated in Figure 29. In this example,
the majority of the sets is in control of the GA (Genetic Algorithm) and DE (Differential

Evolution) algorithms.

To prevent some optimisation algorithms from inactivating and, consequently, to preserve
population diversity, a minimum number of parameter sets is allocated to an optimisation
algorithm regardless of its reproductive success (Vrugt et al. 2009). For example, in
Figure 29 it is shown that the AMS (Adaptive Metropolis Search) and PSO (Particle
Swarm Optimiser) algorithms are assigned 5% of the total number of parameter sets,

while majority of the set is evolved by the GA and DE algorithms'*.

After evolving assigned parameter sets and commutating their fitness, parent and
offspring sets are merged into population of size 2N and ranked according to the values
of the objective functions. The best ranked set remains in the new population, while the
remaining N-1 sets are selected according to values of the objective functions and
crowding distance. The crowding distance denotes Euclidian distance of a parameter set
to the remaining sets of the Pareto front. Namely, remaining parameter sets are sorted into
several Pareto fronts, where the first Pareto front contains non-dominated sets, the second
one non-dominated sets of the remaining sets, and so forth. Selected sets are appended to
the new population based on the rank of the Pareto front, and the crowding distance. This
means that after inclusion of members of the first Pareto front, the members of Pareto
front of a lower rank (i.e. second, third, etc.) are appended to the new population until it
reaches size of N. If all sets of the p™ Pareto front cannot be included into the new
population, the sets with larger crowding distance are preferred to preserve population
diversity (Vrugt et al., 2009). If an optimised parameter estimate is outside the prior range,

it is set equal to minimum or maximum parameter value, depending on whether lower or

14 These two optimisation algorithms (GA and DE) are in control of the evolution of most parameter sets

of the 3DNet-Catch model.
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upper limit on the parameter value is crossed. Once again, different number of sets is
assigned to every optimisation algorithm, and the sets of new population are optimised in

the next iteration.
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Figure 29. Percentage of offspring (parameter sets) generated by four different
optimisation algorithms: the semi-lumped BASIC version of the model, the Kolubara

River catchment, calibration in the 1955-2013 period.

The procedure for parameter optimisation reported above is repeated until one of the
convergence criteria is met: minimum relative change between consecutive values of the
objective function(s) or parameter estimates, or maximum number of iterations (Madsen
2003; Blasone et al. 2007; Blasone 2007). In this research, the latter convergence criterion
is adopted (maximum number of iterations is set to 20.000, Table 7). This criterion is
selected for two reasons: (1) constrains on computational time and resources, and (2) in
this way, all calibrations are performed under same conditions. Selected number of

iterations is supported by the:

Results reported in the literature: e.g. Zhang et al. (2009) adopted 10.000 iterations
for the same population size to calibrate the SWAT model, while Reed et al. (2013)
demonstrated that 20.000 iterations given population size of 100 with the AMALAGAM

resulted in effective optimisation of the HBV model;
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— Analysis of change in objective function (NSE) with increasing number of
iterations (Figure 30): the objective function reaches steady state after 10.000 iterations.
Another objective function, VE, reaches steady state after approximately 500 iterations

(not shown here).
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Figure 30. NSE values versus optimisation runs (offspring generations): the semi-lumped

BASIC version of the model, the Kolubara River catchment, 1955-2013.

The MATLAB code for the AMALGAM algorithm is available from Washington

University web site!”.

This version of the AMALGAM contains four optimisation algorithms: Non-dominated
Sorting Genetic Algorithm (NSGA-II), Differential Evolution (DFE), Particle Swarm
Optimisation (PSO) and Adaptive Metropolis Search (4MS). These algorithms are briefly

described in the remaining of this chapter.

15 http://www.hydro.washington.edu/pub/blivneh/CONUS/misc/tools.uw.electric/ MATLAB-Code-
AMALGAM-Sequential-V1.2/
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2.2.1. Optimisation algorithms in the AMALGAM employed in this research

Non-dominated Sorting Genetic Algorithm (NSGA-II)

Genetic algorithms are based on three principles of the evolution theory: selection,
crossover (recombination) and mutation. Uniform crossover operation results in offspring
with genes containing sequences form both parents, and (polynomial) mutation results in
new allelic material, what is rather important to preserve population diversity and prevent
the algorithm of trapping in a local optimum (Vrugt et al., 2009; Weise, 2009). Parameters

of this algorithm are given in Table 7.

In the AMALGAM, the mutation factor p is equal to the reciprocal value of the number
of free parameters (Vrugt et al., 2009). Since the 3DNet-Catch contains considerable
number of free parameters, in this research pm is set to 0.1 in order to preserve diversity

in the parameter sets.

Differential Evolution

Differential evolution implies recombination of existing parameter sets x to generate

offspring as follows (Vrugt et al., 2009):

o) =x(rf)+F( x5 ) (2.22)
(t+1)

Q_fuk  USCR (2.2.3)
A U>CR

In the first equation, mutant vector 1 is calculated based on parameter sets x with
randomly selected indices 71, 72 and 73 such that 71 # 72 # r3 # k; F denotes the mutation
scaling factor which determines the level of combination between X, and x » In the
second equation, U is a random number in the [0, 1] interval and CR is the crossover
constant which controls the probability of the mutant vector contributing to the offspring

(similar to the crossover probability of the NSGA-II). Two parameters of the DE algorithm

used in this research are specified in Table 7.
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Particle Swarm Optimisation

Particle Swarm Optimisation emanate from the swam behaviour of a flock of birds or

insects (Vrugt et al., 2009; Weise, 2009). In this algorithm a swarm of particles in the

parameter space is simulated (Weise, 2009). Each particle (parameter set) is defined by
(1) (

its current position, x; ', and its velocity, v kt) (these values are randomly initialised).

The particles change their position and velocity as follows (Vrugt et al., 2009):

(#+1) _ (¢+1)

W (0 0 0,

+clrl(xbest_xk )+c2r2(pbest_xk (224)

ng+l)=xg€t)+vg€t+l) (2.2.5)

where ¢, c1 and c2 denote inertia factor, and cognitive and social factors of the particle,

respectively. Values of these parameters used in this research are specified in Table 7.

Adaptive Metropolis Search

Adaptive Metropolis search is based on the random walk Metropolis-Hastings algorithm,
which implies that a set x can be described by a target distribution 7z (Haario et al. 2001).

This algorithm consists of the following steps:
(1) Initial sampling from the parameter space in order to obtain initial sample, xo.
(2) Sampling a candidate point y from a proposal distribution q,( -|x0 ) The

proposal distribution is normal, with mean at current point x; and covariance
that, unlike classical Metropolis-Hasting algorithm, depends on all previous

states.

(3) Calculation of the probability of acceptance of the sampled candidate point, «a,
which depends on the probability density w()::

a(x, y)=min[1, %} (2.2.6)

(4) Calculation of the covariance matrix and the proposal distribution.
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Table 7. Parameters of the AMALGAM, GA, DE, PSO and AMS algorithms

AMALGAM

Number of optimisation algorithms ¢ 4
Size of the population 100
Number of iterations 20.000
Minimum percentage of sets allocated to an optimisation algorithm 5
NSGA IT

Crossover probability p. 0.9
Crossover distribution index 7, 20
Mutation probability pm 0.1
Mutation distribution index #m 20
DE

Scaling factor F' From uniform distribution [0.6, 1]
Crossover constant CR From uniform distribution [0.2, 0.6]
PSO

Inertia factor ¢ 05+UJ[0,1]/2
Weight for cognitive factor of particle ¢ 1.5
Weight for social factor of particle ¢» 1

2.3. Runoff modelling using the 3DNet-Catch model
2.3.1. The 3DNet-Catch model setup

As discussed in chapter 1.3.2, setting the prior ranges of the parameters is quite important
for proper automatic calibration of hydrologic model. In this research prior ranges of
some parameters are estimated based on information on the catchments considered (e.g.
land use types or topography) and on the recommendations found in the literature.
However, ranges of some parameters are inferred based on the results of the preliminary
model runs, by comparing different aspects of simulated and observed hydrographs

(“trial-and-error™).

To avoid physically unrealistic parameter estimates, some parameters are calibrated in
relative terms — as multipliers. For example, the melt factor in June should be greater than
the melt factor in December, or porosity should be greater than soil wetness at the filed
capacity, which, again, should be larger than the wetness at permanent wilting point. It is
convenient to impose these limitations by expressing some parameters as the multipliers
of other parameters: for example, wetness at the wilting point as multiplier of the porosity,

or melt factor in December is a multiplier (smaller than 1) of the melt factor in June.
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Some soil-related parameters may exhibit change with increasing soil depth. However,
observed changes are not easily transferable to model parameters (e.g. Porébska et al.,
2006; Scorza Junior & Silva, 2011). Therefore, most of the parameters of the soil routine
are assumed equal for surface and subsurface layers (porosity, wetnesses at the wilting
point and field capacity, pore-size distribution index). An exception is made for the
hydraulic conductivity, since its value (exponentially) decreases with the soil depth (e.g.
Beven, 1982; Ivanov et al., 2004). In this research, hydraulic conductivity for the sub-
surface layers are calibrated as ratio to the sampled hydraulic conductivity of the surface

soil layer.

Since hydraulic conductivity takes rather small values, common logarithm of its value is
optimised. In this way, parameter space is better explored and under-sampling is

prevented (Marino et al., 2008).

The setup of the semi-lumped versions of the model is presented in Table 8 through Table

12, while the prior parameter ranges for all model versions are given in Appendix A.

Impact of each model parameter on simulated hydrographs and runoff volume is
illustrated in Appendix B and briefly outlined in these tables. Namely, parameter impact
on simulated hydrographs is not straightforward and it may depend on values of other
parameters. Therefore, parameter impact outlined in Table 8 through Table 12 is merely

a summary of the hydrographs presented in Appendix B.
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Table 8. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: precipitation and temperature gradients with

elevation

Parameter

Comment

Parameter impact on simulated flows

References

Precipitation gradient
with elevation o
[% /100 m]

Estimated based on the long-term observations
and altitude of meteorological stations used for
runoff simulations at a particular catchment.

This parameter significantly affects simulated hydrographs and
flow volume. Increase in a results in larger flow volume and
considerably higher flows.

Temperature gradient
with elevation (lapse
rate) Tiapse

[°C /100 m]

Estimated based on the long-term observations
and altitude of meteorological stations used for
runoff simulations at a particular catchment.

Impact of this parameter is highest in the snow-melt season.

Small values of the lapse rate imply more uniform temperatures

in the catchment. In the snow-melt season this means leads to
somewhat delayed flood waves.

Table 9. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the interception routine

Parameter

Comment

Parameter impact on simulated flows

References

Maximum interception
reservoir capacity
CANmax [mm]

Estimated based on the recommendations for
particular types of vegetation, and share of that
vegetation type in the catchment area.

Large values of this parameter imply higher interception
capacity and, hence lower peak flows. This parameter does not
affect peak timing. Generally, impact of this parameter is low.

Jovanovi¢ and Radi¢
(1990); Breuer et al.
(2003)

Maximum value of the
Leaf Area Index LAl max
[m’m™]

LAI varies according to sine curve over the

growing season, while outside growing season
LAI is set to zero (chapter 2.1.1). The range of
LAl is estimated after recommendations for

vegetation types and their share in the catchments.

In the growing season small values of LA/ n.x result is small
interception capacity and large runoff. Impact of this parameter
on simulated flow volume and hydrograph shape is
considerable.

Eschenbach and
Kappen (1996); Breuer
et al. (2003); Asner et
al. 2008; Scurlock and
Hicke (2008); He et al.
(2014)
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Table 10. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the snow routine

Parameter Comment Parameter impact on simulated flows References

This parameter affects both peak magnitude and timing. Small
Boundary temperature,  The ranges of these parameters are adopted from values of temperature for snowmelt result in soon and rapid

Ts-r [°C] and base the literature and adjusted in preliminary snowmelt, and therefore higher peak flows. Aqdersop (2006);
. . . . . Feiccabrino and
temperature for snowmelt simulations. Except for the FULL version of the =~ Small values of Ts.r imply rainfall and, consequently, more
o . . . Lundberg (2008)
Tmett [°C] model these parameters are assumed equal. dynamic catchment response over periods with temperatures
close to 0°C.
Threshol h of . .
reshold dept ot snow Smaller values of Ssnow,100 result in faster snowmelt, leading to
(as water equivalent) . . . . . .
above which the entire Prior range of this parameter is assumed and higher peak flows which occur sooner compared to high values
area is covered in Snow tested in preliminary simulations. of Ssnow,100. Thi; pa}ramete? affect magnitude and timing of peak
flows, although its impact is modest.
Ssnow,l()O [mm]
Values of 1 close to 1 result in faster melt of the snowpack,
Snowpack temperature ~ The prior range of this parameter is set to be equal which means that high flows due to snowmelt occur sooner Zhang et al. (2009);
lag factor A[-] to its feasible range. compared to low values of . Impact of this parameter is Neitsch et al. (2011)
marginal.
Melt factor on the 21% of Small values of the melt factor result in more uniform snow

The prior range of this parameter is set to be equal

n ) .
June bmeic to its feasible range.

[mm°C-'day]

melt in time, and therefore more uniform flows in snowmelt Neitsch et al. (2011)
periods. However, impact of this parameter is marginal.

This parameter is calibrated in relative terms, as
Melt factor on the 21% of the percentage of the sampled value of bpeics. The
December b, 12 ranges are selected not to transcend ranges
recommended in the literature.

Lower values of this parameter, which is calibrated in relative
terms, indicate higher seasonal variation in melt factor. Impact Neitsch et al. (2011)
of this parameter in low.




Table 11. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the soil routine

Parameter Comment Parameter impact on simulated flows

References

Reduced prior ranges CN values are estimated after

land use types and hydrologic soil types, their shareHigher values of CN result in increase in direct runoff and
Curve number CN [-] at the catchment area. In the semi-lumped versions reduction in baseflow. Generally, larger CN values result in

of the model CN values are corrected to account  higher peaks flows and slightly lower baseflow.

for actual terrain slope of each elevation zone.

Chow et al. (1988);
Maidment (1993);
Jovanovi¢ et al. (2013);
Laura et al. (2011)

The value of this parameter is approximately 0.2.
Initial abstraction I, .. [-] Prior range of this parameter is adjusted in
preliminary simulations.

Smaller values of the initial abstraction result in higher peak
flows of individual flood waves.

Surface layer thickness ~ The prior range of this parameter is set to be equal Larger surface layer thickness implies higher capacity of soil
Dygyer [mm] to its feasible range. storage, which leads to decrease in peak flows.

Ogée and Brunet (2002)

The ranges of these parameters are adopted from  Similarly to D, larger values of soil porosity leads to higher
Effective porosity [-] the literature and adjusted in preliminary capacity of the soil storage, and reduction In peak flows.
simulations. Impact of this parameter is significant.

Rawls et al. (1982);
Ivanov et al. (2004);
Saxton and Rawls (2006);
Scorza et al. (2011)

Values of saturated hydraulic conductivity are

rather small, thus calibration is performed on

logarithms of the coefficients to prevent under- If saturated hydraulic conductivity is set to minimum value
sampling, that is to better explore entire parameter direct runoff prevails over baseflow, and vice versa. This
space (Marino et al. 2008). Range of this parameterparameter considerably affects simulated hydrograph.

is adopted from the literature, and enlarged to

certain extent to account for preferential flows.

Saturated hydraulic
conductivity of the
surface soil layer Kqurt
[m-s']

Beven (1982); Rawls et al.
(1982); Ogée and Brunet
(2002); Ivanov et al.
(2004); Scorza Junior and
Silva (2011); Mathias et
al. (2015)

This parameter is calibrated in relative terms, as
Soil wetness at permanentratio to sampled value of porosity. The ranges of ~ Small values of the wetness at wilting point imply larger soil
wilting point wyp [-] the ratio as selected not to exceed feasible range of storage, and therefore lower peaks flows.

wetness at wilting point.

Ogée and Brunet (2002);
Saxton and Rawls (2006);
Scorza Junior and Silva
(2011); Pavelkova et al.
(2012); Diallo and Mariko
(2013); Singh (2013);
Yang and You (2013);
Mathias et al. (2015)

(continued). Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the soil routine
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Parameter Comment Parameter impact on simulated flows References
Wetness at field capacity is calibrated in relative
terms, as ratio to the difference between porosity Values of this (relative) parameter close to zero mean that the
and wetness at permanent wilting point. In this p Diallo and Mariko

Soil wetness at field
capacity wi [-]

wetness of field capacity approaches to the wetness of wilting
point and that more water percolates to the non-linear
groundwater reservoir. This leads to higher baseflow.

way, order on the values of the porosity, wy, and
Wwp 1s imposed. The ranges for this parameter are
set keeping in mind its values recommended in the
literature.

(2013); Singh (2013);
Mathias et al. (2015)

Pore size distribution
index n [-]

Impact of this parameter depends on the sampled values of
The initial range of this parameter is inferred by thewetnesses at wilting point and field capacity. If the values of
recommendations in the literature and preliminary these parameters are small (as in the example in Appendix B),
simulations. increase in n leads to decrease in percolation and consequently
to decrease in baseflow.

Schaap et al. (2001);
Porébska et al. (2006);
Yang and You (2013)

Number of sub-surface
layers N,

This parameter is free only in the FULL version of

the model, while in the remaining versions its valuelncrease in the number of sub-surface soil layers results in delay

is set to one. Since N, can take only integer values, of baseflow. This delay increases with the thickness of the soil
sampled values are rounded towards smaller layers.
integer value.

Thickness of a sub-
surface layer Dsub-surf
[mm]

Prior range is inferred based on expected soil
thickness, on the results of preliminary simulations
and recommendations in the literature for other
models.

of the soil storage and baseflow. Impact of this parameter is
considerable.

Rather small values of this parameter imply negligible capacity Ogée and Brunet

(2002); Schaefli et al.
(2014)

Saturated hydraulic
conductivity of the sub-
surface layers Koup-surf
[mm*day!]

This parameter is calibrated relative to the
saturated hydraulic conductivity of the surface
layer as follows:

Koub-surf = lolheta - Ksurt

Small values of this parameter result in derease of soil
permebility and baseflow, and vice-versa. This parameter
significantly affects simulated hydographs.

Beven (1982); Rawls et
al. (1982)




Table 12. Calibration of the of the semi-lumped 3DNet-Catch model and prior parameter ranges: the response routine

Parameter Comment Parameter impact on simulated flows References
. . . Small values of K4 imply prompt direct runoff without any (Urban Hydrology for
Linear reservoir coeff. Range of this parameter is estimated based on the attenuation of peak flows, and vice-versa: increase in K4 leads Small Watersheds
’ catchment time of concentration (Kirpich, SCS ’ ’ Technical Release 55,

for direct flow K4 [days]

and Manning equations).

to mitigated flood waves. This parameter considerably affects
hydrographs.

(1986); Wanielista et
al. (1997)

Number of linear
reservoirs Nig [-]

This parameter is optimised only in the FULL
version of the model, while in the remaining
versions its value is set to 1. Nir can take only
integer values, thus sampled values are rounded
toward smaller integer value.

Higher number of the linear reservoir results in delayed flood
waves and attenuation of peak flows.

Fast groundwater
response reservoir coeff.
ng-fast [dayS]

This parameter is calibrated relative to the
coefficient of the direct runoff reservoir (as a
multiplier of the Kq). The parameter range is
inferred from preliminary simulations.

Impact of this parameter depends on the amount of fast
groundwater discharge, i.e. on other baseflow-related
parameters (€.g. Smax O ga). Smaller values of Kgy-fast Tesult in
faster response i.e. in steeper recessions. Generally, impact of
this parameter is limited.

Maximum specific
baseflow yield
g4 [L s km?]

The ranges of this parameter are set after 251
percentile of the flows observed in July
(minimum) and 75" percentile of the flows
observed in March or April (maximum).

Large values of this parameter result in higher baseflow and
slightly slower recessions. Impact of ¢4 is marginal.

Non-linearity coefficient
for baseflow simulation ¢

[-]

Ranges of the parameter are estimated based on
the preliminary simulations.

Larger values of ¢ lead to steeper recessions and decrease in
(minimum) baseflow.

Threshold of the non-
liner baseflow reservoir
per unit area Smax [mm]

Ranges of this parameter are assumed after and
the results of the preliminary simulations.

Smaller values of smax result in baseflow increase (it approaches

to the maximum value determined from gq).
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2.3.2. Calibration of the distributed version of the model

In this research the regularisation method presented by Yilmaz et al. (2008) is applied to
calibrate distributed version of the model. This method is based on a nonlinear
transformation of the parameter field, and it is rather convenient for two reasons: (1) it
requires only one superparameter per free model parameter, and (2) it keeps optimised

parameters within predefined bound, without imposing additional limitations.

An application of this method starts with defining prior parameter values for every
computational cell or HRU, 6. (p refers to a model parameter, while i denotes HRU) and
feasible ranges for every free model parameter (6p,min and 6p.max). An optimised parameter

is calculated as follows:
— a
6 .—6 .
0= 0y min +(Op, max = Op min) (ﬁ} (2.3.1)
p,max p,min
where §p ; denotes prior value of the pt parameter for the /" HRU, and « is calculated

as:

log,, (l—z_zﬂj
a= (2.3.2)

log,;, 0.5

where £ stands for the superparameter, which can take value in the [0, 2] interval. In this
way, parameters are prevented from exceeding the imposed prior range (Yilmaz et al.,

2008):

>0 = ao>wo = Hp,,. —>9p,min
p=1 = a=1 = 0,,=0,, (2.3.3)
=2 = a=0 = Hp,l- =0, max

Due to limited information on the catchments (chapter 2.6), majority of the model
parameters are assumed spatially uniform. Parameters that are spatially distributed are
those related to land use or vegetation types within a HRU (CANmax, LAImax and CN) or
related to its elevation (4 — snowpack is assumed thicker at the higher altitudes, and a —

change in precipitation with elevation is not linear). Prior values of the parameters are
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adopted from the semi-lumped version of the model calibrated over the full hydrologic
record period as the mean value across the optimised sets. These are presented in the
Appendix A. Prior values of five spatially distributed parameters are slightly corrected to
account for different land use and vegetation types, and different elevation of the HRUs.
Ranges of these parameters are also given in the Appendix A, while their prior and

posterior spatial distributions are presented in Appendix L.

2.3.3. Sensitivity analysis and correlation among the parameters

In this research, the parameter sensitivity is estimated by employing the regression based
sensitivity analysis (Christiaens & Feyen, 2002; Sieber & Uhlenbrook, 2005; Marino et
al., 2008; Mishra, 2009; Pan et al. 2011). This approach relies on the multiple regression
between the parameters and the model outputs (so called regression metamodel). For
example, Sieber and Uhlenbrook (2005) derived regression metamodels between the
parameters and the simulated runoff time series, while Christiaens and Feyen (2002)
established regression metamodels between the parameters and several simulated state
variables, such as peak flows, average baseflow, average soil water content and
groundwater levels. Sieber and Uhlenbrook (2005) demonstrated that the results of this
method corroborate the results obtained from the Regional Sensitivity Analysis (RSA),

which is a commonly applied global sensitivity method.

The parameter sensitivity is quantified here with respect to two objective functions: the
Nash-Sutcliffe efficiency coefficient (NSE) and volume error (VE). In this way,
parameters important for reproducing of dynamics of a catchment response and overall

water balance can be detected.

The parameter sensitivity is quantified in terms of standardised regression coefficients
(SRC), obtained from the standardised linear regression model (metamodel) as follows

(e.g. Christiaens & Feyen, 2002; Pan et al. 2011):

V=¥ _ i ; sg, (9,4-0) (2.3.4)

105



In the above equation, y is the output (i.e. the objective functions NSE and VE) and the

left-hand side of the equation represents the standardised output with respect to its mean

value 3 and standard deviation sy. Model parameters ¢; are standardised in the same

manner (last term in right-hand side of the previous equation). The remaining terms in
the right-hand side of the equation represent standardised regression coefficients of every

model parameter:

~ S,
Sy

where 4 is the regression coefficient estimate for the /" parameter in the metamodel.

The standardised regression coefficients (SRCs) are aimed to quantify uncertainty in the
output variables (here objective functions) due to model parameters. A SRC may take
values form -1 to 1, with higher absolute values indicating higher parameter sensitivity.
The sign of the coefficient is irrelevant for the sensitivity analysis (Sieber & Uhlenbrook,

2005; Pan et al. 2011).

This method is based on the assumption that the model parameters are not correlated;
parameter correlation is not explicitly accounted for in estimation of the linear metamodel
coefficients. Therefore, correlation among model parameters is to be examined prior to

the sensitivity analysis.

The correlation coefficients among the parameters are calculated here from best
(“behavioural) 100 parameter sets out of 25.000 sampled ones, according to both
objective functions. Correlation among parameters of the 3DNet-Catch model is
quantified in terms of both Pearson (following Blasone et al., 2007; Foglia et al. 2009 and
Dotto et al. 2012) and Spearman rank correlation coefficients. The former reveals a linear
relationship and the latter reveals a monotonic relationship among model parameters

(Kottegoda & Rosso, 2008).
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2.3.4. Evaluation of the 3DNet-Catch model performance

To test the robustness of the 3DNet-Catch model (semi-lumped, BASIC version), the
Split Sample (SST) and Differential Split Sample test (DSS7, Table 2) are used. For the
SST, the model is calibrated and evaluated over 5-year long periods with similar annual
precipitation depths, while for the DSST the model is calibrated over five wettest years,
and evaluated over five driest ones. This setup of the DSST is reported to lead to the
greatest reduction in model performance (Li et al. 2012; Vaze et al. 2010; Brigode et al.
2013) and it is therefore selected to test the model robustness and transferability. The
calibration and evaluation periods considered in both tests are given in Table 13 along
with mean annual precipitation depths over each simulation period. The model robustness
is estimated in terms of the model ability to reproduce the overall water balance and
dynamics of catchment response. In both tests, the model is calibrated using the
AMALGAM algorithm with 100 parameter sets and 20.000 iterations, and NSE and VE
as objective functions. The simulations start with the beginning of a water year, and one

water year prior to each simulations is intended for model warm-up.

Table 13. Calibration and evaluation periods in the SS7 and DSST at three catchments.

Values in parenthesis denote mean annual precipitation depths in the given period.

SST DSST
CATCHMENT CALIBRATION  EVALUATION  CALIBRATION  EVALUATION
Kolubara 1980 — 1985 2001-2006 1974 - 1979 1989 — 1994
(790) (790) (886.4) (647.5)
Toplica 1984 — 1989 1999 — 2004 2005 — 2010 1989 — 1994
(643.6) (643.6) (746.8) (547.4)
Miava 1999 — 2004 2006 — 2011 2001 — 2006 1989 — 1994
(655.3) (655.8) (734.8) (561.9)

In addition, the BASIC model version is calibrated to simulate runoff from the Kolubara
River catchment at the Slovac stream gauge and at from the Toplica River catchment at
the Doljevac stream gauge. The models for these catchments are calibrated over the 1996-
2009 period employing the AMALGAM algorithm with NSE as the objective function,
while the difference between mean annual observed and simulated flow volume is used

as an evaluation criterion. The models are evaluated over 1985-1996 period. These
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catchments and periods are selected following Langholt et al. (2013), who calibrated
HBYV model (e.g. Bergstrom et al. 1992) for the same catchments using NSE as the model
performance measure. In this way, the 3DNet-Catch model is evaluated using the HBV
as a reference model. Runoff at the Toplica River catchment is simulated using
precipitation and temperature data observed at the KurSumlija and Ni§ meteorological

stations (following Langholt et al., 2013).

These simulations start with the beginning of a water year, and the first water year is
intended for model warm-up (assumedly, the same holds for the HVB simulations
presented in Langholt et al., 2013). Population of 100 parameter sets is optimised using
the AMALGAM, and maximum number of function evaluations of 25.000 is set as the

convergence criterion.

The catchments considered are described in detail in chapter 2.6.

2.4. Dynamic multi-objective model calibration

As outlined in chapter 1.6.2, aim of this research is further analysis of:

(1) Variability with time in optimal parameters obtained by multi-objective model

calibration.

(2) Patterns of the variability (e.g. correlation between the parameters and hydro-

meteorological characteristic of a calibration period or its length).

(3) Influence of the objective functions, used for model calibration on temporal

variability in the Pareto-optimal parameters.

(4) Influence of model structural complexity and spatial distribution of the

parameters on temporal variability in the Pareto-optimal parameters.

Methods used in these analyses are described in detail in the remaining of this chapter.
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2.4.1. Temporal variability in the Pareto-optimal parameter sets

To explore variability of the Pareto-optimal parameters in time, i.e. to explore their
sensitivity to calibration period, semi-lumped BASIC version of the 3DNet-Catch model
(chapter 2.1.2) is calibrated in dynamic fashion over 1 to 25 consecutive water years
(water year starts on 1% October and ends on 30" September). Start of every calibration
period is shifted by one water year (similar to Coron et al. 2012), so there is an overlap
between consecutive periods longer than one year (Figure 31). One water year of model

warm-up precedes every simulation. The model is run with daily time step.

Model parameters are optimised by employing the AMALGAM with respect to two
objective functions: Nash-Sutcliffe efficiency coefficient (NSE) and volume error (VE).
Every calibration is performed using the same prior ranges of model parameters and the
same parameters of the AMALGAM and the optimisation algorithms included.
Convergence criterion for parameter optimisation is maximum number of iterations,
which is kept constant in all calibrations (as elaborated in chapter 2.2), resulting in
different size of the Pareto front obtained over calibration periods. Only Pareto sets that

result in NSE greater than 0.3 are retained for the analysis.

Along with the objective functions, evaluation criteria are calculated for every calibration:
Nash-Sutcliffe efficiency coefficient based on log-transformed flows (NSElogo), Kling-
Gupta efficiency (KGE) and coefficient of determination (R?).

12 3.4 5

. :IMODEL WARM-UP MODEL CALIBRATION

Figure 31. Five-year long calibration periods: model warm-up (light hatch) and

consecutive calibration periods (dark hatch). Values on the abscissa denote water years.
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2.4.2. Parameter temporal variability and hydro-meteorological characteristics of

the calibration period

According to some researchers (e.g. Merz et al., 2011; Gharari et al., 2013), the variability
in model parameters could be caused by presence of “secondary” processes, which are
not explicitly simulated by a hydrologic model, such as variable infiltration rates due to
soil freezing or cracking (Beven, 2001b; Tian et al., 2012), or variable evapotranspiration
due to vegetation aging (Fenicia et al., 2009). These “secondary” processes may be linked
to hydro-meteorological characteristics: for example, change in infiltration due to soil
freezing of cracking may be related to the e.g. antecedent temperature and / or

precipitation conditions.

Therefore, presence of correlation between the Pareto-optimal parameters and some
meteorological variables is sought. Hydro-meteorological indices considered in this
research are adopted after recommendations in the literature (e.g. Choi and Beven, 2007;
Merz etal., 2011; Osuch et al., 2014), and presented in Table 14. The indices are estimated

for every calibration period.

Correlation between the indices and Pareto-optimal parameters is quantified in terms of
Pearson (Osuch et al., 2014) and Spearman (Merz et al., 2011) correlation coefficients.
Considered indices are known to be correlated (e.g. mean and maximum precipitation
depths), therefore principal component analysis (PCA) should be performed prior to
correlation assessment. However, aim of this analysis is not to derive regression models,
but to inspect for period characteristics that Pareto-optimal parameters may be sensitive
to. Higher correlation coefficient indicates higher importance of a particular hydro-
meteorological characteristic (according to Christiaens & Feyen (2002), correlation
coefficients may be used to estimate sensitivity). Additionally, impact of a particular
hydro-meteorological characteristic is quantified in terms of variable importance, which
is obtained by applying bootstrap aggregating (“tree bagging”) metamodel with 200

decision trees!®.

16 The number of trees is selected after decrease in model error.
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Table 14. Hydro-meteorological indices considered in the analysis of the parameter

variability

Meteorological

. Description
variable p

Precipitation-related indices

Procan_daity [mm] Mean daily precipitation depth over a calibration period

Mean daily precipitation depth during rainy days in a calibration period. A day is

Prncan_ainy [m0m ] considered to be rainy if daily precipitation depth exceeds 0.1 mm.

Prax [mm] Maximum daily precipitation depth in a calibration period
StdP [mm] Standard deviation of daily precipitation depths in a calibration period
Mean 30-days antecedent precipitation index.

API is calculated by applying the equation (Berthet et al., 2009; Kohler & Linsley,
1951; Raghunath, 2006):

t
API(H=> K" P

API30 [mm] i=0
Parameter ¢ denotes the number of days in a period that AP/ is estimated over (30
days), while K may take value from 0.85 to 0.98. API30 is estimated for every day
of a calibration period with K = 0.9, and the API30 value is obtained by averaging
API30 over an entire calibration period.
The same method is applied for estimating other antecedent indices.

API5 [mm)] Mean 5-day antecedent precipitation index in a calibration period
N, rainy_days [‘]

Temperature-related indices

Number of rainy days in a calibration period, normalised with respect to the
calibration period length

Tnean_daity [°C] Average mean daily temperature in a calibration period

Tmin [°C] Minimum mean daily temperature in a calibration period

Tmax [°C] Maximum mean daily temperature in a calibration period

StdT [°C] Standard deviation of mean daily temperature in a calibration period
ATIS [°C] Mean 5-days antecedent temperature index over a calibration period
ATI30 [°C] Mean 30-days antecedent temperature index over a calibration period

Number of ice days in a calibration period, normalised with respect to the
calibration period length.

* As sub-daily data are not available, in this research a day is considered an ice day
if mean daily temperature does not exceed 0°C.

PETmean_daity [mm]  Mean daily PET rate over a calibration period

]viceidays [']

Hydrologic variables

Omean [M3 /5] Mean daily observed flow over a calibration period

2.4.3. Impact of the objective functions on temporal variability in the Pareto-

optimal parameters

To assess impact of the combination of objective functions used for model calibration on
the parameter temporal variability, semi-lumped BASIC version of the model is

calibrated using several different combinations of the objective functions (hereafter
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referred to as calibration strategies). The calibration strategies considered are listed in
Table 15, while the definitions of particular objective functions are given in the chapter
1.3.3. Note that the number of strategies is limited, because the multi-objective calibration
requires mutually “conflicting” objective functions (chapter 1.3.5) and not highly

correlated ones.

The model is calibrated over all overlapping 5-year long periods, with one water year of
model warm-up prior to every simulation. Prior parameter ranges and the AMALGAM

parameters are kept constant, regardless of the calibration strategy employed.

The parameter identifiability and model performance for given different calibration

strategies are evaluated along with the consistency in parameter estimates.

Table 15. Calibration strategies considered in this research

Calibration Number of

. Objective functions used for the model calibration
strategy ~ obj. funct.

1 2 Nash-Sutcliffe for flows and volume error

2 2 Nash-Sutcliffe for flows and log-transformed flows

3 2 Kling-Gupta efficiency and volume error

4 2 Coefficient of determination and volume error

5 2 Root mean square error based on high and low flows (Fenicia et al. 2007)
6 2 Heteroskedastic maximum likelihood estimator and root mean square error
7 3 Nash-Sutcliffe for flows and log-transformed flows, and volume error

2.4.4. Impact of the model structure on temporal variability of the Pareto-optimal

parameters

To enable analysis of the model structural complexity impact on the consistency in
parameter estimates, four versions of the 3DNet-Catch model are developed and

presented in chapter 2.1.2.

The models are calibrated over 5-year long overlapping periods, with one water year of
model warm-up preceding every calibration period. The model is calibrated using NSE
and VE as objective functions and using the same AMALGAM parameters for all model
structure versions. Calibration of the semi-lumped model versions is described in chapter
2.3.1, while the regularisation method applied for calibration of the fully-distributed

model version is elaborated in chapter 2.3.2. Prior parameter ranges in this analysis vary
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with the model structure, and they are specified in Appendix A. As for the distributed
model version, the spatial parameter fields are represented by super-parameters, which
are optimised. Consequently, the consistency analysis of this model version is based on

the optimised super-parameters.

In addition to the parameter variability with the calibration period, parameter

identifiability and model performance are analysed as well.

2.5. Assessment of temporal consistency in parameter estimates and in

the model performance

Dynamic multi-objective model calibration results in an ensemble of the Pareto-optimal
parameter sets for each calibration period. As a result of the adopted convergence
criterion for the AMALGAM algorithm, number of the Pareto sets in the ensemble varies

with the calibration period.

Distribution of the Pareto-optimal parameter values describes the parameter variability
for each parameter and each calibration period (or uncertainty due to calibration period)!”.
Central tendency and dispersion measures of this distribution are analysed. The median
is preferred over the arithmetic mean as the central tendency measure due to its resistance
to presence of outliers (Kottegoda & Rosso, 2008), while the parameter dispersion in the
calibration period is quantified in terms of the information content (/C) value. The latter

is estimated following the approach presented by Wagener et al. (2003):

A

IC=1- |:0norm, 975 _énorm, 2.5] (2.5.1)

and ¢ denote 2.5 and 97.5™ percentiles of the distribution of the

norm, 2.5

where 9

norm, 97.5

~

normalised Pareto-optimal parameters 6,

norm >

respectively. This statistic also enables

quantifying the parameter identifiability: the narrower the optimised parameter range, the

larger is the /C value and the parameter identification is better.

17 Here, the term “uncertainty” is used in a broader sense.
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The parameter values may differ for several orders of magnitude (e.g. sub-surface soil
layer thickness in millimetres and effective porosity in fraction between 0 and 1). The
normalisation enables comparison among different parameters because the normalised
parameters take values from O to 1 regardless of their prior ranges (Vrugt et al., 2006;
Luo et al., 2012). The optimised parameters Gparero are therefore normalised with respect

to the lower and upper bounds Gviv and Guax of the prior parameter range:

A

17 -6
 orm = PARETO MIN (252)
HMAX - QMIN

During calibration, the parameter values are sampled from the uniform probability

distribution with bounds Gvmn and Gviax.

To illustrate the overall sensitivity of the Pareto-optimal parameters to calibration period
and the changes in parameter identifiability, medians and /C statistic of the normalised

parameters are presented in multi-temporal graphs (e.g. Hannaford et al. 2013).

Temporal parameter variability is quantified in terms of standard deviation St,; of the
ensemble medians Me; (6i), where j denotes calibration period (j =1, 2, ..., Ncal) from Neal
calibration periods, and i refers to the i model parameter. On the other hand, standard
deviation Su prior, i f all initially sampled values of the i parameter from the prior uniform

distribution is (e.g. Kottegoda and Rosso 2008):

HMAX i _HMIN i
Su_prior,i == /ﬁ (2.5.3)
This standard deviation describes initial variability of a parameter. If the optimised
parameters significantly vary with the calibration period, standard deviation St of the
temporal parameter variability is expected to exceed the initial variability and vice versa.
Therefore, parameter temporal consistency is estimated in terms of ratio of these two

standard deviations S;, ;, and Su_prior, i

t S (2.5.4)
Hi_S O

u_prior, i

This ratio enables estimating the parameter variability in time compared to its initial
uncertainty (Vrugt et al., 2008). Smaller ratio indicates more consistent parameter

estimate. Values greater than one suggest that the uncertainty due to calibration period
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exceeds initial uncertainty, i.e. that the parameter is rather sensitive to calibration period.
The ratios estimated for the calibration periods of increasing lengths are used to inspect
whether an increase in the calibration period length leads to more consistent parameter

estimates.

Additionally, parameter variability with calibration period is quantified in terms of
standard deviation of the median values of the normalised Pareto-optimal parameters,
St, norm, Obtained from all calibration periods of given length. The values of St norm,
calculated for periods of increasing length indicate whether the parameter sensitivity

decreases with an increase of the calibration period length.

Along with the parameter estimates and /C statistic variability in model performance is
analysed. Model performance is quantified in terms of medians of the objective functions
and evaluation criteria (chapter 2.4) obtained from the Pareto-optimal ensemble. In
addition, performance of the Pareto-optimal ensembles is quantified in terms of p-factor
and r-factor. The former represents per centage of observations within the 95% prediction
band (95PPU), while the later quantifies relative width of the 95PPU (Schuol and
Abbaspour, 2006; Yang et al., 2008; Zhang et al., 2011):

1 n
o Z(QSIM,W.S% _QSIM,Z.S%)
r_factor = —=1 (2.5.5)
%0
OBS

At any point in time 95PPU is calculated as a difference between the predicted variables
(simulated flows) corresponding to 2.5™ and 97.5™, respectively. Target value of p-factor
is one, whereas r-factor should approach zero (Zhang et al., 2011). Bastola et al. (2011)

referred to the p-factor as the “count efficiency”, .

Correlation between hydro-meteorological indices (Table 14) and median values and /C
statistic of the Pareto-optimal parameters is quantified in terms of the Pearson and
Spearman correlation coefficients (chapter 2.4) which are calculated according to all

calibration periods.

Impact of the objective functions on the variability in Pareto-optimal parameters, the /C

statistic and overall model performance is analysed by calibrating the model over 5-year

115



long periods using different combinations of objective functions (chapter 2.3.1).
Parameter variability is quantified in terms of S i / Su_prior for each calibration strategy.
Along with this ratio, mean values of the /C statistic and model performance measures
over all 5-year long calibration periods are calculated. Model performance is quantified
in terms of mean number of the Pareto sets, median values of NSE, VE and NSElogo and

p- and r-factors.

Impact of the model structural complexity on consistency in parameter estimates, values
of IC statistic and model performance is assessed analogously with the impact of the

objective functions.

2.6. Catchments and data

The methodology outlined in the previous chapters does not discriminate between
parameter variability stemming from the properties of the calibration period and
variability due to anthropogenic effects (e.g. changes in land use type, deforestation or
afforestation, river training measures, etc.). To isolate variability with the calibration
period, only catchments that have not undergone human-induced changes are considered

in this research.

Since daily data (precipitation depths, temperatures and flows) are made available for
purposes of this research, areas of the catchments considered should be sufficiently large
to enable hydrologic simulations using daily time step. On the other hand, catchment area
should be sufficiently small to allow approximation of the catchment response by semi-

lumped models.

Three catchments in Serbia are found to meet these requirements: the Toplica, Kolubara
and Mlava River catchments (Figure 32 and Table 16). Selected rivers belong to the
Danube River basin. Stream gauges at these rivers are selected according to length of the
hydrologic record periods and reliability of the observations. Selected stream gauges are

presented in Table 16.

116



a ODunav

O sava

3 O Kolubara

O velika Morava

O Juina Morava

O Zapadna Morava

vi S O Timok
- O Drina
0O Beli Drim
grad O Egejsko more
$ oS sl “'ﬂﬂ
|\ c
The Kolubara N
cRan“c{:lzment ; = 5 ZG.\}':“‘ The Mlava River
NN catchment
ljeve
 — :th
&, .
Q o~ )
.-\H I'IE S
W~ \
vy y
¢ N\ & The Toplica
S ~ \/ River catchment
Priti f&\_

Figure 32. Major catchments in Serbia (Republic Hydrometeorological Service of

Serbia). Three catchments considered in the research are highlighted.

Table 16. Properties of the stream gauges considered in this research

River Stream Drainage area Distance from the Beginning o'f the record
gauge [km?] confluence [km] period
Kolubara Slovac 995 88 1954
Toplica Doljevac 2052 2.5 1950
Mlava Veliko Selo 1277 48.2 1986

2.6.1. The Toplica River catchment upstream of the Doljevac stream gauge

Catchment description

The Toplica River drains into the Juzna Morava River. The catchment of 2052 km? is
situated in the southern Serbia. Topography of this catchment ranges in elevation from
193 to 1996 m.a.s.l.,, with mean catchment elevation of 621.82 m.a.s.l. (Figure 33 and
Figure 34). Forests are dominant land use type at the catchment, while less than 1% of

the total area is urbanised (Figure 35). Prevailing soil types in the catchment (Figure 36)
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are smonitza soils (hydrologic soil group D) and acid, brown and podzolic soils
(hydrologic soil group B). Remaining soils also belong to hydrologic soil group B
(Djorkovi¢, 1984). Sandstones prevail, and there is no karst in the catchment (Figure 37).

N
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Figure 33. Topographic map of the Toplica River catchment.
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Figure 34. Hypsometric curve for the Toplica River catchment.
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Figure 35. Land use types in the Toplica River catchment (CORINE 2006).
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Figure 36. Soil types in the Toplica River catchment.
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Figure 37. Geological structure of the Toplica River catchment: al — alluvium;
J — serpentinites; Ki, 2 — siltstone, sandstone and marl; K2 — siltstone, marl and marly
limestone; M,Pl — upper Miocene and Lower Pliocene clastics; Pr — magmatites;

Pz — marbles.
Data

Gauging stations used for simulation of runoff from this catchment (Figure 33) are
presented in Table 17. Elevation of stream gauges refers to the zero datum of the staff

gauge. Meteorological stations that are not situated within the catchment area are shaded.

Due to numerous gaps in the record from the Kopaonik meteorological gauge,
observations prior to 1980 are discarded. Hence, only observations made from 1980 to
2013 are used for runoff simulations (water years: 1% of October 1980 to 30" of
September 2013). There are gaps in precipitation (2.3% of the observations) and
temperature data (2.8% of the observations) at the Prokuplje station. Missing data are
estimated using multiple linear regression and observations from the Ni§ and KurSumlija

stations (correlation coefficient is 0.65 for precipitation depths and 0.99 for temperatures).
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Mean catchment precipitation depths, temperatures and reference altitude of the
meteorological stations are estimated by employing a weighting method (chapter 2.1.2).
Thiessen polygons and weights of the stations are given in Figure 38 and in Table 18.

Reference altitude is the mean catchment elevation of 488.9 m.a.s.1.

Table 17. Hydro-meteorological stations available for runoff simulation at the Toplica

River catchment (RHMSS).

. . Elevation . . . Mean observed
Station Variable [m.asl] Latitude = Longitude Record period value (1980-2013)
Doljevac Q 19041 43°11°  21°49°  1954-2013 8.77 [m/s]
977.9
Kopaonik P, T 1711 43°17°  20°48°  1967-2013 [mm]
3.7[°C]
Kursumlij P, T 383 43°08°  21°16°  1961-2013 631.1 [mm]
ursumilja N 104 [OC]
Prokuplj P,T 266 43°14>  21°36°  1951-2013 549.9 [mm]
roxuple ’ 109 [°C]
. 576.6 [mm]
Nis P, T 204 43°20°  21°54°  1947-2013
' ’ 11.9 [°C]

Legend

M Meteorological Station
* Stream gauges

[ Toplica_Thiessen polygons

Figure 38. Thiessen polygons for meteorological stations in the Toplica River catchment.
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Table 18. Weights of the meteorological stations in the Toplica River catchment.

Meteorological station Area [km?] weight ®
Kopaonik 223.87 0.109
KurSumlija 1158.92 0.563
Prokuplje 671.24 0.326
Ni§ 4.36 0.002

Hydrometeorological regime

Annual precipitation depths and mean annual temperature are presented in Figure 39.
Mean annual flows and estimated annual runoff coefficients (ratio of total annual runoff

to annual precipitation depth) are given in Figure 40.

The observed series are tested for presence of trend. Pearson and Spearman correlation
coefficients are calculated, along with the p values of the regression slopes (probabilities
of the statistics'®) and presented in Table 19. The values of p less than 0.025 or greater
than 0.975 (two-sided test, 95% confidence interval) indicate statistically significant trend
in series. The results indicate an increasing trend in mean annual temperatures (shaded

cells) and absence of statistically significant trends in other series.

The long term mean flow at the Doljevac stream gauge is 8.77 m’/s (Table 17) and mean
water yield of the catchment amounts to 4.27 L s! km. According to the flow duration
curve (Figure 41) median flow is 5.3 m?/s. Intra-annual distribution of flows (Figure 42)
shows distinct seasonality: the highest monthly flows (~20 m?/s) occur in April (snowmelt
and rainfall on the saturated soil), while low flows (~3 m?/s) are observed in the late
summer and early autumn. High flows exhibit wider dispersion around expected values
(50" percentile). Annual runoff coefficient in the simulation period varies from 0.11 (in
1994) to 0.35 (in 2006), as shown in Figure 40. Mean annual runoff coefficient in this

period amounts 0.21.

18 As for Pearson correlation coefficient, p value is obtained as the probability of £ statistic (linear regression

slope test), which can be approximated by Student distribution.
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Intra-annual distributions of precipitation and temperature are presented in Figure 43 and
Figure 44, respectively. Temperature follows a distinct pattern, with the highest
temperatures being observed in August, and lowest in January and February. Unlike high
temperatures, low temperatures deviate significantly from the median values. Minimum
monthly precipitation depths are observed in September (~40 mm) and maximum during
June and July (somewhat greater than 60 mm). Extreme values widely diverge from the

median values and show no clear pattern.

Precipitation and temperature gradients with elevation are presented in Figure 45 and
Figure 46, respectively. These gradients are estimated for every year without gaps in the
observations. The gradients are assessed according to annual precipitation depths and
mean annual temperatures observed at each meteorological station, and the station
altitude. Temperature decreases with elevation for approximately 0.5°C / 100 m, while
precipitation increases with elevation from ~2.5% to ~6.5% per 100 m. In this catchment
annual precipitation depths and mean annual temperatures have rather strong correlation

to elevation (correlation coefficient exceeds 0.8).

Table 19. Trends in annual precipitation depths, mean annual temperatures and flows, and

annual runoff coefficients in the Toplica River catchment (1980-2013).

Pearson Spearman
VARIABLE
rho p value rho p value
Precipitation [mm] 0.14 0.43 0.17 0.34
Temperature [°C] 0.58 3-10* 0.55 8:104
Flow [m? /s] -0.09 0.59 -0.12 0.48
Runoff coefficient [/] -0.22 0.21 -0.18 0.31
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Figure 39. Annual precipitation depths and mean annual temperatures at the Toplica river catchment.
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Figure 40. Mean annual flows and annual runoff coefficient at the Doljevac stream gauge.
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Figure 41. Flow duration curve derived from observed daily flows at the Doljevac stream

gauge from 1980 to 2013.
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Figure 42. Intra-annual distribution of flows observed at the Doljevac stream gauge.
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Figure 43. Mean monthly precipitation depths in the Toplica River catchment.
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Figure 44. Mean monthly temperatures in the Toplica River catchment.
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2.6.2. The Mlava River catchment upstream of the Veliko Selo stream gauge
Catchment description

The Mlava River drains into the Danube. The catchment area of 1255 km? ranges in
elevation from 93 m.a.s.l. to 1333 m.a.s.l. (Figure 47), with mean catchment elevation of
366.33 m.a.s.l. (Figure 48). As shown in Figure 49, less than 2.5% of the catchment area
is urbanised, while the forests and agricultural land prevail. Soil types at this catchment
are presented in Figure 50. With exception of smonitza soils, which belong to hydrologic
soil group D, soil types in the catchment are of hydrologic group B (Djorkovi¢, 1984).
Geological structure of the catchment (Figure 51) indicates presence of karst in the upper

(southern) parts of the catchment.
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Crni Vrh

Figure 47. Topographic map of the Mlava River catchment.
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Figure 48. Hypsometric curve for the Mlava River catchment.
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Figure 49. Land use types in the Mlava River catchment (CORINE 2006).
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Figure 50. Soil types in the Mlava River catchment.

Veliko Selo

Figure 51. Geological structure of the Mlava River catchment: al — alluvium; Jz — clastic
and carbonate rocks; J3 — massive, most frequently reef limestone; J, K — limestone; Moz,
3 — sandstones. sands and clays (Middle-Upper Miocene); M3 — sandstones, sands and
clays (Upper Miocene); M, Pl — limnic sediments; P — red sandstones; T2 — limestone

(Middle Triassic).
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Data

Properties of the gauging stations used for runoff simulation at the Mlava river catchment
(Figure 47) are given in Table 20. Although observations from the Smederevska Palanka
and Veliko Gradiste meteorological gauges are not used for runoff simulations, they

facilitated assessing precipitation and temperature gradients with elevation.

There are few gaps in the observations (0.3% of missing data in daily precipitation series
and in mean daily temperatures form the Pertovac meteorological station). These gaps are
filled using (multiple) linear regression (correlation coefficient 0.6 for precipitation
depths, and 0.98 for temperatures). Thus, full hydrologic record period is used for runoff
simulations (1% of October 1987 to 30" of September 2013).

Mean precipitation depths and temperatures over the catchment are estimated form the
observations form the Crni Vrh, Zagubica and RC Petrovac meteorological gauges

(Figure 52, Table 20). Reference altitude of these gauges (zms) amounts 346.9 m.a.s.1.

Table 20. Hydro-meteorological stations available for runoff simulation at the Mlava

River catchment (RHMSS).

. . Elevation . . Available data ~ Mean observed
Station Variable [m.as.l] Latitude  Longitude form value (1987-2013)
Veliko Selo Q 92.55 44°30° 21°18° 1987 7.5 [m/s]
688.2 [mm]
RC Petrovac P, T 282 44°20° 21°20° 1972
11.8 [°C]
, 614.8 [mm]
Zagub P, T 314 44°12° 21°47° 1972
agubica 10.3 [°C]
Crni Vrh P,T 1027  44°08° 21°58° 1981 780 [mm]
6.9 [°C]
611 [mm
ST g 121 44°22°  20°57° 1985 e
Palanka 11.8 [°C]
659.7 [mm]
Veliko Gradiste P T 80 44 °45° 21°31"° 1985
11.6 [°C]
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Figure 52. Meteorological stations and Thiessen polygons in the Mlava River catchment.

Table 21. Weights of the meteorological stations in the Mlava River catchment.

Meteorological station Area [km?] weight ®
RC Petrovac 592.3 0.464
Zagubica 599.9 0.469
Crni Vrh 85.6 0.067

Hydrometeorological regime

The analysis of (hydro) meteorological regime at the catchment, with exception of
changes in precipitation and temperatures with elevation, is based on the observations

from three stations that are used for runoff simulations.

Annual precipitation depths and mean annual temperatures at the catchment are presented
in Figure 53. Mean annual flows and estimated runoff coefficients are given in Figure 54.
Mean value of the annual runoff coefficient amounts to 0.28, although there are

significant variations (from 0.13 to 0.51).

These series are tested for presence of trend. Pearson and Spearman correlation

coefficients, along with the p values of the regression slopes are given in Table 22.
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Statistically significant trend is detected only in mean annual temperatures (95%

significance level).

Mean flow at the Veliko Selo stream gauge is 7.5 m?/s (Table 20), that is, specific water
yield at the catchment amounts to 5.9 L s'! km™. Median daily flow is 4.1 m%/s (Figure
55). Intra-annual distribution of flows (Figure 56) exhibits clear seasonality: the highest
flows occur in April (somewhat less than 15 m’/s), while the lowest flows occur in
September and October. There are significant departures of 97.5" percentile form the

expected values in the low-flow period, unlike remaining percentiles.

Intra-annual distributions of precipitation and temperature are presented in Figure 57 and
Figure 58, respectively. There is distinct seasonality in temperatures: highest
temperatures are observed in August, and lowest in January. The largest dispersion is
observed during December and March. Highest precipitation depth are observed in June
(~70 mm) and the lowest in January (~35 mm). Maximum values (97.5" percentile)

substantially deviate from the expected ones, without revealing any clear pattern.

Precipitation and temperature gradients with elevation are given in Figure 59 and Figure
60, respectively. These gradients are estimated from the observations from five
meteorological stations (Table 20). The precipitation or temperatures gradient with
elevation are calculated only over the years with complete records. Decrease in mean
annual temperature with elevation (from 0.47 to 0.68 °C / 100 m) is nearly constant in
time. As for annual precipitation depths, no apparent pattern emerges. Namely,
precipitation decrease with elevation is detected in some years. This may be attributed to
topographic impact on precipitation — significant heterogeneity in precipitation depths, or

poor data quality.

These gradients are important for assessment of prior values of corresponding parameters
of the 3DNet-Catch model (a and Tiapse). As for prior ranges of the parameter a, only

gradients with high values of the Pearson correlation coefficient are considered.
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Figure 53. Annual precipitation and mean annual temperatures in the Mlava river catchment.
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Figure 54. Mean annual flows and annual runoff coefficients at the Veliko Selo stream gauge.
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Table 22. Trends in annual precipitation depths, mean annual temperatures and flows, and

annual runoff coefficients at the Mlava river catchment (1987-2013).

Pearson Spearman
VARIABLE
rho p value rho p value
Precipitation [mm] 0.16 0.419 0.24 0.232
Temperature [°C] 0.51 6:107 0.57 2-1073
Flow [m3 /s] 0.38 0.054 0.27 0.179
Runoff coefficient [/] 0.37 0.06 0.31 0.12
1000
100
mE 10
£
o
1
0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative duration []

Figure 55. Flow duration curve derived from observed daily flows at the Veliko Selo
stream gauge.
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Figure 56. Intra-annual distribution of flows observed at the Veliko Selo stream gauge.
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Figure 57. Total monthly precipitation depths in the Mlava River catchment.
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Figure 58. Mean monthly temperatures in the Mlava River catchment.
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Figure 60. Temperature gradients with elevation in the Mlava River catchment: slope of
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2.6.3. The Kolubara River catchment upstream of the Slovac stream gauge

Catchment description

The Kolubara River is a tributary of the Sava River. Entire catchment area amounts to
3639 km?, but area upstream of the Slovac stream gauge is 995 km?. Elevation ranges
from 122 to 1331 m.a.s.l. (Figure 61) and mean elevation is 444.9 m.a.s.l. (Figure 62).
Less than 1.5% of the catchment area is urbanised, while forests and agricultural land
prevail (Figure 63). Parapodzol and parapodzoloic soils (hydrologic soil group C) are
dominant in the catchment (Figure 64). Acid brown and podzolic soils (group B) and
smonitza (group D, Djorkovi¢ 1984) are present to a lesser extent. There is karst in the

southern part of the catchment (Figure 65, Dimitrijevi¢ et al. 1975).
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Figure 61. Topographic map of the Kolubara River catchment.
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Figure 62. Hypsometric curve for the Kolubara River catchment.

Legend

[T Continuous urban fabric
[ Airports
I Broad-leaved forest
777 complex cultivation patterns
Il Coniferous forest
"< Green urban areas
Industrial or commercial units
[ Land princiaplly occupied by agriculture
Mixed forest
= Natural grasland
. Non-irrigated arable land

B Transitional woodland shrub

Figure 63. Land use types in the Kolubara River catchment (CORINE 2006).
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Figure 64. Soil types in the Kolubara River catchment.

Figure 65. Geological structure data of the Kolubara River catchment: al — alluvium;

J — serpentinites; K2 — limestone with marls; M, Pl — marls, clays, bituminous clays and
gravels; Pz — amphibolite, schists, granite-gneiss, phyllite-ricaschists and calcschists;
T1 — limestone, quartz-conglomerate, quartz-sandstone and quartzite; T2, 3 — limestone

(upper and middle Triassic).
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Data

Only observations from the Valjevo meteorological station are used for runoff
simulations at this catchment (Table 23). There are few gaps in daily precipitation time
series (0.7% of the observations, from 1988 to 1990). Missing values are assessed using
linear regression and data from Valjevo RC rain gauge (correlation coefficient of 0.85).
In addition to considerable length of the record period (60 water years), flow observations
are considered of good quality. Namely, Slovac cross section has been relatively stable
for decades (small fluctuations in the cross-section geometry due to riverbed erosion or

deposition), resulting in reliable rating curve.

Table 23. Hydro-meteorological stations available for runoftf simulation at the Kolubara

River catchment (RHMSS).

. . Elevation . . Available Mean observed
Station Variable [m.as.l] Latitude  Longitude data form  value (1954-2013)
Slovac Q 121.59 44°22° 20°13° 1954 9.8 [m?/s]

790.1
Valjvo P, T 176 44°17°  19°55° 1951 [mm]
11.3 [°C]

Hydrometeorological regime

Annual precipitation depths and mean annual temperatures are presented in Figure 66.

Mean annual flows and estimated annual runoff coefficients are given in Figure 67.

These series are tested for trend. The p-values of the regression slopes coefficients (Table
24) suggest presence of statistically significant increasing trend in temperature at the 95%
significance level (shaded cells in the table) and absence of the statistically significant

trend in precipitation and flows.

Mean annual flow at the Slovac stream gauge is 9.8 m’/s (Table 23), i.e. specific water
yield from the catchment amounts to 9.87 L s™! km. According to the flow duration curve
(Figure 68), median observed daily flow is 5.7 m®/s. Intra-annual distribution of flows
(Figure 69) exhibits seasonality in all percentiles considered. High flows are observed
from February to April (~13 m’/s) and low flows from August to October (~3 m?/s).

Annual runoff coefficient varies from 0.24 to 0.66, with mean value of 0.39.
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Intra-annual distributions of monthly precipitation depths and mean monthly temperature
are presented in Figure 70 and Figure 71, respectively. Highest precipitation depths and
deviations from expected values are observed in the summer (e.g., mean precipitation
depth in June amounts to ~80 mm) and lowest precipitation are observed in February
(~45 mm). Mean monthly temperatures exhibit pronounced seasonality: maximum
temperatures are observed in August (~23 C°) and the lowest in January (~1C®). Largest

departures form mean values (up to 8°C) are observed in winter.

Precipitation gradient with elevation is estimated using data from four additions rain
gauges over 19 years (1969-1974; 1979-1984; 2005-2011). These rain gauges are:
Koceljeva (130 m.a.s.l.), Ljig (150 m.a.s.l.), Brezdje (340 m.a.s.l.) and Majinovi¢ (400
m.a.s.l.) (Todorovi¢ and Plavsi¢, 2014). The gradient varies substantially (Figure 72),
which may indicate significant spatial heterogeneity of precipitation depths or poor
quality of the precipitation data. Only gradient values with high positive correlation
coefficient are taken into account to estimate prior ranges of parameter a. As temperature
data from other meteorological stations have not been available, initial range for Tlapse is

adopted based on the temperature gradients estimated for other two catchments.
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Figure 66. Annual precipitation depths and mean annual temperatures in the Kolubara river catchment.
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Figure 67. Mean annual flows and annual runoff coefficients at the Slovac stream gauge.
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Table 24. Trends in annual precipitation depths, mean annual temperatures and flows, and

annual runoff coefficients in the Kolubara river catchment (1954-2013).

Pearson Spearman
VARIABLE
rho p value rho p value
Precipitation [mm] -0.11 0.42 -0.07 0.62
Temperature [°C] 0.61 2.6:107 0.55 4510
Flow [m? /s] -0.22 0.09 -0.22 0.09
Runoff coefficient [/] -0.26 0.04 -0.25 0.05
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Figure 68. Flow duration curve derived from observed flows at the Slovac stream gauge.
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Figure 70. Intra-annual distribution of precipitation at the Valjevo meteorological station.
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Figure 71. Intra-annual distribution of precipitation at the Valjevo meteorological station.
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Figure 72. Precipitation gradients with elevation in the Kolubara River catchment: slope

of the linear regression and the correlation coefficient in various water years.

The catchments considered are shown to be unaltered in terms of land use types. Since
no river training measures have been imposed to the watercourses flow observations are
homogenous, what is confirmed by the linear slope test. However, increasing trend in

temperatures is detected for all three catchments.
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3. RESULTS AND DISCUSSION
3.1. Application of the 3DNet-Catch hydrologic model

3.1.1. Sensitivity analysis and correlation among parameters

In this research, parameter sensitivity is estimated by employing regression based
sensitivity analysis, which is based on the multiple regression between the parameters and
two objective function values (chapter 2.3.3), namely Nash-Sutcliffe efficiency, NSE and
the volume error, VE. However, validity of the linear metamodel(s) has to be confirmed
prior to application for the sensitivity analysis. Goodness-of-fit of the metamodel is
quantified in terms of coefficient of determination, while maximum variance inflation
factors (VIFmax) are estimated to test the metamodel for multicollinearity. According to
Christiaens and Feyen (2002), if VIFmax exceeds 10, linear regression metamodel should
be discarded. As for determination coefficient, Pan et al. (2011) do not recommend

application of the linear metamodel if R? is less than 0.7.

Values of these measures are given in Table 25. All metamodels based on VE meet criteria
for both measures, while NSE-related metamodels result in a small R? value. Despite
relatively low R? values for the NSE-based metamodels, they are nevertheless kept in the
analysis for two reasons: firstly, NSE depends on model’s ability to reproduce dynamics
of the catchment response, and it is crucial to detect parameters in control of this aspect
of the model; secondly, the aim of this sensitivity analysis is to identify the most sensitive
parameters, and not to accurately estimate the standardised regression coefficients (SRCs)
per se. Thus, the NSE-based metamodel is considered eligible for purposes of such

sensitivity analysis.

Table 25. Coefficients of determination and maximum variance inflation factors for

regression between the model performance measures and the parameters

CATCHMENT
Measure -
Kolubara Toplica Mlava
R? - NSE 0.34 0.56 0.48
R2-VE 0.7 0.89 0.82
VIFmax 1.26 1 1.46
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In addition to the validity of the linear metamodels, correlation among the model
parameters has to be examined prior to the sensitivity analysis. According to Christiaens
and Feyen (2002), if the strong correlation among model parameters is present, SRCs
obtained for different model parameters cannot be mutually compared. Pearson and
Spearman correlation coefficients among model parameters (one hundred best parameter
sets out of 25.000 sampled ones, NSE values range from 0.41 to 0.62) are given in Figure
73. These graphs demonstrate a lack of especially linear correlation) among one hundred
behavioural parameters. Spearman correlation coefficients tend to be somewhat larger
than the Pearson ones, although they also take rather small values. The results of the

sensitivity analysis may therefore be considered reliable.

The results of the sensitivity analysis, i.e. SRCs with respect to NSE and VE, are presented
in Figure 74 and Figure 75, respectively. Their values are given in the Appendix C along
with the correlation coefficients (LCC). According to Christiaens and Feyen (2002) ratios
between LCC and SRC that are approximately equal to 1 indicate absence of strong linear
correlations among model parameter. As shown in Appendix C, these ratios are
approximately one for majority of the model parameters. The results of the sensitivity

analysis obtained for three catchments are quite consistent and they suggest the following:

- Parameter o is indicated as the most sensitive parameter, and soil porosity,
thickness and hydraulic conductivity of the subsurface soil layer (Dsub-surf and Ksub-surf) and
maximum Leaf Area Index (LAImax) are indicated as highly sensitive with respect to both

objective functions.

— Other soil-related parameters, such as thickness and hydraulic conductivity of the
surface soil layer, wetnesses at permanent wilting point and at field capacity, and pore-
size distribution index are also shown to be sensitive with respect to both objective

functions but to lesser extent compared to the above.

- Another parameter of the interception routine CANmax is proven to be relatively

insensitive with respect to both objective functions.
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Figure 73. Pearson (upper panels) and Spearman correlation coefficients (lower panels) among 100 behavioural parameter sets for the

Kolubara (left panels), Toplica (mid panels) and Mlava River catchments (right panels).
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— The linear reservoirs coefficients (especially Kd) are indicated as fairly sensitive
with respect to NSE and insensitive with respect to VE. Having in mind that the reservoir
coefficients are in control of hydrologic response dynamics rather than the overall water
balance, such outcome of the sensitivity analysis is expected. The SCS curve number
(CN) displays some sensitivity with respect to NSE. The parameter CN determines the
effective precipitation and, consequently, amount of direct runoff, thus implicitly
affecting dynamics of catchment response. However, the sensitivity of this parameter is

considerably smaller than the sensitivity of the reservoir coefficients.

— Parameters of the snow routine are shown to be insensitive. However, parameter
sensitivity varies in time (e.g. Sieber & Uhlenbrook, 2005; Muleta, 2012) so these results
should be interpreted with caution. Snow-related parameters can exhibit higher sensitivity

in the snowmelt season, as shown in Figure 76.

- Other parameters, such as initial abstraction /a1, or baseflow-related parameters
of the response routine (qd, ¢, smax) exhibit negligible sensitivity. The lack of sensitivity
in the latter parameters with respect to VE may be attributed to the fact that these
parameters are not in control of water balance, but dynamics of the baseflow. As for NSE,
it is primarily determined by agreement between simulated and observed high flows.
However, sensitivity of these parameters with respect to another objective function that
is less biased to high flows may be higher, since the results of the sensitivity analysis
heavily depend on the objective function against which the sensitivity is estimated. For
example, Figure 77 presents SRCs estimated according to NSE values obtained from the
log-transformed flows (NSEiog0). The results reveal more uniform SRC values, implying
that these parameters may not be insensitive when it comes to simulations of low flows.
However, validity of the NSElogo linear metamodel is questionable (R*=0.002), so these

results are not taken into account in this research.

Despite the overall consistency, the results are somewhat catchments specific. For
example, correlation of parameters A and bmelt, 6 with NSE is statistically significant only
for the Kolubara River catchment, or correlation between /larel and both objective

functions is significant only for the Mlava River catchment. These discrepancies are
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negligible, because the sensitivity of those parameters is generally rather small for all

catchments.

Generally, the results of the sensitivity analysis clearly indicate five parameters as the
most sensitive: namely, o, Dsub-surface, porosity, Ka and LAImax (e.g. these five parameters
explain 51% of variations in NSE at the Toplica River catchment in 1988-2013). The
results of the sensitivity analysis are supported by the hydrographs presented in Appendix
B, which are obtained using the minimum and maximum values of the plausible
parameter ranges. Sensitive parameters substantially affect hydrographs, while the impact

of the insensitive parameters is marginal.

Correlation among parameters that are sampled for purposes of the sensitivity analysis is
has proven to be weak; however, these results should be interpreted with caution. Namely,
the parameter sets, which the sensitivity analysis is based on, are randomly sampled, and
therefore scattered all over the parameter hyper-space. However, when it comes to the
optimised sets (including the Pareto-optimal parameters), they converge to a narrow
“basin” of the response surface. Due to specific properties of such regions (e.g. Duan et
al., 1992), these parameters may be expected to exhibit stronger correlations (Vrugt et al.,
2006). For example, correlation coefficients among optimised model parameters (100
sampled parameter sets, 20.000 generation, with NSE and VE objective functions)
obtained over the same period (1988-2013) are presented in Figure 78. These results
indicate much stronger correlations for the Kolubara River catchment, while the
correlation among parameters which refer to the Toplica River catchment remained weak.
Some of these correlation coefficients exceed 0.75, indicating strong correlation (Blasone
et al., 2007). High correlation coefficients may be found even among the most sensitive
model parameters. These results suggest that the analysis of the Pareto-optimal parameter

has to be conducted bearing in mind possible interactions among them.
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(upper panel), Toplica (mid panel) and Mlava (lower panel) River catchments.
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Figure 78. Pearson (upper panels) and Spearman correlation coefficients (lower panels) among the optimised model parameters for the

Kolubara (left panels), Toplica (mid panels) and Mlava River (right panels).
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3.1.2. Evaluation of the 3DNet-Catch model performance

Split sample (SS7) and Differential Split Sample tests (DSST) are used to estimate
robustness of semi-lumped BASIC version of the model. The model is calibrated in multi-
objective manner and evaluated as described in chapter 2.3.4. The Pareto fronts obtained
in the calibration periods and the model performance in the evaluation ones are presented

in Figure 79.

The results demonstrate ability of the model to entirely reproduce runoff volume over the
calibration periods. However, NSE values differ depending on the calibration period
(average — SST, or wet period — DSST): for the Kolubara River catchment NSE values are
higher over the average period, for the Toplica River catchment it is other way round,

whereas for the Mlava River catchment NSE values are approximately the same.

Model performance deteriorated over the evaluation periods, except for the Toplica River
catchment: namely, model efficiency over the evaluation period is higher than in the
calibration one (in the SS7). Drop in model performance is more pronounced in the results
of DSST, except for the Kolubara River catchment (negligible decrease in NSE values).
Largest decrease in NSE values and the smallest decrease in VE at the same time is
observed for the Mlava river catchment (drop in NSE of 0.6 and 5.1% in bias). For the
Kolubara and Toplica River catchments NSE values in evaluation periods (DSST) remain
acceptable according to Moriasi et al. (2007) (exceed 0.35 on average), but there is a
marked bias in the simulated runoff volume (~25%). Simulated hydrographs in the
evaluation periods (SS7 for the Toplica, and DSST for the Mlava River catchment) are
presented in Figure 80. The decrease in model performance generally corroborates the
results of Vaze et al. (2010) (i.e. decrease of 0.3 in NSE values and up to 40% in bias for
30% smaller rainfall depths).

The BASIC version of the model is calibrated in 1996-2009 and evaluated over 1985-
1996 against the observed flows at the Slovac and Doljevac stream gauges (chapter 2.3.4)
and the results are compared to those obtained using the HBV model. Maximum, mean
and minimum values of the performance measures calculated with 100 optimised

parameter sets are presented in Table 26 along with the results of the HBV model reported
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by Langholt et al. (2013), which are obtained by Norwegian Resources and Energy
Directorate (NVE) and Republic Hydrometeorological Service of Serbia (RHMSS).
Therefore every result in Table 26 presented by Langholt et al. (2013) is represented by
two values: the first one is obtained by NVE, and the second one is obtained by RHMSS.

Performance of the 3DNet-Catch in the calibration period is similar for both catchments.
In the evaluation period for the Kolubara River catchment, the 3DNet-Catch yields
considerably higher NSE values, but larger bias in runoff volume. For the Toplica River
catchment the HBV model resulted in higher NSE values, but slightly larger bias in
estimated runoff volume. In addition, rather high values of the NSE for log-transformed
flows obtained by the 3DNet-Catch model at the Toplica River catchment should be
emphasised: NSElogo is 0.79 in the calibration period, and exceeds 0.7 in the evaluation
period. On the whole, these results suggest that the semi-lumped version of the 3DNet-

Catch is comparable to the HBV model.

The flow duration curves (observed and simulated) over the calibration period are
presented in Figure 81. Flow duration curves (FDCs) show that the model reproduced the
Toplica River catchment behaviour satisfactorily, while there are some discrepancies
between FDCs of the simulated and observed flows at the Slovac stream gauge, which

are particularly pronounced in the low flow domain.

In these tests the semi-lumped version of the model is analysed, because that version of
the model is mainly used in this research. The fully-distributed version of the model is to
be tested in the further research, but it is expected that it would yield higher model

efficiency.
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Figure 80. Simulations over the evaluation periods: SST — the Toplca River catchment

(top panel) and DSST — the Mlava River catchment (bottom panel).



Table 26. Performance of the 3DNet-Catch and HBV models in the calibration and

evaluation periods
Calibration (1996-2010) Evaluation (1986-1995)
g 3DNet-Catch HBV 3DNet-Catch HBV
= ; : ; :
S Bias 19 Bias Bias Bias
S NSE [mm / year] NSE [mm / year] NSE [mm / year] NSE [mm / year]
-0.8 -24
The 0601 (-0.25%) 0.63 (-10.6%) 11.3
-7.9 0.56 0 -31.6 0.41 (5%)
Kolubara 0.5998 o 0.625 o
River 0.5995 (-2.6%) 0.61 0 0617 (-13.7%) 0.54 12.3
’ -16.6 ) -38.5 (5.4%)
(-5.5 %) (-16.9 %)
-1.3 -16.7
(-1%) (-16.6%) -18.3
?c:elica (;).7711893 -2.9 0.71 0 ggg -18.6 0.58 (-18.3%)
Ri\I/)er 0.7182 (-2.2%) 0.74 0 0'55 (-18.5%) 0.68 22.8
’ -4 ’ -19.9 (23%)
(-3%) (-19.8%)

A visual inspection of the simulated hydrographs along with the precipitation and
temperature data reveals that finer temporal data resolution could contribute to more
accurate flow simulations. High sensitivity of parameter o suggest that precipitation is
crucial for model efficiency. Also, finer temporal resoulution of temperature observations
would improve model performance in winter seasons. For example, prompt catchment
response to precipitation during a period with mean daily temperaures below zero
indicated in Figure 82 (highlighted with the rectangel) suggests that the temprature may
have exceeded 0°C in that day and that precipitation may have been rainfall rather than
the snowall. The model uderestimates the observed flood wave even if the value of the

highest melt factor is adopted (dashed hydrograph in Figure 82).

19 The first (top) values are obtained by NVE, while the second (bottom) ones are obtained by RHMSS
(Langsholt et al., 2013).
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3.2. Results of dynamic multi-objective calibration

3.2.1. Temporal variability in the model parameters

Variability of the normalised Pareto-optimal parameters of semi-lumped BASIC version
of the model with the calibration period is presented in the multi-temporal graphs in
Appendix D, which shows median value of the normalised Pareto-optimal parameters in
every calibration period and /C statistic. Normalised parameters are preferred for these
graphs, as they are insensitive to the prior parameter ranges, while the /C statistic provides

insight into the spread of the Pareto-optimal parameters obtained over a period.

Median values of two Pareto-optimal parameters are presented in Figure 83. The abscissa
values in these graphs denote start water year, while the ordinate values denote end water
year of a calibration period. Diagonal cells in the graphs refer to 1-year long calibration
period, while cell in the top left corner of the graphs refer to the 25-year calibration period

(1988-2013).

These graphs reveal considerable variability with the calibration period in all parameters.
This variability appears to be smaller for sensitive parameters such as o, Dsub-surf, Kd or
porosity. Changes in the median parameter values between the periods can be abrupt for

longer calibration periods as well as for shorter ones. For example, in the right-hand side
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panel in Figure 83 median value of parameter » obtained over 1992-2008 is substantially
larger than the values from all “surrounding” periods despite the overlap among the
periods. Such the “chess-board” patterns emerge in the most insensitive parameters (e.g.

baseflow-related and parameters of the snow routine).

1 F o4
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—o

Figure 83. Multi-temporal graphs of the medians of the least (Dsub-surf) and the most
variable (n) parameter of the 3DNet-Catch model for the Mlava river catchment. Abscissa

values denote stat year and the ordinate values denote end year of a calibration period.

Parameter variability with the calibration period is quantified in terms of: (1) standard
deviations calculated in respect to medians of the normalised Pareto-optimal parameters
obtained over all calibration periods St, norm, and (2) ratios between St and the standard
deviation obtained from the uniform prior distributions Su prior (Figure 84). The St diagram
resembles the graph of St / Su prior given in Figure 84, but ordinate values vary between
0.1 and 0.45 (not shown here).

Despite being catchment specific, the results indicate maximum canopy storage
(CANmax), some parameters of the snow routine (SNOW 100, bmelt, 6 and bmelt, 12) and the
soil routine (CN, larel, Wwp, Wie, 1) and baseflow-related parameters as rather sensitive to
the calibration period. Temporal variability in these parameters exceeds their initial

uncertainty, which is rather high is some parameters (e.g. SNOWioo or 7). The smallest
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variability is exhibited by parameters Ka, Dsub-surf, @, Tsr and A. Former three parameters

are sensitive parameters (Figure 74 and Figure 75, chapter 3.1).
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Figure 84. Ratio St/ Su_prior Obtained from all calibration periods.

Although the variability of the sensitive parameters with calibration period appears to be
low, no strong correlation between these two properties could be detected. This
correlation for the Kolubara River catchment is illustrated in Figure 85 and similar results
are obtained for other two catchments. For example, 4 and Ts.r, both of which are

insensitive, exhibit relatively low variability with the calibration period (Figure 84).
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Figure 85. Rank correlation between parameter sensitivity and variability with the

calibration period: the Kolubara River catchment.

To examine how the parameter variability with the calibration period depends on the

period length, median values of the normalised Pareto-optimal parameters obtained from
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all periods are plotted against the period length (Figure 86, Appendix E). Greater width
of these box-plots indicates larger variability. It is expected that temporal variability in
parameters decreases with the calibration period length due to the overlap between
consecutive periods (e.g. the overlap in two consecutive 25-year long periods amounts to

24 years, i.e. 96%).

It appears that parameter variability tends to decrease with the length of the calibration
period in some parameters (e.g. Kd, logio (Ksub-surf) OF Dsub-surf) although no clear pattern
could be detected in majority of the parameters. For example, parameter Dsub-surf in left-
hand side panel in Figure 83 takes larger values over longer calibration periods and
differences in colour of adjacent cells are slight, as opposed to cells that denote 1-year
long calibration periods. As for parameter K4, median values tend to converge to median
value of the set optimised over the full record period for all three catchments (left panel
in Figure 86, Appendix E). On the other hand, median values of some other parameters
(such as bmett, 6, logio (Ksurf), wie and smax) significantly deviate from the medians of the

Pareto set obtained over full record period.
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Figure 86. Box plots of the median normalised Pareto-optimal parameters from all

calibration periods of length specified on the abscissa for the Kolubara river catchment:
linear reservoir coefficient Kd (left panel) and porosity. Thick lines denote median value

of Pareto-optimal parameters obtained over the full hydrologic record period.

Degree of dependence between the parameter sensitivity to calibration period and the
period length is also quantified in terms of ratios between St obtained over 5- and 10-year
long calibration periods (Appendix F) and St obtained over 1-year long periods (Figure
87 and Figure 88, respectively). Values of the ratios greater than 1 denote larger

variability over longer calibration periods. This suggests inconsistency in parameter
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estimation. Such variability is detected in few mainly insensitive parameters, such as wr
or smax (exception is porosity), although the results are catchment specific. The ratios
S(10 years) / S(1 year) are not always larger than S years) / S(1 year) (€.g. for LAImax obtained in
the Toplica River catchment), which is also an evidence that longer calibration period

does not necessarily lead to more consistent parameter estimation.
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Figure 88. Ratio of St obtained over the 10-year long calibration periods to St obtained

from the 1-year long periods.

In addition, empirical cumulative distribution functions (ecdfs) are derived from all Pareto
sets obtained over calibration periods of given lengths (1, 5, 10, 15, 20 and 25 years) and
from the Pareto-optimal parameter from all calibration periods. As such, these ecdfs
reflect parameter uncertainty due to calibration period. These ecdfs are shown in
Appendix G along with the ecdfs obtained for the full record period (ecdfirr). Behaviour
of the ecdfs is consistent with the behaviour exhibited by the median values of Pareto-
optimal parameters: (1) ecdfs depend on the length of the calibration period, and (2) ecdfs

may considerably deviate from the ecdfrrpe (Figure 89). For example, ecdfs obtained over
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1-year long calibration periods are more similar to ecdfs of 20- and 25-years than to e.g.
ecdfs of 15-years; i.e. there is no regular change in ecdfs with calibration period (left-hand
side panel in Figure 89). The ecdfs of parameter Kq are found most consistent (right-hand
side panel in Figure 89). Also, many ecdfs resemble the uniform distribution (especially
ecdfs achieved over all calibration periods, €.g. bmelt, 12) which may be the consequence
of both, parameter insensitivity (considerable variability within a Pareto set, i.e.

parameter uncertainty) and variability with the calibration period.

Generally the ecdfrrp are significantly narrower than the ecdfs and the reason for such
behaviour is the way the Pareto sets are obtained. Namely, ecdfrrp are obtained from the
Pareto sets optimised over the full hydrologic record period, which means that these sets
are adjusted to result in optimal average performance over the full record period, but they
would probably not yield high model efficiency in different sub-periods. By averaging
the model performance over the entire calibration period a significant amount of
information form the data available is lost. The ecdfs are obtained from the Pareto-optimal
set in various sub-periods, which enables extraction of more information from the
available observations. The ecdfs obtained over short calibration periods represent
parameters that are optimised to reproduce a catchment response in few events, while the
ecdfs achieved over long calibration period describe parameter sets that have been
exposed to wide variety of a catchment’s responses and thus parameters sampled form
these ecdfs may be considered more robust. Further research is required to test these

hypotheses.

The results presented so far suggest high sensitivity of the Pareto-optimal parameters to
the calibration period. To estimate effects of such variability on model performance, the

following statistics are estimated:

S, .
Swse, © SRCys ; — (3.2.1)
u_prior, i
S, .
Syg, SRCVE,;‘—M (3.2.2)
l u_prior, i

where SRC:; stands for the standardised regression coefficient of the i parameter given in

the equation 2.3.5 for two objective functions (NSE and VE), S: is the standard deviation
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of the i parameter calculated from all calibration periods and Su prior denotes standard
deviation of the prior uniform distribution of the /" parameter. Previous two equations
stand for standardised regression coefficients, with the standard deviation of sample
parameters being substituted with standard deviation of median parameter values
estimated over all calibration periods. This modification is assumed to enable assessment
of possible consequences of the parameter variability with the calibration period to model
performance (objective functions). Implicit assumption in these equations is that there are

no strong correlations among the model parameters.
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Figure 91. Statistic S ve.

Values of these statistics are presented in Figure 90 and Figure 91, respectively. The
results are catchment specific, although they all reveal that the variability of a, LAImax and
parameters of the soil-routine could strongly affect model performance. This hypothesis
is tested by simulating runoff in 5 driest years in the Kolubara River catchment with
parameters optimised in this period, with parameters optimised over 5 wettest years

(DSST) and with three combinations of these parameters sets:

(1) IS_VE unchanged: parameters optimised in the driest 5-year long period with
low values of S vz are kept, while the remaining parameters are substituted with

median values optimised in the wettest 5-years.

(2) S_VE unchanged: parameters with high values of S vz are kept (CANmax, LA Imax,
most parameters of the soil routine and precipitation gradient o) and the
remaining parameters are replaced with median values obtained over the wettest

period.

(3) S_NSE _VE unchanged: in addition to previous, K4 is kept (high value of S-NSE

statistic).

The results of this analysis are presented in Figure 92. If parameters with low S vz,
optimised over the driest five year, are kept the results are slightly better compared to the
results of the DSST. Second group of parameters sets resulted in higher values of VE, but
without any improvement of NSE values. The third group of parameters resulted in better
overall performance, which is still weaker than the performance of the Pareto-optimal

sets. These results confirm the parameter sensitivity to the calibration period. Discrepancy
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between performance of the Pareto and S NSE VE unchanged sets may be attributed to
somewhat higher sensitivities of replaced the parameters over this particular period (here
CN) and thus, drop in the values of the objective functions. This difference in model
performance may also be caused possible interactions among model parameters, which is

neglected in this analysis.
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Figure 92. Model performance over five driest water years (1989-1994) given different

parameter sets: the Kolubara River catchment.

The reason for variability in Pareto-optimal parameters with time may be the variability
of the process represented by the parameter. For example, estimated parameter «, which
is shown to be rather important for model performance, varies extensively with the
calibration period as presented in Figure 93. Since the increase in precipitation with
elevation also varies in time, as shown in Figure 45, Figure 59 and Figure 72, variability
in this parameter seems to be inevitable. However, this variability may decrease if data
with finer resolution were used (as discussed in chapter 2.6) or if a different (nonlinear)

change of precipitation increase with elevation were employed.

170



This variability with the calibration is also illustrated in Figure 94, which shows that the

“contour lines” of the response surface obtained over two different 25-year long periods

mismatch, i.e. the response surface changes dynamically with new observations.

1
1]
08

alphangm

20

— - 5 10

Figure 93. Variability in normalised parameter o optimised over different periods: the

Kolubara River catchment.

Figure 94. Response surface of the 3DNet-Catch model for the Kolubara River catchment:
the Nash-Sutcliffe efficiency NSE as a function of two model parameters (precipitation

gradient a and filtration coefficient Kq) in the 1988-2013 period (solid contour lines) and

in 1957-1982 (dashed contour lines).
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Parameter identifiability

Parameter identifiability is quantified in terms of the /C statistic, which is presented in
the multi-temporal graphs in Appendix D. Mean /C for the model parameters, averaged
over all calibration periods, is given in Figure 95. The results suggest a high identifiability
of all parameters, especially the sensitive ones. This may be attributed to both, model
parameterisation and robustness of the AMALGAM. The largest spread in the Pareto sets

is found in the snowmelt factors.

Variation of the /C is quantified by its standard deviation and coefficient of variation, and
presented in Figure 96. Low variability of the /C indicates narrow ranges of Pareto-
optimal parameters in most calibration periods. Such behaviour is exhibited by the most
sensitive parameters (alpha, K4, Dsub-surf, porosity) and by some less sensitive parameters:
Ts: and log (Ksub-surf). These results are supported by the multi-temporal graphs in
Appendix D. No apparent correlation between the /C and the calibration period length
could be detected (Figure 97, Appendix H).
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Figure 95. Mean IC statistic for the model parameters obtained over all calibration

periods.
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Figure 96. Standard deviation (top panel) and coefficient of variation (bottom panel) of

the IC statistic for the model parameters.
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values): the Kolubara River catchment.
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Model performance

Model performance over different calibration periods is illustrated in multi-temporal
graphs in Appendix I. The results reveal that less than 30% of parameter sets converge to
Pareto front. Nevertheless, the result are period-specific. Seldom all parameter sets
become non-dominated (the Pareto-optimal sets), but significant pattern of such periods

emerges.

Performance of a Pareto-ensemble (hydrographs obtained with the Pareto-optimal
parameter sets) is quantified in terms of the p-factor and the r-factor (chapter 2.5). Both
performance measures have small values for all catchments and in all calibration periods.
These results indicate rather narrow ensemble band (r-factor) and a few observations are
encompassed by the ensemble despite a satisfactory resemblance between the simulated
and observed hydrographs. It again may be a result of the robustness of the AMALGAM,
meaning that all sets converge to quite a narrow optimum region and thus resulting in
similar response hydrographs (and flow duration curves as illustrated in Figure 81). Small
values of the r-factor are desirable, but this does not hold for values of the p-factor. Poor
performance in terms of the p-factor may be the consequence of small values of the »-

20 is not the

factor. Also, these results may indicate that the parameter uncertainty
prevailing one and / or that multi-objective calibration with the AMALGAM algorithm

underestimates parameter uncertainty.

Maximum, mean and minimum values of two objective functions obtained from all
calibration periods are presented in the Appendix I. Model performance with respect to
VE is significantly better compared to the performance with respect to NSE. This indicates
model capability for overall water balance simulation, but its modest ability to reproduce

dynamics of these catchments with the coarse resolution of input data.

20 Multi-objective calibration is not a genuine method for assessment of parameter uncertainty (chapters
1.3 and 1.4). Here, the 2.5-97.5 percentile parameter interval obtained from the Pareto-optimal sets is used

to represent the parameter uncertainty.
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Mean NSE 2! was found to decrease approximately logarithmically with calibration period
length (Figure 98). A slight increase in NSE in periods longer than 20 years in length for
Kolubara and Mlava can be observed in Figure 98. Changes in V'E with calibration period
length (Figure 99) are not distinct, although a slight increase with the period length can
be detected. Variability in VE is smaller than variability in NSE. The values of VE are
generally very high (even the minimum VE of Pareto-optimal sets). Mean differences
between the simulated and observed annual runoff are illustrated in Figure 100. The graph
shows that the smallest differences are obtained over 19-year calibration periods and
longer, and that the model tends to slightly underestimate runoff rather than other way
round. The results obtained for the Mlava River catchment have a slight departure from
the results for the remaining two catchments, which may be attributed to short observation
period (e.g. there is only one 25-year long calibration period). Generally, model

performance for the Toplica River catchment is slightly better than at the remaining

catchments.
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Figure 98. Mean NSE values against the length of a calibration period.

Model performance is also quantified with respect to other three evaluation measures:
NSE obtained from log-transformed flows (NSEiog0), Kling-Gupta efficiency (KGE) and
coefficient of determination (R?). NSEiog0 varies substantially with the calibration period
without following any regular pattern. The reason for such behaviour may be the fact that

model efficiency in low-flow domain was not included in the calibration procedure, i.e.

2l Mean NSE values are calculated according to the median NSE values in every calibration period, as

described in chapter 2.5.
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the parameters are not optimised to accurately reproduce baseflows. The remaining two
performance measures take fairly high values and slightly decrease with the length of
calibration period, similarly to NSE. Considering similarities between these measures and

NSE (chapter 1.3.3), such result is expected.

0.998 *
L] [] []
" "o o s " L
0.996 4 » . n (] » [ ] . : .. . i .
= L) . . "
~ 0994 ® n . L) . ) L.
— Py py
w * 'y . L] ) [y *
[ ] L]
> 0992 . ) i * ¥ * ! 3 : . J
0.99 s SN AN A S N A A A N A s 4
¢ +
0988 *r ¢
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

length of a calibration period [years]

e Kolubara m Toplica +Miava

Figure 99. Mean VE values against the length of calibration period.
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Figure 100. Mean difference between observed and simulated runoff against the length

of a calibration period.

3.2.2. Parameter temporal variability and hydro-meteorological characteristics

Hydro-meteorological indices considered in this analysis (Table 14) are illustrated in
multi-temporal graphs in Appendix J. Unlike the Pareto-optimal parameters, no abrupt
change across the calibration periods can be detected in the indices, except for the

minimum or maximum values of precipitation and temperature.
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Strength of the relations between the optimised model parameters (medians of the Pareto
parameters) and the hydro-meteorological indices are quantified in terms of the Pearson
and Spearman correlation coefficients and as variable importance in the “tree bagging”

metamodel (chapter 2.4).

To illustrate relation between Pareto-optimal parameters and hydro-meteorological
characteristics of the calibration period, values of the normalised Pareto-optimal
parameter (Dsub-surf) and API 30 index obtained over 5-year long calibration periods for
the Kolubara River catchment are illustrated in Figure 101. Resemblance between these

variables 1s small.

The behaviour illustrated in Figure 101 is confirmed by Pearson correlation coefficients
between median parameter values and hydro-meteorological indices. The correlation
coefficients between these values are given in the top panels of Figure 102 through Figure
104, while their statistical significance is illustrated in the bottom panels: white fields
denote statistically significant correlations at 95% significance level. The Spearman
correlation coefficients are presented in Appendix K and exhibit a similar pattern as the
Pearson correlation coefficients. Correlation is quite weak for all catchments or
combinations of the parameters and hydro-meteorological indices. Statistically
significant correlations at the 95% significance level considerably vary for three
catchments. Similar results are obtained for the /C statistic and the median values of the

objective functions (Appendix K).

As for variable importance (Appendix K), majority relations between the Pareto-optimal
parameters and the indices are weak. For example, parameter o is sensitive to some
precipitation related indices in the Kolubara and Mlava River catchments, but insensitive
in the Toplica River catchment. Such the contrasting results are consistent with weak

correlations detected.

Additionally, no resemblance between multi-temporal graphs of the model parameters
(Appendix E) and multi-temporal graphs of the hydro-meteorological indices (Appendix

J) can be observed, which is consistent with these results.

The results of this analysis suggest a lack of relationship between the optimal model
parameters and hydro-meteorological conditions in a catchment over some period.

Consequently, the indices used to describe hydro-meteorological characteristics over a
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calibration period cannot be used for conditioning of the Pareto-optimal parameters (i.e.
to select different parameter values based on the hydro-meteorological characteristics of

the simulation period).

—D

subs,norm
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subs,norm

D

start year of the calibration period

Figure 101. Median values of the normalised Pareto-optimal parameter Dsub-surf and values

of API 30 estimated over 5-year long calibration periods: the Kolubara River catchment.
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Figure 102. Pearson correlation coefficients between median parameter values and hydro-
meteorological indices (top panels) and statistical significance at 95% significance level

(bottom panel): the Kolubara River catchment.
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Figure 103. Pearson correlation coefficients between median parameter values and hydro-
meteorological indices (top panels) and statistical significance at 95% significance level

(bottom panel): the Toplica River catchment.
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Figure 104. Pearson correlation coefficients between median parameter values and hydro-
meteorological indices (top panel) and statistical significance at 95% significance level

(bottom panel): the Mlava River catchment.
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3.2.3. Impact of the objective functions

Impact of the combination of objective functions (calibration strategy) on parameter
temporal variability is assessed by analysing seven different strategies outlined in Table
15. As different combinations of the objective functions yield different Pareto-optimal
parameters (as illustrated in Figure 105), aim of this analysis is to examine whether some

calibration strategies lead to more consistent parameter estimation.
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Figure 105. Median values of the normalised Pareto-optimal parameters (a/pha, Dsub-surface

and Kq) obtained for the Toplica River catchment for different calibration strategies.

Parameter variability with the calibration period is quantified in terms of the ratio
St/ Su_prior (Figure 106) with St being calculated over all 5-year long calibration periods.
Note that a single set of prior ranges is used for each catchment in all simulations with
the semi-lumped BASIC version of the model. Therefore, Su prior calculated for one

parameter (and for one catchment) holds for all calibration strategies.

182



The results reveal that parameter variability with calibration period exists regardless of
the objective functions used. Differences in this variability among different calibration
strategies are relatively small. The values of St / Su prior averaged over the entire set are
ranked and presented in Table 27: lower ranks in imply lower variability with the
calibration period. The results are catchment specific, but in general the R>-VE strategy
results in lower parameter variability while the HMLE-RMSE strategy yields higher
parameter variability. The NSE-NSEiogo strategy and the combination of three objective
functions also result in low parameter variability, whereas NSE-VE strategy results in high

parameter sensitivity to calibration period.
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Figure 106. Ratio St / Su prior obtained from all 5-year long calibration periods: the

Kolubara (top), Toplica (mid) and Mlava River catchments (bottom panel).
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Table 27. Ranks of the average St / Su_prior and mean /C statistic for different calibration

strategies
Objective functions Kolubara Toplica Mlava
St/ Suprior  MeanIC  Si/Supior MeanIC S/ Suprior  Mean IC

NSE-VE 6 5 6 4 6 3
NSE-NSEi,g0 4 2 3 3 1 4
KGE-VE 2 4 5 6 4 5
R*-VE 1 3 2 2 3 2
RMSEwr - RMSEr 3 7 4 7 5 7
HMLE-RMSE 7 1 7 1 7 1
NSE-NSEog0-VE 5 6 1 5 2 6

Values of the /C statistic averaged over all 5-year long calibration periods are presented
in Figure 107, while the /C ranks are given in Table 27 where lower ranks imply higher
values of the IC statistics, i.e. narrower ranges of the Pareto-optimal parameters. The
ranks are obtained from the /C values averaged over the parameter entire set. The HMLE-
RMSE strategy results in rather narrow ranges of the optimised parameters (exceptionally
high values of the IC statistic), as opposed to the RMSEnr -RMSELr strategy. The R>-VE
and NSE-NSEogo strategies also yield high /C values. Other calibration strategies result

in similar ranks of /C values.

Despite resemblance among the lines in Figure 107 there are dissimilarities in the ranks
of IC values for individual parameters. For example, highest /C value (highest parameter
identifiability) is obtained for a with the KGE-VE strategy and for Ka with the RMSEwur-
RMSELr strategy for the Kolubara catchment (top panel of Figure 107). This result
confirm that different (combinations of) objective functions result in different parameter
identifiability, i.e. with some strategies a parameter can be well identified, whereas some

other strategies may result in wide posterior parameter distribution.

Model performance is evaluated for considered calibration strategies and the results are
presented in Appendix L. Strategies RMSEur-RMSELr, NSE-NSE1og0 and NSE - NSEiog0 -
VE result in the greatest number of non-dominated solutions, as opposed to NSE-VE or
KGE-VE. Model efficiency quantified in terms of NSE, VE and ratios of p- to r-factor is
presented in Figure 108. These performance measures are obtained by averaging the
medians form all 5-year long calibration period. All strategies yield high values of VE,

with RMSEwur -RMSELF resulting in slightly lower VE value. Lower NSE values are
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obtained from the model calibrated using the R>-VE strategy, despite the fact that
coefficient of determination is contained within NSE (Gupta, et al. 2009). Values of the
p- and r-factors are low regardless of the calibration strategy. Greater values of the ratio
of these factors indicate higher percentage of the observation encompassed by the
simulated ensemble, given the same width of the ensemble band. Higher values of the
ratio are obtained by the model calibrated using strategies NSE - NSElog0, NSE - NSE10g0—
VE and HMLE-RMSE. The HMLE-RMSE strategy results in exceptionally low values of

the r-factor and consequently in high value of the ratio.
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Figure 107. Values of the IC statistic of the Pareto-optimal parameters for different
calibration strategies: the Kolubara (top), Toplica (mid) and the Mlava River catchments

(bottom panel).
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Figure 108. Model performance for different calibration strategies: the Kolubara (top),

Toplica (mid) and the Mlava River catchments (bottom panel).

Generally, differences among different combinations of the objective functions in the
calibration strategies are not pronounced. Considering both consistency in parameter
estimates and model performance, strategies NSE-VE, NSE - NSEiog0, HMLE-RMSE and
NSE - NSEwogo—VE seem to be somewhat advantage in comparison to other analysed
strategies. Combination of three objective functions is quite appealing, not only because

it results in satisfactory model performance and large number of Pareto sets, but also
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because more aspects of the simulated hydrographs are taken into account with three

objective functions.

3.2.4. Impact of the model structure

Parameter variability for different versions of the 3DNet-Catch model is quantified in
terms of the ratio St / Su prior (Figure 109), where St is calculated based on all 5-year long
calibration periods. Variability of the entire parameter set, quantified in terms of St/ Su_prior
and averaged over the entire parameter set, is ranked and presented in Table 28. Lower

ranks imply lower parameter variability with the calibration period.

These results reveal small differences in parameter variability for different model
structures. The distributed model version results in somewhat more consistent parameter
estimates, as opposed to the FULL version (that has the largest number of parameters
with St / Su prior Values greater than 1). This is detected for all catchments. The most
sensitive parameters (o, Dsub-surface, porosity, Kd, LAImax) tend to result in slightest
variability in the BASIC and SIMPLE model versions. This means that inconsistency in
parameter estimates may be increased by model overparameterisation. Sensitivity of the
spatially distributed parameters to calibration period is generally lower than of the
corresponding parameters of the BASIC model version, with exception of the LA/max

parameter.

Values of the /C statistic are presented in Figure 110 and ranks of the /C statistic averaged

over the entire set are given in Table 28 . Lower ranks denote higher /C values.

The SIMPLE model version yields narrow ranges of the Pareto-optimal parameters over
a calibration period and the distributed model version yields the widest ranges. However,
identifiability of the spatially distributed parameters tends to be better than the lumped
ones. For example, CANmax and o are better identified for all catchments; however, LA /max

is better identified in the BASIC model version. Interestingly, for the Toplica and Mlava
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catchments the distributed model version results in the widest range of the parameter Dsub-

surface, Which is quite a sensitive model parameter®?.
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Figure 109. Ratios St / Su_prior Obtained over 5-year long calibration periods for different
versions of the 3DNet-Catch model: the Kolubara (top panel), the Toplica (mid panel)

and the Mlava River catchment (bottom panel).

22 Sensitivity analysis of the SIMPLE, FULL and the distributed model versions was not conducted. It was
assumed that parameter sensitivity of the BASIC model holds for corresponding parameters of the other

model versions.
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Table 28. Ranks of the average St / Su prior and average IC statistic for different versions

of the 3DNet-Catch model

Version of the Kolubara Toplica Mlava
model St/ Sy pior  MeanIC S/ Sypior  MeanIC S/ Sy pior @ Mean IC
SIMPLE 3 2 2 1 4 1
BASIC 2 4 3 2 2 3
FULL 4 1 4 3 3 2
DISTRIBUTED 1 3 1 4 1 4

Efficiency of these model versions is given in Appendix L. The median NSE values,
median VE values and ratios of p- to r-factors, all of which are averaged over all 5-year
long calibration periods, are presented in Figure 111. Overall, differences between the
model versions are minor. However, the distributed model version is the most efficient
for two catchments. Higher values of ratios between mean p- and r-factors are obtained
by the SIMPLE and BASIC model version, although all versions result in very small
values of both statistics (the SIMPLE model version results in the smallest values of r-
factor). The Pareto fronts obtained over one calibration period for the Toplica River
catchment are illustrated in Figure 112. These results confirm that a more complex model

version does not necessarily result in better model performance.
Despite being catchment specific, the results of this analysis point to the following:

- Model overparameterisation (large number of free parameters) may lead to higher
sensitivity of the model parameters to the calibration period, while spatial distribution of

the parameters could contribute to more consistent parameter estimates.

— None of the structures is proven to be superior in terms of model efficiency. This
implies that simpler model structures may perform quite satisfactory (Figure 112). In
addition, the distributed version of the model may (slightly) outperform the (semi-
)lumped one. Therefore application of distributed models appears to be advantageous
over application of the lumped, heavily parameterised models. Model simplification by
reducing the number of free parameters has to be supported by the results of a sensitivity

analysis.
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panel), the Toplica (mid panel) and the Mlava River catchments (bottom panel).
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Figure 111. Model performance for different model structure: the Kolubara (top), Toplica

(mid) and the Mlava River catchment (bottom panel).

Although the results presented suggest application of the distributed models, it should be
noted that application of these models is conditioned on the available data: finer spatial
resolution should be accompanied by finer temporal resolution (e.g. runoff modelling on
the 1 m by 1 m grid and with daily data has no sense). Also, transformation of spatial data

into spatial distribution of the model parameters inevitably involves subjectivity.

191



It should be emphasized that the distributed model version is applied in this research with
rather coarse spatial resolution and a limited number of spatially distributed parameters.
Further research and data with finer resolution are required to assess robustness of the

distributed models more accurately.
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Figure 112. Pareto fronts of the SIMPLE, BASIC, FULL and distributed versions of the
model obtained by calibration in 2007-2012 for the Toplica River catchment.
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4. CONCLUDING REMARKS

Conceptual hydrologic models are used for flow forecasting, estimation of design flows
or assessment of the climate change impact on water resources. Therefore, reliability of
flows simulated by these models is crucial. Prior to application of a conceptual hydrologic
model, its parameters have to be inferred through model calibration, and the model should
be applied for runoff simulations over an independent period in order to be evaluated.
The obtained parameter values depend on the method for parameter estimation (e.g.
optimisation algorithm), objective function(s), predefined parameter ranges, data quality
and properties of the period the parameters are being estimated over. Once calibrated, the
hydrologic models are assumed to be capable of reproducing catchment behaviour in any
period. However, a decrease in model performance and consequently in reliability of the
simulated variables outside the calibration period has been repeatedly reported in the
literature (e.g. presence of bias in simulated runoff volume, weaker correlation between
the simulated and observed flows). This is a major issue when it comes to application of
hydrologic models, because these models are primarily used for runoff simulations

outside calibration period.

Reasons for such model behaviour are numerous, such as: model overfitting to noisy data
in the calibration period, ineffective parameter optimisation, model structural
inadequacies or non-stationarity in catchment response. A decrease in model performance
may also be due to the fact that optimality of model parameters does not hold outside the
calibration period. Bearing in mind wide practical application of the conceptual
hydrologic models, change of optimal parameter sets in time (with the calibration period)

needs to be explored.

To this end, in this Thesis a novel fully-distributed hydrologic model, entitled 3DNet-
Catch, is calibrated over moving l-year to 25-year long calibration periods
(“bootstrapping” of the calibration periods) within a multi-objective framework
employing the AMALGAM optimisation algorithm. Each calibration period is shifted by
one water year from the previous period, resulting in the overlap between the consecutive
periods. The analysis of the parameter variability in time is based on the Pareto-optimal

parameters obtained over different calibration periods. The analysis is performed using
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the observations from three relatively unchanged catchments in Serbia: the Kolubara, the
Toplica and the Mlava River catchments. In this way the effects of the human-induced

changes on parameter variability are excluded.

For purposes of this research, four alternative model structures were developed: three
semi-lumped (SIMPLE, BASIC and FULL) and the distributed version, which is based
on the BASIC model version. However, majority of the simulations are carried out with

the BASIC model version.

Prior to the dynamic model calibration, the regression-based parameter sensitivity
analysis is carried out. Goal of the sensitivity analysis is to detect the model parameters
that are important for reproducing the overall water balance and dynamics of catchment
response. The results indicate that the precipitation gradient with elevation is the most
sensitive parameter of the 3DNet-Catch model for these catchments. Some soil-related
parameters, such as porosity and subsurface soil layer thickness, are very important for
maintaining water balance, while the linear reservoir coefficient for surface runoff routing
Ka is important for reproducing the catchment dynamics. The parameters of the snow

routine and the baseflow-related parameters are less sensitive for these catchments.

The 3DNet-Catch model is evaluated by conducting the split sample test and differential
split sample test, and also by using the HVB model as the reference model. The results
confirmed that the 3DNet-Catch can simulate the overall water balance very well,
although some bias may be expected if the model is evaluated over a climatically
contrasted period. The results also confirm that semi-lumped BASIC version of the
3DNet-Catch is comparable to the HBV model in terms of reproducing the overall water

balance and catchment dynamics.

The simulated hydrographs and the estimated Pareto-optimal parameters confirm the
robustness of the AMALGAM algorithm. Namely, the parameter sets converge to rather
small optimal region of the response surface, resulting in narrow ranges of the Pareto-
optimal parameters and consequently narrow prediction band with the Pareto-optimal

ensemble.

Temporal variability of the model parameters and model performance. The results of
the dynamic model calibration reveal a surprisingly high temporal variability of the

Pareto-optimal parameters, which does not follow any clear pattern. This variability
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appears to be smaller for the sensitive model parameters, although some parameters of
the snow routine that are shown insensitive, also exhibit low variability with the
calibration period. The variability in some parameters slightly decreases with the length
of the calibration period, but no apparent pattern emerges. For example, a considerable
variability can be detected even among the consecutive overlapping 25-year long

calibration periods in some mainly insensitive parameters.

Based on all Pareto solutions obtained over different calibration periods, empirical
cumulative distribution functions (ecdfs) of the model parameters are derived. The ecdfs
of some insensitive parameters resemble the uniform distribution, thus indicating a great
parameter uncertainty due to calibration period. However, the ecdfs of most parameters
deviate from the uniform distribution, which means that the initial uncertainty represented
by wide predefined parameter ranges is reduced. Interestingly, these ecdfs of all Pareto-
optimal parameter values from different calibration periods may also deviate from the
ecdfs of the Pareto sets obtained over the full hydrologic record period (ecdfrrp). The
parameters sampled from the ecdfs are expected to outperform the sets sampled from
ecdfrrp over an independent period. Namely, ecdfrrp is expected to underestimate
uncertainty due to aggregating the model performance over long calibration period into a
few objective functions and thereby losing a significant amount of information, while
dynamic model calibration enables extraction of more information form the observations
available. However, this is beyond the scope of this Thesis and further research is required
to test this hypothesis. If this hypothesis would turn out plausible, the multi-temporal
dynamic calibration could be used to obtain more robust parameter estimates and reliable

simulations over an independent period.

Parameter identifiability, which is rather high for the many model parameters (i.e. narrow
optimal ranges), also varies in time regardless of the calibration period and without

following any regular pattern.

Model performance also varies in time. Considering the model ability to reproduce
overall water balance, rather high values of V'E and a negligible flow bias are obtained
over all calibration periods, regardless of their length. Interestingly, difference between
the observed and simulated runoff is approximately constant in the calibration periods of

20 years or longer. Concerning NSE, it decreases almost exponentially with the
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calibration period length, although a slight increase may be detected over the calibration
periods of 20 years or longer. Such a behaviour is also detected in KGE and R? evaluation
measures. This demonstrates a non-linearity in catchment behaviour that cannot be
properly reproduced by the model with temporally invariant parameter sets, i.e. single

parameter set cannot simulate such a wide range of catchment responses.

Temporal variability of the model parameters and hydro-meteorological
characteristics. Attempts to correlate the parameter variability and the hydro-
meteorological characteristics of the calibration period are made in this research.
However, weak and mainly statistically insignificant correlations are obtained with
contrasted results among the catchments. Such the results suggest that relationship
between hydro-meteorological conditions in a catchment and parameter estimates is not
a straightforward one, and that the values of the Pareto-optimal parameters cannot be

conditioned on the indices analysed in this research.

Impact of the calibration strategy (combination of objective functions) on temporal
parameter variability. Another goal of this study was to analyse whether more consistent
parameter estimates may be obtained by using certain combinations of the objective
functions (i.e. different calibration strategies). The differences in the results among 7
calibration strategies analysed are small. Calibration strategy with coefficient of
determination consistently yielded lower parameter temporal variability, but poorer
model performance. Considering various aspects of the results altogether suggests that
application of calibration strategy that involves more objective functions may result in

more consistent parameter estimates and higher model efficiency.

Impact of the model structure on temporal parameter variability. None of the model
structures is found superior because the differences among the model versions are slight,
especially in terms of model performance. Application of the overparameterised FULL
model version results in increased parameter variability with calibration period without
any improvement in model performance. The distributed model version yielded the most

consistent parameter estimates, although the BASIC and SIMPLE model versions
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resulted in lowest variability in the most sensitive model parameters. Simpler model
structures perform satisfactory, although reduction the number of free parameters has to
be supported by the results of the sensitivity analysis. The results of this analysis

encourage application of models with fewer but spatially distributed parameters.

Application of the methodology and further research. The methodology reported in this
Thesis could be used for studies of model structure evaluation, because more suitable
structures for a particular catchment are assumed to yield less variable parameters.
Consequently, the results of such an analysis may be used for model improvement: high
variability in parameters of a model routine indicate that the routine should be
reparametrised. Evaluation of already calibrated models over the periods selected
according to the methodology presented in this Thesis would be thorough and more robust
than commonly conducted evaluation with the SS7. Also, calibration strategy may be
tested in this manner: the strategies that consistently yield high model performance

and / or consistent parameter estimates should be preferred.

The empirical cumulative distribution functions derived from the Pareto parameter sets
obtained over all calibration periods are assumed to contain more information regarding
catchment response; hence, they are expected to yield more reliable simulations over an
independent period. Such an approach to model calibration is to be tested in further
research. Additionally, this methodology should be applied with data of finer temporal
and spatial resolution (preferably data form experimental catchments) which would
certainly yield more reliable results and perhaps reveal some patterns in temporal
variability of the Pareto-optimal parameters. The distributed models should be applied
with more spatially distributed parameters and, considering that precipitation data are
crucial for model performance, with more methods for spatial interpolation of
precipitation. It is important to emphasise that parameter variability was assessed relative
to the initial parameter uncertainty, which was quite large. Further research is required to
examine whether narrower prior ranges of the parameters could yield more consistent
parameter estimates, and how experience of a hydrologist, reflected by the prior
parameter distribution, affects parameter temporal variability. In this research, the models

are calibrated solely against the observed flows: inclusion of different variables in the
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model calibration (i.e. multi-variable and / or multi-site calibration) is required to test the
hypothesis that utilisation of more objective functions yields more consistent parameter
estimates. Further research is also needed to examine the parameter variability on the sub-
annual time scales. Dynamic parameter estimation presented in this research should be
applied with other methods for parameter estimation and uncertainty assessment, and also

with other hydrologic models.
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APPENDIX A. Prior ranges of the parameters for the Kolubara, Toplica, Mlava and River catchments

A. Table. 1. Prior ranges of the precipitation gradient with elevation and temperature lapse rate: semi-lumped versions of the model

Catchment Kolubara Toplica Mlava

Version of the 3DNet-Catch model SIMPLE ~ BASIC FULL SIMPLE ~ BASIC FULL SIMPLE ~ BASIC FULL
Precipitation gradient with elevation a

[% /100 m] 0-25 0-15 0-20

Lapse rate Tiapse [°C/ 100 m] 0.45-0.75 04-0.8 0.45-0.8

A. Table. 2. Prior ranges of the parameters of the interception routine: semi-lumped versions of the model

Catchment Kolubara Toplica Mlava

Version of the 3DNet-Catch model SIMPLE  BASIC FULL SIMPLE ~ BASIC FULL  SIMPLE  BASIC FULL
Maximum interception reservoir

capacity CANma [mm] 1-8 1-9 1-8

Maximum value of the Leaf Area
Index LAInax [m*m?] 05-12




A. Table. 3. Prior ranges of the parameters of the snow routine: semi-lumped versions of the model

Catchment Kolubara Toplica Mlava
Version of the 3DNet-Catch model SIMPLE ~ BASIC FULL SIMPLE ~ BASIC FULL SIMPLE  BASIC FULL
Boundary temperature 7s.r [°C] -3)-3 (-3.5)-3 -4)-3
Threshold depth of snow (as water
equivalent) above which the entire area 147.3 1-150 149.1 1-150 123.7 1-150
is covered in snow Ssnow,100 [mm]
Snowpack temperature lag factor A [-] 0.24 0-1 0.14 0—1 0.07 0-1
Snowmelt temperature Tieic [°C] - - -3)-3 - - -3)-3 - - -3)-3
st
Melt factor on the 217 of June b 1.68 14-8 1.65 14-8 1.66 14-8
[mm°C-'day]
st
Melt factor on the 21% of December, 0.85 0.05 - 0.95 0.74 0.05-0.95 0.21 0.05 - 0.95

bmelt,12 - ratio to bmelt,é [']




A. Table. 4. Prior ranges of the parameters of the soil routine: semi-lumped versions of the model

Catchment Kolubara Toplica Mlava

Version of the 3DNet-Catch model BASIC FULL SIMPLE BASIC FULL SIMPLE BASIC FULL
Curve number CN [-] 55-85 60 — 85 50-85

Initial abstraction 7, e [-] 0.1-0.35 0.1-03 0.1-0.35

Surface layer thickness Dgyr [mm] 5-110 5-100 20-100

Effective porosity [-] 0.05-0.65 0.1-0.5 02-04

Common logarithm of saturated

hydraulic conductivity of the surface (-5.5)—-(-4)

soil layer Kgyr [m / s]

Wetness .at permanept w1lt1ng point 0.01-03 0.05-03 0.01-03

Wwp — 1atio to effective porosity [-]

Wetnqss at field capacity wg — ratio to 0_045 0-04 0-04
(porosity-wwp) [-]

Pore size distribution index 7 [-] 1.1-55 1.1-6 1.1-6

Number of sub-surface layers N; 1 1-5 1 1 1-5 1 1 1-5
Thickness of a sub-surface layer 15— 1500 15— 1500 15— 1000

Dsub-surf [mm]

Ksup-surf — common logarithm of ratio (-3.5)-0

to the Ky [-]




A. Table. 5. Prior ranges of the parameters of the response routine: semi-lumped versions of the model

Catchment Kolubara Toplica Mlava
Version of the 3DNet-Catch model SIMPLE BASIC FULL SIMPLE BASIC FULL SIMPLE BASIC FULL
Linear reservoir coeff. for direct flow
Ky [days] 0.1-20 0.15-15 025-15
Number of the linear reservoirs Nig [-] 1 1 1-10 1 1 1-10 1 1 1-10
Fast groundwater response reservoir
coeff. Kegyfast — ratio to Kq [-] 1.05-60 1.01 - 60 1.01-50
Maximum specific baseflow yield g4
[L/s/km’] 0.01-0.45 0.05-0.2 0.075-0.225
Non-linearity coefficient for baseflow
simulation ¢ [-] 1.01 -60 1.05-30 1.03-30
Threshold of the non-liner baseflow
1-550 1-300 1-300

reservoir per unit area Smax [mm]




A. Table. 6. Prior values of parameters of the distributed version of the model

Catchment Kolubara  Toplica Mlava
Precipitation gradient with elevation o [% / 100 m] 10-12.5 1-9 10-12
Lapse rate Trapse [°C /100 m] 0.67 0.8 0.8
Maximum interception reservoir capacity CANmax [mm] 2.2-2.53 1.13-2.6  2.48-3.21
Maximum value of the Leaf Area Index LAL ., [m?m2] 9.54-10.11 8.48-9.93 9.63-10.77
Boundary temperature 7s.g [°C] -1.7 -33 -1.3
bl s o s s s B s s
Snowpack temperature lag factor A [-] 0.05-0.3  0.05-0.25 0.07-0.25
Melt factor on the 21% of June bmeis [mm°C-'day'] 1.68 1.65 1.66
Melt factor on the 215 of December by, 12 — ratio to bmeis [-] 0.85 0.74 0.21
Curve number CN [-] 64.3-83.6 64-83.2 64.3-72.3
Initial abstraction 7, e [-] 0.16 0.28 0.05
Surface layer thickness Dgyr [mm] 70.7 25.7 26.9
Effective porosity [-] 0.35 0.44 0.38
ii?ﬁ?&?%;;ﬁﬁ;f [Sr?ltrlrllr.zt:; 1l]lydraulic conductivity of the a7 534 5.44
Wetness at permanent wilting point wy, — ratio to eff. porosity [-] 0.24 0.06 0.14
Wetness at field capacity wg — ratio to the (porosity- wyp) [-] 0.27 0.11 0.13
Pore size distribution index 7 [-] 1.3 1.7 1.1
Thickness of a sub-surface layer Dgyp-surr [mm] 1107.8 1383.6 984.1
Ksub-surf — common logarithm of the ratio to Kurr [-] -3.03 -3.25 2.7
Linear reservoir coeff. for direct flow K4 [days] 1 7.46 4.31
Fast groundwater response reservoir coeff. Kgw-fast — ratio to Kq [-] 1.08 40.8 31
Maximum specific baseflow yield g4 [L / s / km?] 0.34 0.06 0.08
Non-linearity coefficient for baseflow simulation c [-] 1.13 1.08 29.6
Threshold of the non-liner baseflow reservoir per unit area Smax 135 2204 277

[mm]

"Highlighted cells denote spatially distributed parameters.



0.80*C /100 m

0.45*C /100 m

80,

Impact of parameters of the 3DNet-Catch model on hydrograph — semi-lumped BASIC version of
October 1989 to 30" September 1990

the model, the Mlava River catchment from 1%
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A. Figure 2. The parameters of the interception routine.
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A. Figure 3 (continued). The parameters of the snow routine.
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A. Figure 4. The parameters of the soil routine.
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A. Figure 5 (continued). The parameters of the response routine.
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APPENDIX C.

Sensitivity analysis: semi-lumped BASIC version of the 3DNet-Catch model

: . e : 2 < z T . )
é%%ﬁfgéffz—“géa 1. 1§ ;. £ 3
S8 £ 33 ¢ g E & F 85 238 8 & £ £ 48858 ¥ s 6 & FE
SRC 0.04 0.12 0.00 0.01 0.02 001 0.01 -0.02 -0.01 0.08 0.22 0.01 -0.03 0.09 0.07 0.23 0.05 0.17 0.03 -0.005 0.001 0.004 -0.41 -0.01
- § LCC 0.04 0.12 0.000 0.01 0.02 0.01 0.01 -0.02-0.001 0.09 0.23 0.01 -0.03 0.09 0.07 0.23 0.05 0.17 0.03 -0.002-0.003 0.01 -0.41 -0.01
E |LCC/SRC| 097 1.00 0.07 1.01 096 194 1.10 1.02 0.16 1.04 1.00 0.89 1.17 1.00 0.96 1.00 1.00 0.97 098 029 245 1.83 1.00 0.56
E . SRC 0.04 0.18 0.03 0.002 0.001 0.01 0.01 -0.01 0.00 0.11 0.30 -0.07 -0.04 0.14 0.12 028 -0.13 0.01 0.01 -0.003 0.01 0.000 -0.62 -0.02
S LCC 0.04 0.17 0.03 0.002 0.00 0.01 0.01 -0.01 0.01 0.12 030 -0.07 -0.05 0.14 0.12 0.28 -0.13 -0.001 0.01 0.004 0.001 0.004 -0.62 -0.01
|LCC/SRC| 101 097 091 074 418 259 079 077 461 1.04 1.00 1.02 1.14 1.02 098 1.01 1.00 0.08 1.00 1.56 021 22.10 1.00 0.63
SRC 0.04 0.12 -0.02 0.01 0.00 0.00 0.003 -0.03 0.007 0.10 0.21 0.04 -0.04 0.08 0.08 031 0.11 025 0.07 -0.02 -0.01 0.02 -0.55 -0.01
UQJ LCC 0.03 0.12 -0.03 0.01 0.004 0.01 0.004 -0.03 0.015 0.10 0.21 0.04 -0.05 0.07 0.07 031 0.11 025 0.06 -0.02 -0.02 0.02 -0.55 -0.01
E |LCC/SRC| 094 1.01 1.19 1.06 0.80 3.68 154 1.04 2.03 1.04 1.01 092 1.15 098 095 1.00 1.02 097 097 073 152 126 1.00 0.56
E SRC 0.04 0.19 0.04 0.007 0.00 0.003 0.004 -0.01 0.004 0.13 0.28 -0.09 -0.06 0.15 0.18 0.35 -0.17 0.01 0.00 -0.001 0.004 0.002 -0.73 -0.03
Y Lce 0.05 0.18 0.04 0.007 0.00 0.01 0.00 -0.01 0.016 0.14 0.28 -0.10 -0.06 0.15 0.17 0.36 -0.17 0.00 0.00 0.01 -0.003 0.007 -0.73 -0.02
|LCC/SRC| 1.02 097 093 097 007 3.82 056 0.64 421 1.05 1.00 1.03 1.13 1.02 098 1.01 1.00 044 096 6.09 059 326 1.00 0.71
SRC 0.04 0.12 -0.02 0.01 0.00 0.003 0.003-0.029 0.01 0.10 0.21 0.04 -0.04 0.08 0.08 031 0.11 025 0.07 -0.02 -0.01 0.02 -0.55-0.013
§ LCC 0.03 0.12 -0.03 0.01 0.00 0.01 0.004 -0.03 0.015 0.10 0.21 0.04 -0.05 0.07 0.07 0.31 0.11 025 0.06 -0.02 -0.02 0.02 -0.55-0.007
§ |LCC/SRC| 094 1.01 1.19 1.065 0.80 3.68 1.54 1.04 2.03 1.04 1.0l 092 115 098 095 1.00 1.02 097 097 073 152 126 1.00 0.56
= SRC 0.04 0.19 0.04 0.007 -0.004 0.003 0.00 -0.008 0.004 0.13 0.28 -0.09 -0.06 0.15 0.18 0.35 -0.17 0.007 0.00 -0.001 0.004 0.002 -0.73 -0.03
Y Lce 0.05 0.18 0.04 0.007 0.000 0.01 0.00 -0.0050.016 0.14 0.28 -0.10 -0.06 0.15 0.17 0.36 -0.17 0.00 0.004 0.008 0.00 0.007 -0.73 -0.02
|LCC/SRC| 1.02 097 093 097 007 3.82 056 0.64 421 1.05 1.00 1.03 1.13 1.02 098 1.01 1.00 044 096 6.09 059 326 1.00 0.71

" Statistically significant correlations at 95% significance level are highlighted.
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APPENDIX D. Temporal variability in median values of normalised
Pareto-optimal parameters and information content (the IC statistic)

Median values of the Pareto-optimal parameters (top panels) and values of the /C statistic
(bottom panels) obtained over every calibration period are presented in A. Figure 6 through
A. Figure 29. Left panels of these figures refer to the Kolubara River catchment, mid panels
to the Toplica River catchment and right panels to the Mlava River catchment.
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A. Figure 13. CN: Median parameter values (top) and the /C statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.
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A. Figure 17. Ksurf: Median parameter values (top) and the /C statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.
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A. Figure 19. wi: Median parameter values (top) and the /C statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.
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A. Figure 21. Dsub-surf: Median parameter values (top) and /C statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.
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A. Figure 22. Ksub-surf: Median parameter values (top) and /C statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.
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A. Figure 23. Kda: Median parameter values (top) and the /C statistic (bottom panels): the Kolubara, Toplica and Mlava River catchments.
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APPENDIX E. Median values of normalised Pareto-optimal parameters against the length of the calibration period:
semi-lumped BASIC version of the model

Box plots denote median values of normalised Pareto-optimal parameters, obtained over all calibration periods of given length (abscissa
values). Thick lines denote median value of the Pareto-optimal parameters obtained over the full hydrologic record period.
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A. Figure 30. Median values of normalised Pareto-optimal precipitation gradients with elevation and lapse rates: semi-lumped BASIC
version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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A. Figure 32 (continued). Median values of normalised Pareto-optimal parameters of the snow routine: semi-lumped BASIC version of the
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A. Figure 34. Median values of normalised Pareto-optimal parameters of the response routine: semi-lumped BASIC version of the model,

the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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A. Figure 34 (continued). Median values of normalised Pareto-optimal parameters of the response routine: semi-lumped BASIC version of
the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).

b3

-47 -




APPENDIX F.

Values of S; obtained over calibration periods of various lengths

A. table. 7. Values of St are calculated over 1-, 5-, 10-, 15-, 20- and 25-year long calibration periods
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0.300 0.315
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0.399 0.396
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0.399

0.452

0.148 0.221
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0.393
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0.286
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0.112

0.333

0.081 0.284

0.339
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0.413 0.342
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0.198

0.322

0.372
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0.203
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0.252 0.163
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0.310

0.238

0.363 0.282
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0.251

0.292

0.123 0.100
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0.349

0.274

0.329

0.301

0.048
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* Values of S; are calculated form median values of normalised Pareto-optimal parameters obtained for all calibration periods of given length.
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version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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Empirical cumulative distribution functions of the Pareto-optimal parameters of the snow routine: semi

A. Figure 37.

, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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Toplica (mid) and Mlava River catchments (right panels).

A. Figure 37 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the snow routine: semi-lumped

BASIC version of the model, the Kolubara (left),
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A. Figure 38. Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi

of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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A. Figure 38 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi-lumped

BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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Figure 38 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the soil routine: semi-lumped
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A. Figure 39. Empirical cumulative distribution functions of the Pareto-optimal parameters of the response routine: semi-lumped BASIC

version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).




-60 -

0.9

T
|
|
|
|
]
|
|

]
|
|
I

0.8

|
|
[
|
|
|
|
D
|
|
|
|
4
|
|
1
0.7

I | [
T T . 0 WO

0.6

|
, ssssm
Y L0 &8 5 BC
rswmmDm TS 00 0 0Qp
T T 00 9 Q9 O 0 > > > =
o 0 > > >20 YYO50RED
Je2wgfivg -0 S < 8 wry
oo o o848 L T T T T < B 1
s 5 5w sd=2% s 5 ® o ®m nd=3XL
§ 8 8 8 s 6 6 o6 o6 oJDUW
[ o e s TR - FFF<LO
! __ i
gﬁ_ __ . * i _ “— )
— (2} © ~ T T T T
g d ; — =) © ~ ©
° ° ° S] o o [S]

g :
Y| o | o
W o Zlo
o olle

[a] [a]

o000 I I R I}

WWYYYY%RO WWYYYYWEO

15WH%%ER 1SWHM%ER_
[ T O I T PU_7. \\\\\\\\\\ [ T T TR TR PU_7.
T8 8 %8 543|° T 5 8 8 8§ 5439

2 )

PR IR L Sl Sl Sl S S i
f il itlege Pt
1 1 P= N et i e i 1 1 o

|
|
|
0
IS)
Jpod
ﬁ a
o T o
\\\\\\\\\ ™. Ello
B N 23
[a]
I | ceeadl,
e e il i
, , , 22200
v o oW
| | | - 8 N W
L1 L _L__ wononoon A~
I I I 3338 335°
| | | R R IR
| ! ! __+_.6
[y - v - ——F=="- ! o
©
L——— Qo
<
w2080 T o
5 506068 8399
3 3 222200 .
>>0 0o w W3R R0 L (R TR i
151122ER
[ | | | R [} __D-H__
T R oW T O® ™~
§ 88 8 8 8a5F----—-—— ot Y o oo 2 p
FFFEFERFRFL
RN e E
i 1 -
S
| | | | |
| | | | |
| | | | | o
~ [ =] ™~ © ]
IS) IS o IS} IS)
[-13po0

A. Figure 39 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the response routine: semi-lumped

BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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A. Figure 39 (continued). Empirical cumulative distribution functions of the Pareto-optimal parameters of the response routine: semi-

lumped BASIC version of the model, the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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Parameter identifiability over calibration period of different lengths

Box plots of the /C statistic are obtained over all calibration periods of given length (abscissa values).

alpha
=

12 3 456 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).

A. Figure 40. The IC statistic of the Pareto- optlmal prempltatlon gradlents and lapse rates semi-lumped BASIC version of the model the
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APPENDIX L.

Model performance over different calibration periods
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: semi-lumped BASIC version of the model
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A. Figure 45. Relative number of the Pareto-optimal sets: the Kolubara (left panel), the Toplica (mid panel) and the Mlava River catchments.
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A. Figure 46. p-factor (top) and r-factor (bottom): the Kolubara (left), the Toplica (mid) and the Mlava River catchments (right panels).
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A. Figure 47. Maximum NSE values: the Kolubara (left panel), the Toplica (mid panel) and the Mlava River catchments (right panel).
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A. Figure 48. Median NSE (top) and VE values (bottom): the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).
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A. Figure 49. Minimum NSE (top) and VE values (bottom): the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels)
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A. Figure 50. Median NSEiogo values: the Kolubara (left), Toplica (mid) and Mlava River catchments (right panel).
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A. Figure 51. Median KGE (top) and R?values (bottom): the Kolubara (left), Toplica (mid) and Mlava River catchments (right panels).



APPENDIX J.

Temporal variability in hydro-meteorological characteristics in the catchments
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A. Figure 52. Mean daily precipitation depths and precipitation depths in wet days: the Kolubara, Toplica and Mlava River catchments.
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A. Figure 53. Mean annual number of rainy days (top panels) and standard deviation of precipitation (bottom panels): the Kolubara (left

panels), Toplica (mid panels) and Mlava River catchments (right panels).
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A. Figure 54. API 5 (top panels) and API 30 (bottom panels): the Kolubara (left panels), Toplica (mid panels) and Mlava River catchments

(right panels).
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A. Figure 55. Maximum daily precipitation depths (top panels) and mean annual number of ice days (bottom panels): the Kolubara (left
panels), Toplica (mid panels) and Mlava River catchments (right panels).
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A. Figure 56. Mean daily temperatures (top panels) and standard deviation of mean daily temperatures (bottom panels): the Kolubara (left
panels), Toplica (mid panels) and Mlava River catchments (right panels).
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A. Figure 57. Maximum (top panels) and minimum mean daily temperatures (bottom panels): the Kolubara (left panels), Toplica (mid
panels) and Mlava River catchments (right panels).



2013

TI30+

L L L L L L L L L
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

ATI30]|

L L L L L L L L L L L L L
1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

ATI30 L

L L L L L L L L L L
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

42
2011 48
48
41| 2000
46
16 40| 2007
2005 44
39
44 2003
38 42
2001
37
2 1999 40
36| 1997
40 38
35| 1995
1993 36
38 34
1991
1 11 dss 34
R ) B e, |EEaTS oo o [EEaTs)
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
115 115
110
110 95
105
105
90 100
100
95
85
95 90
85
90 80
i 80

A. Figure 58. ATI 5 (top panels) and ATI 30 (bottom panels): the Kolubara (left panels), Toplica (mid panels) and Mlava River catchments

(right panels).
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A. Figure 59. Mean daily PET rates (top panels) and mean daily flows (bottom panels): the Kolubara (left panels), Toplica (mid panels) and

Mlava River catchments (right panels).




APPENDIX K. Relationship between the Pareto-optimal parameters and
hydro-meteorological characteristics of the calibration period

Relationships between median values of the Pareto-optimal parameters and hydro-
meteorological indices are presented in A. Figure 60 through A. Figure 62 (Spearman
correlation coefficients) and in A. Figure 63 through A. Figure 65 (variable importance in
“tree bagging” metamodel).

Spearman correlation coefficients between the /C statistic and the hydro-meteorological
indices are illustrated in A. Figure 66 through A. Figure 68. White fields in the bottom panels
in these figures and in A. Figure 60 through A. Figure 62 denote statistically significant
correlation at 95% significance level.

Correlation coefficients between median values of the objective functions and the hydro-
meteorological indices are illustrated in A. Figure 69.
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A. Figure 60. Spearman correlation coefficients between median values of the Pareto-optimal
parameters and hydro-meteorological indices (top panel) and statistical significance at 95%
significance level (bottom panel): the Kolubara River catchment
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A. Figure 61. Spearman correlation coefficients between median values of the Pareto-optimal
parameters and hydro-meteorological indices (top panel) and statistical significance at 95%

significance level (bottom panel): the Toplica River catchment.
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A. Figure 62. Spearman correlation coefficients between median values of the Pareto-optimal
parameters and hydro-meteorological indices (top panel) and statistical significance at 95%
significance level (bottom panel): the Mlava River catchment.
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A. Figure 63. Variable importance in the “tree-bagging” metamodel of median values of the Pareto-optimal parameters: the Kolubara River
catchment.
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A. Figure 64. Variable importance in the “tree-bagging” metamodel of median values of the Pareto-optimal parameters: the Toplica River
catchment.
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A. Figure 65. Variable importance in the “tree-bagging” metamodel of median values of the Pareto-optimal parameters: the Mlava River
catchment.
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A. Figure 66. Spearman correlation coefficients between the /C statistic and hydro-meteorological
indices (top panel) and statistical significance at 95% significance level (bottom panel): the
Kolubara River catchment.
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A. Figure 67. Spearman correlation coefficients between the /C statistic and hydro-meteorological
indices (top panel) and statistical significance at 95% significance level (bottom panel): the
Toplica River catchment.
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A. Figure 68. Spearman correlation coefficients between the /C statistic and hydro-
meteorological indices (top panel) and statistical significance at 95% significance level
(bottom panel): the Mlava River catchment.
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APPENDIX L.  Model performance for different calibration strategies and
for different model structures

A. Table. 8. Performance of the semi-lumped BASIC version of the model for different
calibration strategies

Mean Median Median Median

Catchment  Objective functions p-factor  r-factor plr

Neareto?  NSE VE  NSEigo
NSE - VE 24 0.65 099 044 0268  0.218 1.2
NSE - NSEog0 85 0.63 0.97 0.75 0279 0206 136
KGE — VE 14 0.6 1 025 0242 0237 1.02
Kolubara ~ R*-VE 44 0.5 0.95 42 0301 0308 098
RMSEur — RMSEvx 98 0.52 0.86 0.52 0.527 0574 092
HMLE — RMSE 39 0.61 0.94 0.55 0.07 0.045 1.5
NSE - NSEog0 — VE 92 0.63 0.98 0.73 0.365 0267 136
NSE - VE 15 0.75  0.998 0.62 0291 0225 1.29
NSE - NSEog0 81 0.75 0.98 0.8 0247  0.184 134
KGE — VE 14 0.7 1 0.29 0284 0264  1.07
Toplica R - VE 69 0.53 0.92 -1.8 0229 0273  0.84
RMSEur — RMSE; ¢ 99 0.67 0.91 0.25 0.402 0416  0.96
HMLE — RMSE 11 0.7 0.93 0.56 0.059 0.05 1.18
NSE - NSEwg — VE 98 0.74 0.99 0.79 0.294 0224 132
NSE — VE 27 0.68 0996  0.52 0295  0.227 1.3
NSE - NSEog0 87 0.6 0.96 0.74 0274  0.199  0.77
KGE ~VE 13 0.58 1 -0.026 0293 0306 096
Mlava R - VE 43 0.46 0.95 -1.94 0263 0298  0.79
RMSEur — RMSE; ¢ 100 0.57 0.88 0.32 0.474  0.544 087
HMLE — RMSE 94 0.63 0.92 0.46 0.056  0.046 124
NSE - NSEwg — VE 99 0.64 0.98 0.74 0.355  0.263 1.35

O Values of the performance measures are calculated according to all 5-year long calibration periods.
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A. Table. 9. Performance of different versions of the 3DNet-Catch model

Catchment Version of the model Npareto NSE(*) VE P -factoz*
r-factor )
0.66 1 0.26
SIMPLE 26 0.65 0.996 0.2
0.56 0.97 (1.31)
0.66 1 0.27
BASIC 24 0.65 0.996 0.22
0.57 0.96 (1.23)
Kolubara 0.65 1 0.24
FULL 27 0.64 0.99 0.2
0.56 0.95 (1.17)
0.68 1 0.21
BASIC distributed 33 0.67 0.99 0.18
0.59 0.95 (1.13)
0.75 1 0.25
SIMPLE 20 0.74 0.996 0.19
0.68 0.98 (1.30)
0.76 1 0.29
BASIC 15 0.75 0.998 0.23
Tooli 0.66 0.97 (1.29)
opiica 0.73 1 0.3
FULL 22 0.72 0.997 0.27
0.60 0.97 (1.10)
0.73 1 0.28
BASIC_distributed 21 0.72 0.999 0.23
0.62 0.98 (1.21)
0.67 1 0.212
SIMPLE 34 0.60 0.99 0.17
0.59 0.96 (1.27)
0.69 1 0.3
BASIC 27 0.68 0.999 0.23
0.58 0.96 (1.3)
Mlava 0.69 1 0.31
FULL 21 0.67 0.995 0.26
0.58 0.96 (1.22)
0.70 1 0.22
BASIC _distributed 36 0.69 0.99 0.19
0.61 0.95 (1.14)

O Values of the objective functions denote maximum, median and minimum of the Pareto ensembles,
averaged over all 5-year long calibration periods.

" Values in parenthesis in the last column in A. Table. 9 denote ratios of p- factor to r-factor.
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A. Figure 70. Prior and posterior empirical cumulative distribution functions of the spatially distributed parameters in 2008-2013: the

Kolubara (left panels), Toplica (mid panels) and Mlava River catchments (right panels).
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A. Figure 70 (continued). Prior and posterior empirical cumulative distribution functions of the spatially distributed parameters in 2008-

2013: the Kolubara (left panels), Toplica (mid panels) and Mlava River catchments (right panels).

- 101 -



BUOIPA®UIA

Anpapujana TomopoBuh je pohena 20. oxtobOpa 1983. rommne y beorpaay, rume je
3appmmia ocHoBHY Imkoidy M VI beorpaacky I'mmuasujy. I'paheBuncku daxynrtet
VYuusepsutera y beorpany ynucna je 2002. rogune. JAunnomupana je 2008. roaune ca
npocedHoM otieHoM 8,02. ummomcku pan ,,Kaptupame pusuka of morsiaBa y JOJIUHUA
Tomunaepcke pexe™ oLUemeH je HajBUIIOM OIleHoM u Harpahen ox ctpane [IpuBpenne
koMope beorpana 3a HajOoospm Jumiomcku pan y 2008. rogmnu. Ilocienuriomcke
crynuje Ha ['paheBunckom dakynrery, oncek I'paheBunapctBo, ymucana je 2008.
rogude. Ox ¢debpyapa 2009. roaune 3anocneHa je Ha ['paheBuHckoM (axkynTeTy Kao
ACHCTEHT-CTYACHT JOKTOPCKUX CTyAMja Ha MpeIMeTHMMa Ha OCHOBHUM aKaJEeMCKUM,

MAacTep U CIEeNUjaTUCTUIKAM CTYIUjama.

AHraxoBaHa je Kao MCTpaXMBay Ha NpOjeKTUMa Koje (uHaHcHpa MMUHHCTapCTBO
MpOCBeTe, HayKe U TEXHOJOIKOT pa3Boja Pemybnuke Cpbuje. AyTop je jemHor pana y
mehynapaonnom wacomnucy ca SCI nucre, ka0 M BHIIE pajoBa y 4acomucuMma Of

HAIIMOHAJHOT 3Ha4yaja ¥ Ha HAyYHUM CKYIIOBHMA.

Bnaga enrneckum u CJIY’KH CC pyCKUM U HEMAYKUM jCSI/IKOM.



Mpunor 1.

MUsjaBa o ayTopcTBy

MotnncanHa AHppujaHa Togoposuh

Opoj unpgekca 907 / 08

UsjaBrbyjem
Aa je fOoKTOpCKa AgucepTauuja nos Hacrnosom

IMPACT OF CALIBRATION PERIOD ON PARAMETER ESTIMATES IN THE
CONCEPTUAL HYDROLOGIC MODELS OF VARIOUS STRUCTURES

(Hacnos Ha cprickom jeauky: YTULAJ MEPUOOA KANMMBPALIMJE HA OLEHE
MAPAMETAPA KOHUENTYAJIHUX XUOPOJIOWKUX MOLOENA PASNMNUYUTUX
CTPYKTYPA)

e pe3ynTaT CONCTBEHOr UCTPpaXXBadKor paaa,

e [a npeanoxeHa guceprauuja y UenuHn H1 y Aenosuma Huje buna npeanoxeHa
3a pobujakbe 6uno koje AuNAOME npema CTYAWjCKMM nporpamuma apyrux
- BUCOKOLLIKOSICKUX YCTaHOBa,

e [a Cy pe3ynTaT KOPEKTHO HaBEeAEHU U

* [a HuCaM Kplumo/na ayTopcka npaBa W KOPWUCTUO WHTENeEKTyanHy CBOjUHY
ApYrux nuua.

-

MoTnuc gokTopaHga

Y Beorpaay, 1. 7. 2015.



Mpunor 2.

WU3jaBa 0 ICTOBETHOCTM LWITAMNaHe U efIeKTPOHCKE
Bep3uje AOKTOPCKOr paga

Mme u npesume aytopa AHppujaHa Togoposuh
Bpoj uHgekca 907 /08
Ctyaujckn nporpam "'pafeBnHapCcTBO

Hacnoe paga: IMPACT OF CALIBRATION PERIOD ON PARAMETER ESTIMATES
IN THE CONCEPTUAL HYDROLOGIC MODELS OF VARIOUS STRUCTURES

‘HcroB Ha cpnickom jesuky: YTULAJ NMEPUOOA KANIMBPALUJE HA OLEHE
NMAPAMETAPA KOHUENTYAJTHUX XNOPONOWKUX MOAENA PA3JIMUYUTUX
CTPYKTYPA

MeHTopu B. npod. JacHa Mnaswwuh n B. npod. Munow Ctanuh
Motnncana: AHgpujaHa Togoposuh

UsjaBrbyjem fa je wtamnaHa Beps3vja MOr JOKTOPCKOr paja UCTOBETHA €MNeKTPOHCKO)
Bep3vju Kojy cam npepao/na 3a objasrbmBare Ha noptany [OurutanHor
penosutopujyma YHuBep3suteta y beorpaay.

[ossorbaBam ga ce ob6jaBe Moju nNUYHM nodaun BesaHu 3a fobujake akagemckor
3Bakba AOKTOpa Hayka, Kao LUTO Cy UMe 1 npesume, roamHa n mecto pofierwa v gatym
oabpaHe paga. :

OBu nuyHn nogaum mory ce 006jaBUTM Ha MpPEXHMM CTpaHuuama purutanHe
BubnuoTteke, y eneKTPOHCKOM KaTanory u y nyénukauujama YHusepsuteta y beorpagy.

MoTnuc gokropaHaa

Y beorpagy, 1.7.2015



Mpwunor 3.

UsjaBa o kopuwhewy

Osnawhyjem YHusepsutetcky 6ubnuoteky ,Csetosap Mapkosuh* ga y OurutanHu
penosutopujym YHusepsuTeTa y beorpagy yHece Mojy OOKTOPCKY AucepTauujy nog
HaCcnoBoM:

IMPACT OF CALIBRATION PERIOD ON PARAMETER ESTIMATES IN THE
CONCEPTUAL HYDROLOGIC MODELS OF VARIOUS STRUCTURES

(Ha cpnckom jesuky: YTULIAJ NMEPUOOA KANTMBPALIMJE HA OLIEHE MAPAMETAPA
KOHUENTYANHUX XUAPONOLWKNX MOAENA PA3NUYNTUX CTPYKTYPA)

Koja je Moje ayTopcko Aeno.

[ucepTaumjy ca csum npunosuma npegana cam y enekTpoHcKkoM copmaTy norogHom
' 3a TpajHO apxuBUpatr-E.

Mojy pokTopcky auceptauujy noxpamweHy y OurutanHu penosvTopujyMm YHuBepsuteTa
y beorpagy mory fa kopucte cBu koju nowTyjy oapenbe capgpxaHe y ogabpaHom Tuny
nuueHue KpeatusHe 3ajegHuue (Creative Commons) 3a kojy cam ce ognyyuna.

1. AyTopcTBO

2. AyTOpCTBO - HEKOMepLUjanHo

3. AyTopCcTBO — HEKOMepuuWjanHo — 6e3 npepage

4. AyTOpCTBO — HEKOMEpLWjanHo — AenuTi Nog UCTUM ycrnoBuma
5. AytopcTteo — 6e3 npepage

6. A)./TOpCTBO — OenuTy NoA UCTMM yCrioBuma

(Monumo pa 3aokpyxute camo jefHy of LWecT noHyReHuMx nuueHuuM, KpaTak onuc
nuueHun gart je Ha nonefuHu nucra).

MoTnuc gokTopaHpa

Hegpl Lyt

Y Beorpagy, 1. 7. 2015.
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