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Signatures of hidden quantum criticality in the
high-temperature charge transport near the Mott

transition

Abstract

The Mott metal-insulator transition is one of the hallmarks of strong electronic

correlation and is one of the most active areas of condensed matter research today.

Both the experimental data and theory clearly show that the Mott transition is a

�rst order transition, featuring a coexistence region up to some critical temperature

Tc. The vicinity of the critical point has been studied extensively and is shown to

display critical phenomena of the classical Ising universality class. Below Tc, the

�rst order transition separates a paramagnetic Mott insulator and a paramagnetic

metal. At lowest temperature, the two phases often develop long-range order -

antiferromagnetism or superconductivity. The Mott transition separates two distinct

phases all the way down to zero temperature, which makes it a quantum phase

transition.

The open questions regarding the Mott transition include: can Mott mechanism

in some cases produce a phenomenology drastically di�erent from that of a �rst or-

der transition? Can Tc be brought down to zero, i.e. can Mott transition be reduced

to a single quantum critical point? The theory suggests that these are quite possi-

ble, but a clear experimental veri�cation of such prediction is still lacking. Can a

Mott transition be completely hidden by a superconducting ordering instability, and

can critical �uctuations of a Mott transition provide a boost to the Cooper pairing

mechanism? These questions are of utmost importance, but are notoriously hard to

answer. Is there a universal high-temperature behavior in connection with the Mott

transition, as is usually the case with other quantum phase transitions? Here we

investigate this possibility and show that the answer is positive. Furthermore, we

show that the linear temperature dependence of resistivity often found in the inco-

herent (bad metal) transport regime can be understood as the general consequence

of the Mott quantum criticality.

In this thesis we numerically solve the single-site dynamical mean �eld (DMFT)

equation for the Hubbard model, using the iterative perturbation theory (IPT) and

continuous time quantum Monte Carlo (CTQMC). We focus on the supercritical



(crossover) regime of the Mott transition, which is precisely where DMFT is expected

to work best - non-local e�ects have been thoroughly shown not to play a role

when temperature is high. We calculate resistivity with high resolution throughout

the phase diagram and perform a thorough analysis of the data. We �rst show

that there is an �instability trajectory� U∗(T ) in the crossover region of the phase

diagram, revealing a fundamental distinction between metallic-like and insulating-

like behavior, and providing a continuation of the �rst-order transition line to the

supercritical temperatures. Then, we perform a scaling analysis of the resistivity

data (as routinely employed in the context of purely quantum phase transitions),

to demonstrate the validity of a scaling law with temperature T in the scaling

argument, rather than the distance from the critical point |T − Tc|. The observed

scaling ρ = ρ(U∗(T ), T )F ((U −U∗(T ))/T 1/zν) is found to be of high quality, and is

corroborated by very recent experimental results on organic Mott insulators.

In the second part of our work, we focus on the doping-driven Mott transition

and complete the 3D (µ, U, T ) phase diagram of single-site DMFT. We document

the quick reduction of Tc as U is increased and extend our scaling analysis to the

case when Tc is very small. Here the chemical potential µ rather than on-site in-

teraction U enters the scaling law ρ = ρ(µ∗(T ), T )F ((µ− µ∗(T ))/T 1/zν). We show

that the phenomenology of the Mott transition resembles that of a quantum crit-

ical point and associate the corresponding quantum critical region with the linear

resistivity bad metal regime. Starting from the scaling hypothesis, we derive a semi-

analytic formula able to reproduce both the linearity and slope of the resistivity

curves in the high-temperature part of the full DMFT result, which is found to be

in good qualitative agreement with the experiment on the famous cuprate compound

La2−xSrxCuO4.

Keywords: strong correlations, Mott metal-insulator transition, quantum criti-

cality, dynamical mean �eld theory

Scienti�c �eld: Physics

Research area: Condensed matter physics

UDC number: 538.9



Pokazate	i skrivene kvantne kritiqnosti u
visoko-temperaturnom transportu naelektrisa�a u

blizini Motovog prelaza

Sa�etak

Motov metal-izolator prelaz je jedna od najva�nijih posledica jakih elek-

tronskih korelacija, i jedna od najaktivnijih oblasti istra�iva�a u fizici

kondenzovane materije. I eksperiment i teorija jasno ukazuju da je Motov

prelaz fazni prelaz prvog reda i da ispo	ava koegzistenciju faza do neke

kritiqne temperature Tc. Transportne i termodinamiqke osobine u okolini

kritiqne taqke su deta	no prouqavane i pokazalo se da mogu da se opixu

teorijom klasiqnih faznih prelaza Izingove klase univerzalnosti. Ispod

Tc, fazni prelaz prvog reda razdvaja paramagnetni Motov izolator i paramag-

netni metal. Na najni�im temperaturama, obe faze qesto razvijaju dugodometno

ure�e�e - antiferomagnetizam ili superprovodnost. Motov prelaz razdvaja

dve razliqite faze sve do nulte temperature xto ga qini kvantnim faznim

prelazom.

Neka od va�nih otvorenih pita�a vezano za Motov prelaz uk	uquju: da

li Motov mehanizam mo�e u nekim sluqajevima da proizvede fenomenologiju

drastiqno razliqitu od faznog prelaza prvog reda? Da li Tc mo�e da se

spusti u nulu, tj. mo�e li se Motov prelaz svesti na kvantnu kritiqnu taqku?

Teorija sugerixe da je ovo mogu�e, ali takva predvi�a�a jox uvek qekaju na

neospornu eksperimentalnu potvrdu. Mo�e li Motov prelaz da bude kompletno

sakriven superprovodnom fazom, i mogu li kritiqne fluktuacije vezane za

Motov prelaz da doprinesu Kuperovom spariva�u? Ova pita�a su od velikog

znaqaja, ali je na �ih jox uvek nemogu�e potpuno odgovoriti. Postoji li uni-

verzalno ponaxa�e na visokoj temperaturi, povezano sa Motovim prelazom,

kakvo se qesto opa�a u kontekstu kvantnih (T = 0) faznih prelaza? Ovde is-

tra�ujemo takvu mogu�nost i nalazimo pozitivan odgovor. Tako�e, pokazujemo

da se linearna temperaturna zavisnost otpornosti, qesto opa�ena u nekoher-

entnom re�imu transporta, mo�e razumeti kao univerzalna posledica Motove

kvantne kritiqnosti.

U ovoj tezi numeriqki rexavamo jednaqinu teorije dinamiqkog sred�eg



po	a za Habardov model(DMFT), koriste�i iterativni perturbativni metod

(IPT) i kvantni Monte Karlo metod u kontinualnom vremenu (CTQMC). Kon-

centrixemo se na prelazni visokotemperaturni re�im izme�u metala i izo-

latora, xto je upravo re�im gde su nelokalne korelacije zanemar	ive, pa je i

DMFT opravdana aproksimacija. Raqunamo provodnost sa visokom rezoluci-

jom xirom faznog dijagrama i deta	no analiziramo rezultate. Prvo pokazu-

jemo da postoji \linija nestabilnosti" U∗(T ) u nadkritiqnom delu faznog

dijagrama, koja otkriva suxtinsku podelu izme�u metaliqnog i izolatorskog

ponaxa�a, i predstav	a produ�etak linije faznog prelaza prvog reda na nad-

kritiqne temperature. Onda, sprovodimo analizu skalira�a rezultata za ot-

pornost (kako se to inaqe qini u sluqaju qisto kvantnih faznih prelaza) da

bismo utvrdili va�e�e zakonitosti sa temperaturom T u argumentu umesto

oda	enosti od kritiqne taqke |T − Tc|. Prona�eno skalira�e ρ = ρ(U∗(T ), T )

F ((U −U∗(T ))/T 1/zν) je visokog kvaliteta, i potvr�eno je u nedavnom eksperi-

mentu na organskim Motovim izolatorima.

U drugom delu rada, koncentrixemo se na Motov prelaz izazvan dopira-

�em i upotpu�avamo trodimenzionalni (µ, U, T ) fazni dijagram. Dokumentu-

jemo ubrzano sma�iva�e Tc kako se pove�ava interakcija U i koristimo naxu

analizu skalira�a u sluqaju kada je Tc vrlo malo. Sada hemijski potenci-

jal µ umesto jaqine interakcije U ulazi u zakon skalira�a ρ = ρ(µ∗(T ), T )

F ((µ− µ∗(T ))/T 1/zν). Pokazujemo da je Motov prelaz povezan sa univerzalnim

visoko-temperaturnim ponaxa�em tipiqnim za kvantne kritiqne taqke, i da

se ono poklapa sa re�imom loxeg metala sa linearnom otpornox�u. Kre�u�i

od pretpostavke o va�e�u skalira�a, izvodimo polu-analitiqku formulu koja

reprodukuje i linearnost i nagib krivih otpornosti u visoko-temperaturnom

delu punog DMFT rezultata, koji je u dobrom kvalitativnom slaga�u sa eksper-

imentom na poznatom jedi�e�u bakar-oksida La2−xSrxCuO4.

K	uqne reqi: jake korelacije, Motov metal-izolator prelaz, kvantna kritiq-

nost, teorija dinamiqkog sred�eg po	a

Nauqna oblast: Fizika

Oblast istra�iva�a: Fizika kondenzovane materije

UDK broj: 538.9
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1. Introduction

The many-body problem is arguably the single most important problem, not only in

physics, but in biology/neuroscience, social science and �nance. The phenomenon

of emergence is so universally present, that it is impossible to even try and envision

the possible gain from a better and possibly systematic understanding of complex

systems. In physics, however, one deals with elementary particles which are only few

in type, with well de�ned properties and amazingly simple interactions. This poses

an unprecedented opportunity to actually work out and test theories that predict

emergent behavior. The study of the many-body problem arising in condensed

matter systems is, indeed, not without success. It made clear that quantum nature

of the elementary constituents of matter becomes so dominant at low temperature,

that it is often easily observable even on the macroscopic scales. The quantum

uncertainty, entanglement and exchangeability of particles are identi�ed as very

powerful mechanisms, able to give rise to phases of matter so exotic, that they

are unmatched by anything in our everyday experience of the world. A bosonic

super�uid creeps out of any container, and superconducting materials seemingly

violate the �rmest notion that energy must always dissipate - it is a fundamental and

invaluable insight, that already pairwise correlation between electrons can produce

a drastic e�ect which is superconductivity. It is therefore of primary importance to

understand the seemingly endless variety of ways quantum particles can self-organize

into a collective state, and try to identify general mechanisms which lead to behavior

qualitatively di�erent from that of an ensemble of mutually non-interacting particles.

The study of condensed matter theory has brought us some very useful rules of

thumb. For a system to have exotic properties, it is not su�cient that there are

interactions. Interactions are a built-in property of all particles, yet most of the

materials are just boring chunks of matter. Interactions get screened and most of

the systems can be described using an e�ective single-particle picture. The conven-

tional material is either a metal or an insulator, and this can be predicted with as

1



little information as is the occupancy of the valence band. What turns out to be

important is that there are competing energy scales - an ambiguity in what is the

energetically favorable state of the system. While the research of ordered phases

is an important part of condensed matter study, the most interesting phenomena

seem to go hand in hand with instability of the order. It is on the verge of a tran-

sition from an anti-ferromagnetic insulator to a paramagnetic metal that cuprate

compounds exhibit superconductivity at remarkably high temperatures [1, 2, 3]. It

is now widely accepted that in the vicinity of a phase transition most interesting

stu� happens. At precisely the quantum critical point (QCP) systems are so inde-

cisive of what should be their ground state, that �uctuations appear at all time and

length scales. Quantum critical �uctuations may in some cases carry an e�ective

interaction between particles, such that it produces non-trivial correlations and an

emergent order of unpredicted macroscopic signature.

The most appealing aspect of quantum critical points is that they seem to dis-

play a high degree of universality [4, 5]. The �nite temperature crossover region is

completely dominated by the presence of a T = 0 quantum critical point, and this is

embodied in scaling laws, as documented in numerous experiments on various sys-

tems [6, 7, 8, 9, 10, 11]. The study of phenomena associated with quantum critical

points is one of the most exciting �elds in condensed matter theory today. QCP's are

important from the view of possible technological application, but they also prove

to be a very useful playground for tackling the fundamental questions, not only in

condensed matter theory, but gravity and string theory as well. The physics pre-

cisely at the QCP can be described by a conformal �eld theory, and as such is ideal

for testing the AdS/CFT correspondence conjecture, which is an immense topic in

its own right. Recent studies [12, 13, 14, 15] showed that string theory contains the

necessary mathematical complexity to reproduce the strongly renormalized Fermi

liquid and strange metal phases in connection with a metal-insulator transition, and

is additional motivation to further study these phases from the condensed matter

theory side. A related, bad metal phase and the crossover region associated with

the Mott metal-insulator transition are at the focus of the work presented in this

thesis.

The Mott metal-insulator transition is one of the hallmark examples of strong

electronic correlation, and is well understood - the electrons in a solid tend to delo-

calize, but avoid to be found together on the same lattice site. If the excess Coulomb

energy paid when two electrons occupy the same orbital overcomes the gain from

2



uncorrelated delocalization, the electrons become particle-like, acting as localized

magnetic moments, and conduction is severely suppressed. However, the (paramag-

netic) Mott insulator ground state is not known, neither are its properties clear from

the experimental side of view. Unlike the superconducting condensate, electrons in

a Mott insulator do not form bound pairs, and the structure of their many-body

wave function is certainly more complex. Furthermore, in the vicinity of the Mott

transition, there are many ordering instabilities, often towards medium and even

high-Tc superconductivity. The connection of the Mott localization and supercon-

ductivity in these systems is still not satisfactorily resolved [2]. Most importantly,

the Mott transition is by all means a quantum phase transition, but is strangely

not observed as a quantum critical point. It is a �rst order phase transition, and its

�nite-temperature critical end-point is of the classical Ising type. This thesis is an

e�ort to reconcile these seemingly converse properties of the Mott transition.

The results presented here suggest that the �rst order transition and the second

order quantum critical point are just two limits of the same phenomenology, and

that the �nite temperature critical end-point can be tuned to zero temperature,

thus reducing the entire phase coexistence region to a single QCP. Moreover, the

DC resistivity is found to �t to a quantum critical scaling law in a large portion of the

phase diagram, both in experiment and exact theory. At high enough temperatures,

the signatures of the Mott transition are that of a T = 0 QCP. Most importantly,

the validity of a QC scaling function is shown to be in direct connection with the

T -linear resistivity at high temperatures, in agreement with experiments on cuprate

�lms, shedding new light on the 20 years old mystery of bad metal behavior beyond

the Mott-Io�e-Regel limit.

However, a naive description of the �rst order Mott transition from perspective

of quantum criticality runs into a problem immediately - the critical value of the

parameter driving a �rst order transition is a function of temperature. One there-

fore needs to introduce a generalization of the QC scaling formula which in the

original form takes only a single critical value (a number rather than a function of

temperature) in its argument. One of the most important results of this work is

that such generalization is possible, well de�ned in terms of purely thermodynamic

quantities, and with solid physical justi�cation. The extension of the �critical value�

to the super-critical temperatures where no actual transition takes place is the point

of maximal instability of the system. The quantum critical region therefore can be

viewed in more general terms as the region on the phase diagram where the system

3



is least decisive of its behavior. The concept of instability lines (or quantum Widom

lines) is very general and may prove useful in unrelated problems. From the techni-

cal point of view, we introduce a novel approach in numerical simulation - one may

not obtain information from only the �nal result, but also from the intermediate

results of a simulation. The dynamical mean �eld (DMFT) calculation employed in

this work is a solution of a self-consistent equation through an iterative procedure.

It turns out that it is possible to rigorously relate the stability of a state with the

convergence rate of the DMFT calculation which yields the given state. In other

words, one should not only look at the solution of an equation, but also at the way

the solution is approached in the numerical treatment.

The rest of the thesis is organized as follows. In chapter two I discuss the emer-

gence of quantum critical scaling at high temperatures, in the vicinity of a QCP.

Then, I overview the most important aspects of the Mott transition. In chapter

three I discuss theoretical methods used - the dynamical mean �eld theory and its

properties, the numerical algorithms used for the solution of the impurity problem

(or impurity solvers), and �nally the analytical continuation of the imaginary axis

data to the real axis. In chapter four I present the results of DMFT, map out the

phase diagram of the Hubbard model, and analyze the high-temperature data in

view of possible quantum critical behavior. In chapter �ve I make a few conclud-

ing remarks, state the remaining open questions and propose directions for future

studies.

4



2. Quantum phase transitions

Quantum phase transitions (QPT's) are second-order (continuous) phase transitions

that occur at zero temperature when an in�nitesimal variation of a Hamiltonian

parameter signi�cantly changes the properties of the ground state through level

crossing (Fig. 2.1) [4]. The term �quantum� here makes a distinction from conven-

tional second-order phase transitions which occur at �nite temperature. In some

cases, the classical transition corresponds to the thermal destruction of long-range

order, while in others there is a �rst-order transition between two phases ending in

a �nite-temperature second-order critical end-point.

A complete theory of quantum phase transitions would have to tackle strong

correlations present in interacting many-body systems, which is an impossible task

in most cases. Fortunately, there is an analogy between quantum and classical sys-

tems which can be utilized to give some very general answers regarding the QPT

phenomenology [16, 5]. The physics of classical phase transitions has been studied

extensively over several decades, and a very complete theory of universal behavior

and critical scaling has been put forward to numerous experimental veri�cations.

It turns out that the concepts of universality classes and order parameters as de-

veloped in the study of classical models, can be successfully applied to the case of

QPT's. Just as is the case in classical systems, the properties of condensed matter

in the vicinity of a (T = 0) quantum critical point (QCP) are insensitive to micro-

scopic details that produce the phase transition in the �rst place, and are therefore

universal.

2.1 Quantum-classical correspondence

The analogy between the classical and quantum systems is most easily seen upon

inspection of the partition function in the quantum case

Z = Tr exp βĤ (2.1)

5



2.1 QUANTUM-CLASSICAL CORRESPONDENCE

K

E Excited state

Ground state

KC

Figure 2.1: Level crossing causes T = 0 (quantum) phase transitions. Upon variation
of a Hamiltonian parameter K through a critical value Kc, an excited state becomes
the ground state of the system.

The statistical operator is formally equivalent to the operator of quantum evolution

eitH , but in imaginary time β → τ = it. This can be used to formulate the quantum

problem in terms of path-integrals which sum all possible trajectories that start (at

τ = 0) and end (at τ = β) in the same state. Then, the statistical operator formally

plays the role of the Boltzmann weight of a given trajectory, which can now be

considered a classical con�guration of a d+1-dimensional system. Therefore, there

is a correspondence between d-dimensional quantum and d+1-dimensional classical

systems, where the additional dimension is the imaginary time. The transition

driving parameter of the quantum Hamiltonian then enters the classical system

as (arti�cial) temperature, and the real temperature of the quantum system only

determines the compacti�cation of the imaginary time coordinate (τ ∈ (0, β), where

β = 1/T ) in the classical system, thus making it �nite in one direction (unless, of

course, T = 0). Note also that the classical system is periodic in the τ direction, i.e.

a quantum system with a 1D chain geometry corresponds to a classical system on

a cylinder of circumference β.

A very famous example of the quantum-classical mapping is the case of Josephson

junction arrays [17]. This 1D quantum model can be mapped to a classical 2D XY

model, which has a well known behavior [18, 19] (note that this mapping is not exact

but it rather preserves the universality class of the problem - all the critical exponents

are known exactly, but far from the transition the solution of the classical model

does not yield exact answers regarding the quantum model). The quantum quantity

corresponding to the orientation of a classical XY rotor at the lattice site i is the

phase θi of the complex �eld ψi describing the superconducting order parameter on a
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given grain. The temperature of the classical system corresponds to the ratio of the

two parameters from the quantum Hamiltonian, namely T ∼
√
EC/EJ where EC is

the capacitative charging energy, and EJ is the Josephson coupling energy. In the

classical system, at low temperature, there are long-range correlations between the

rotors, and they are globally aligned. At a certain temperature Tc, a phase transition

occurs to a disordered phase in which correlations between the rotors are only short-

ranged. In the quantum system, the voltage between the superconducting grains is

conjugate to the phase V̂i ∼ ∂
∂θi

. Then, when the Josephson coupling constant EJ
is su�ciently reduced, the temperature of the classical system goes through the

critical value Tc, the XY rotors become uncorrelated (
〈

∂
∂θi

〉
is no longer zero) and

the quantum system goes from a superconducting to an insulating state where now

there is �nite voltage between the grains - although the individual grains are still

superconducting, they are collectively incoherent and therefore insulating. Once

the correspondence between quantities in the two models has been established, the

conclusions regarding the classical model can be immediately applied to the quantum

model.

However, the properties of even the classical systems are not known in general.

Still, in the vicinity of a critical point, the physics does not depend on the microscopic

details of the system, but rather on the universality class, which can be determined

through considerations not necessarily including the full solution of the problem.

Often, the universality class depends on dimensionality and only the basic properties

of the model. Now, if universality class of a classical system is known, the behavior

of the corresponding quantum system in the T = 0 vicinity of a QCP is also known.

Remarkably, even when quantum classical-mapping is impossible (which is gen-

erally the case with fermionic systems such as the gapless Fermi liquid), or the

correspondent classical model is of an unknown universality class and impossible to

solve, there are general conclusions regarding the QCP phenomenology to be drawn

from the classical scaling theory, which seem to apply always.

2.2 Quantum critical (or �nite size) scaling

The universality in behavior of both classical and quantum systems stems from the

scale invariance of most critical points. The classical scaling theory predicts for an

in�nite system that precisely at the critical temperature, correlation length ξ will

7
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diverge as

ξ ∼ |T − Tc|−ν

where the exponent ν > 0 is determined by the universality class of the system

[4, 16]. Using the quantum-classical correspondence, the same can be said for a

quantum system at T = 0

ξ ∼ |K −Kc|−ν

where K is the parameter of the quantum Hamiltonian which corresponds to the

temperature of the classical model. Note also that the correlation length diverges in

all directions, including the imaginary time, although not necessarily with the same

exponent

ξτ ∼ ξz.

In general, τ does not enter the classical model on the same footing as the other

spatial dimensions, and here we reserve ξτ for the correlation length in the imaginary

time direction. However, in many cases of interest, the dynamic exponent z does

indeed equal 1 (a notable exception is the Hertz-Millis �eld theory of magnetic Fermi

liquid instabilities, where z = 2 or 3, and the e�ective dimensionality is deff = d+z)

[5]. Note also that determining the critical exponents from a mean �eld theory is

usually good enough. However, in the nearest vicinity of the critical point (the

so called Ginzburg region) critical exponents acquire corrections which can not be

obtained from mean-�eld considerations.

Then, in the vicinity of the QCP, for an arbitrary observable measured at wave-

length k and frequency ω, the scaling theory predicts no explicit dependence on the

K parameter

O(k, ω,K) ∼ O(kξ, ωξτ )

since the only characteristic scales are ξ and ξτ . When K = Kc, ξ, ξτ → ∞, and

no scale other than the measured wave-length k and frequency ω can determine

observables

O(k, ω,Kc) = kdOO(kz/ω).

where dO is the scaling dimension of the given observable. The physical meaning of

this is that precisely at the quantum critical point, quantum �uctuations are present

at all time and length scales.

At �nite temperatures, however, additional considerations must be made. First,

8
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Figure 2.2: At the critical point correlation length diverges [16]. At �nite temper-
ature of the quantum system, the size of the corresponding classical system in the
imaginary time direction becomes �nite (Lτ = β). Close enough to the critical point,
the correlation lentgh ξτ outgrows the size Lτ thus making the system e�ectively
d-dimensional, and therefore classical.

the �nite temperature of the quantum system makes the classical system �nite in the

τ direction. Since at the critical point the correlation length diverges, close enough

to the critical point, the classical system will become e�ectively d-dimensional

(Fig. 2.2). In general, this will change the universality class of the classical system,

and in some cases, the new universality class does not feature a phase transition at

all. Otherwise, there will be a transition, but in the vicinity of it, the behavior of

the quantum system will be purely classical, as the extra imaginary time dimension

does not play a role here. So, the phenomena accompanying QPT's at T > 0 can be

divided in two groups (although not without exceptions). Finite temperature can

either destroy the phase transition altogether Fig. 2.3b, or the ordered phase can

survive up to a certain temperature T ∗(K), at which a conventional second order

phase transition takes place (red line in Fig. 2.3a; if there is no order on either side of

transition, then Fig. 2.3c). The orange area around T ∗(K) can readily be described

by the classical scaling theory because at the longest length scales, the correspond-

ing classical system is always e�ectively d-dimensional, and therefore identical to

the quantum system. However, this phase transition is of di�erent universality class

compared to the T = 0 QCP.

In all cases (Fig. 2.3), however, there is an intermediate, crossover regime that
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Figure 2.3: Quantum phase transitions can be extended to �nite temperatures in two
ways. (a) The long-range order persists to some �nite temperature and is eventually
destroyed by thermal �uctuations through a classical second order transition. In the
orange region, classical scaling theory can be readily applied. (b) Even in�nitesimal
temperature destroys the phase transition, and only a crossover is observed at �nite
temperature. This type of phenomenology is usually observed when Mermin-Wagner
theorem applies - in d ≤ 2 there can be no spontaneous breaking of a continuous
symmetry at �nite temperature, and therefore the ordered phase is restricted to
T = 0. If the transition is not between an ordered and disordered phase, then the
generic phase diagram is given by (c). In all cases, an intermediate, quantum critical
region is present (green). In this regime, scaling speci�c to QPT's is observed.

displays scaling behavior of di�erent origin. Although strictly speaking the phase

transition of the d+ 1 universality class is necessarily absent at �nite temperatures

of the quantum system, it does not disappear completely, but rather gets rounded

due to �nite-size e�ects in the classical model. Around Kc, but at some �nite

temperature, the only characteristic scale in the system is no longer the correlation

length, but there is also Lτ . So the properties are determined by the ratio between

the correlation length and the size of the system in the imaginary time direction

ξτ/Lτ , where Lτ = β. However, even atK = Kc, the temperature makes a di�erence

so for a general observable

O(k, ω,K, T ) = Oc(T )O(kL1/z
τ , ωLτ , Lτ/ξτ )

must hold. If the observable is measured at zero frequency and in�nite wave-length,

we have

O(k = 0, ω = 0, K, T ) ≡ O(K,T ) = Oc(T )O(Lτ/ξτ ) = Oc(T )O(|K −Kc|zν/T ).

(2.2)

This behavior is known as the quantum critical scaling (or �nite size scaling in
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classical systems) and is experimentally observed in many systems [6, 7, 8, 9, 10].

It is very important to note that the physical content of the above expression is

not actually present at T = 0. The width of the quantum critical region (QCR) in

which the above is expected to hold shrinks to a single point at T = 0, so all the

features of the QCR stem directly from the QCP. In practice, the true discontinuity

(jump) in the value of quantities possibly present at the QCP becomes a smooth

crossover at �nite temperature, ever smoother with increasing temperature, yet in

a way precisely determined by the universality class of the T = 0 transition itself.

The quantum critical scaling is a �magnifying glass� looking at the QCP which

allows for the experimental inspection of the properties of a zero-temperature phase

transition otherwise not accessible. Note also that simplest considerations yield the

�hyperscaling� relation

Oc(T ) = Oo T−dO/z (2.3)

but signi�cant corrections to this law may be present, depending on the model.

Otherwise, the sign of the scaling dimension determines whether the observable will

go to in�nity or zero at the QCP. When scaling dimension is zero, Oc(T ) is just a

constant. For example, for the resistivity in the context of non-interacting disorder

driven (Anderson) metal-insulator transition, dρ = d−2, which is also known as the

Wegner scaling. Here, the scaling dimension depends on the dimensionality of the

system. However, above the upper critical dimension for a transition, these simple

considerations fail due to �dangerously irrelevant variables� (above the upper critical

dimension for a transition, the Gaussian �eld theory becomes exact, but one must

not immediately discard the quartic interaction term; more careful considerations

must be made in determining the critical exponents, and because of this, no general

result such as the hyperscaling can be obtained).

In the following, I present the hallmark examples of how quantum critical scaling

of quantities can demystify the existence and properties of a QCP.

2.2.1 QHE

The quantum Hall e�ect is the appearance of plateaus in the Hall resistivity, precisely

at multiples of the quantum of resistivity h/e2 (when multiples are integer, then it

is known as the integer QHE, otherwise - the fractional QHE). A thin sheet of a

material is put in a perpendicular magnetic �eld, and connected to four terminals.

A current is induced along one axis, and voltage is measured along the other to
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Figure 2.4: Crossover between two plateaus in quantum Hall e�ect displays QC
scaling [10]. The maximal derivative of resistivity with respect to magnetic �eld
is a power law of temperature, consistent with the QC scenario. The width of the
crossover region ∆B increases with temperature, in the same fashion.

deduce the Hall resistivity ρxy. As magnetic �eld is varied, di�erent Landau levels

of cyclotron motion cross the Fermi level, which is observed as jumps in otherwise

constant Hall resistivity. The behavior of resistivity in the crossover between two

plateaus can be used to determine the properties of the zero-temperature transition.

At the critical value of the magnetic �eld, resistivity is independent of temperature.

Also, the jump in resistivity becomes smoother with increasing temperature, but

in a fashion such that ∂ρ
∂B

= T−zν precisely (Fig. 2.4) [10, 16]. Furthermore, it

turns out that the scaling exponent zν is universal for all materials exhibiting QHE.

This means that the phase diagrams of such systems feature an array of QCP's,

as presented in Fig. 2.5, and that they all fall into the same universality class.

The theory of QHE has been very successful in describing the position of plateaus

which also displays some universality, but it is remarkable how the scaling theory

captures the essential features of the crossover region without any regard to the

actual Hamiltonian of these systems.
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T
QCR

B

ρH

B
QCR QCR

T

Figure 2.5: Phase diagram of the quantum Hall systems features an array of quan-
tum critical points. At T = 0, Hall resistivity ρH has discountinuities (or �jumps�)
at certain values of external magnetic �eld. With increasing temperature, the jumps
become more and more gradual. Each QCP is associated with a quantum critical re-
gion (green) where resistivity displays a behavior consistent with a quantum critical
scaling law.

2.2.2 SIT in α-MoGe thin �lms

The α-MoGe thin �lms become superconducting at low temperature, but due to

high level of disorder in such samples, true zero resistivity is not observed [20,

9]. Rather, the system displays inverse activation, or the exponential growth of

resistivity with temperature. This behavior is due to dissipative motion of vortices,

which get depinned from structural defects by the applied current (the zero resistivity

is expected only at T = 0 when the vortices freeze in a glass-like state). As usual,

magnetic �eld can also destroy superconductivity in these systems, in which case

the electrons become weakly localized (the resistivity is a logarithmic function of

temperature at high magnetic �elds). It has been shown that these systems also

display quantum critical scaling in the crossover region at high temperature. On

Fig. 2.6, it is shown how all the resistivity data can be collapsed onto two branches,

which is a standard procedure in determining whether QC scaling is observed, in
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Figure 2.6: Superconductor-insulator transition in thin α-MoGe �lms displays char-
acteristic quantum critical scaling of resistivity [9].

direct connection with Eq. 2.2 (more details below).

2.2.3 MIT in 2D electron gas

At the interface of two semi-conductors with di�erent gaps, it is possible to realize a

truly two-dimensional free electron gas [11]. The electrons here have to overcome a

gap of ∼ 200K to delocalize in the z-direction, so when the experiment is performed

at 2K, they become con�ned within barely 100Å along the z-axis. It has been long

believed that such systems would always be insulating, because it was expected that

in 2D, even in�nitesimal disorder completely localizes the electrons. However, recent

developments have shown that such systems actually exhibit a plethora of interesting

phenomena. On Fig. 2.7 we show a conceptual phase diagram of the 2D electron

gas realized in MOSFET systems, where the carrier concentration is controlled by

(electric) �eld e�ect, and the external magnetic �eld is applied perpendicularly to

the plane of electronic motion. We see that even at B = 0, there is a metal-insulator

transition (MIT) at some critical value of carrier concentration, and at high �elds,

also fractional quantum Hall e�ect (FQHE) is observed. The experiments are always

performed at �nite temperature, and both the MIT and the transition between the

Hall plateaus are observed as continuous crossovers, but the scaling of resistivity at

higher temperatures indicates that they correspond to true QPT's at T = 0. Here

we show the results of resistivity measurements in the vicinity of the B = 0 MIT in

Si-MOSFET's.

In upper left panel of Fig. 2.8 we show zero-bias resistivity as a function of
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Figure 2.7: The conceptual phase diagram of 2D electron gas in MOSFET systems
[11]. At zero magnetic �eld there is a metal-insulator transition at T = 0. At high
�elds, also quantum Hall e�ect is present.

electron concentration n, at di�erent temperatures. The feature strikingly similar

to the case of α-MoGe and QHE systems is that all the curves cross in a single point,

i.e. at a certain value of n = ns, resistivity is basically independent of temperature.

Furthermore, from the upper right Fig 2.8 it can be seen that when n > ns, the

resistivity monotonically decreases with decreasing temperature, and when n < ns,

it is the other way around. This behavior is immediately reminiscent of metallic

and insulating phases being separated by a single quantum critical point at T = 0.

However, if this is true, then it is expected that resistivity displays a characteristic

quantum critical form at high temperatures when n ≈ ns

ρ(n, T ) = f(T/(n− ns)zν)

To check this, one can rescale the temperature for each ρ(T )|n curve by hand to

try and make them all collapse on two branches. This analysis is presented on the

lower left panel of Fig. 2.8. To be consistent with the quantum critical scenario, the

scaling parameter T0(n) should be a power law of (n−ns), and as we see in the lower
right panel of Fig. 2.8, T0(n) �ts perfectly to (n − ns)

1.6. However, this does not

automatically yield an estimate of the scaling parameter ν, but only of the product of

ν and the dynamical exponent z. To get an estimate of the two exponents separately,
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Figure 2.8: Quantum critical scaling in MOSFET systems [11]. Upper left panel: re-
sistivity as a function of electron concentration. All curves cross in a single point. At
this (critical) concentration nc, no temperature dependence of resistivity is observed.
Upper right panel: resistivity as a function of temperature. At concentrations lower
than the critical value, resistivity drops exponentially with temperature, which is
typical insulating behavior. Above critical concentrations, it is the other way around,
and metallic behavior is observed. Lower left panel: all resistivity curves can be col-
lapsed by rescaling the temperature with appropriately chosen parameter T0. Lower
right panel: T0 �ts well to a power law function of δn = n− nc, which is typical for
quantum critical scaling.

one can perform a study of non-linear response, where resistivity is measured as a

function of applied electric �eld, i.e. look at the I/V characteristic of the system

16



2.2 QUANTUM CRITICAL (OR FINITE SIZE) SCALING

Figure 2.9: I-V characteristic of MOSFET systems also exhibits quantum critical
scaling [11]. This can be used to deduce the critical exponents z and ν separately.

[21]. In this case, scaling theory predicts the following form of resistivity

ρ(n,E) = f2(E/(n− ns)(z+1)ν)

The scaling exponents zν and (z + 1)ν de�ne two equations with two unknowns,

which can be trivially solved. Upon analysis similar to Fig. 2.8, as presented in

Fig. 2.9, one obtains that z ≈ 1 and ν = 1.6. This can be interpreted as strong

evidence of the existence of a scale-invariant QCP in the 2D electron gas in Si-

MOSFET's at zero magnetic �eld. However, the exact mechanism behind this tran-
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sition remains elusive, although there are mounting evidence that Coulomb repulsion

plays a crucial role in these systems. This is, however, easily understood as in such

dilute electron gases (n ≈ 8 × 1011cm−2), average Coulomb energy dominates over

the Fermi energy by two orders of magnitude.

Note also, that although the scaling function f is in general not known, in 2D

electron gas, however, f is turns out to be an exponential function

f

(
δn

T
1
zν

)
= exp

δn

T
1
zν

(2.4)

where δn = n−ns. The above form can be obtained immediately by assuming that

the β-function (β = d ln g/d lnL, where g is conductivity and L is the e�ective size

of the system, in this context L ∼ T−1/z) is a function of only g [22]. However, for

this to be true in the range of g as large as is observed in experiment (over 2 orders

of magnitude), β-function needs to have a very special form. This automatically

implies a very important property of the transition. Precisely at the transition,

there is a mirror symmetry between the two phases, and this is observed at high

temperatures as

f(x) = 1/f(−x) (2.5)

When two branches of the resistivity data are plotted on the log-scale, they should

appear symmetric [23]. This is precisely what is observed in experiments on the

MOSFET's, but as we shall see, some recent experiments suggest that mirror sym-

metry may be a universal feature of metal-insulator transitions, and that it is not

restricted to this particular case.

2.3 Mott metal-insulator transition

One of the most blatant e�ects of strong electronic correlation is the Mott metal-

insulator transition [24, 25, 26]. It occurs upon an in�nitesimal change of a control

parameter, usually pressure or doping (through capacitor e�ect or chemical substi-

tution), and is observed as a sudden change in resistivity which may cover even

several orders of magnitude. Usually, Mott systems are insulating at atmospheric

pressure, but become metallic if pressurized. Contrary to the case of conventional

band-insulators and semi-conductors which may be described in terms of e�ectively

single-particle physics, such approach to Mott systems fails - the electronic struc-
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ture calculations such as density functional theory (DFT) unanimously predict for

these materials to always be metallic, with a well de�ned Fermi surface deep within

the conduction band. There are also cases when a material exhibits pronounced

�Mottness� - it is metallic but with heavily renormalized electron mass. For these

systems as well, DFT yields false predictions regarding bandwidth and unit cell size.

The main clue as to what is the physical mechanism behind the Mott transition

and the failure of both the Hartree-Fock (RPA) theory and DFT lies in the atomic

structure. The common feature of many Mott systems are the semi-occupied valence

orbitals of d or f type. Materials which fall in this group are based in 3d and 4d

transition metal elements, 4f rare earth elements, 5f actinides, and their oxides.

What makes d and f orbitals di�erent from the s and p type is that they are

well localized. When two electrons occupy the same localized orbital, they interact

strongly, and this will cause true many-body correlation which may no longer be

neglected. Even more so, the electronic correlation turns out to be the sole driving

force of the Mott transition - the details of the atomic structure and possible lattice-

structural e�ects do not play an important role. It proves su�cient to consider simple

toy models and observe the Mott mechanism, but the solution of the problem must

be fully quantum mechanical. The Dynamical mean �eld theory (DMFT) of the

Hubbard model in in�nite dimensions is one such solution, and it had great success

in elucidating the physics of Mott transition. DMFT is the main method employed

in this thesis and is discussed in detail in chapter 3.

As for the intuitive understanding of the Mott transition, it was discussed by

Sir Neville Mott long before the �rst solution of DMFT [27]. Generally speaking,

in solid state systems there is a competition between two energy scales. One is

the kinetic energy and the other is the repulsive Coulomb interaction energy. The

Coulomb interaction is usually well screened and in those cases the Fermi liquid

theory is a good starting point for the theoretical description. The low energy

excitations are then long lived wave-like states with renormalized mass. However, the

high-energy excitations always experience less screened interactions. When atomic

orbitals are localized, and there is little overlap between valence orbitals on adjacent

sites, the energy bands are narrow, and the kinetic energy becomes comparable to the

Coulomb repulsion. In those cases, the mass of the low energy states can become

highly renormalized, and the high-energy states become particle-like. The higher

the rate of the Coulomb to kinetic energy, the more electrons localize, and at ever

lower energies. When localization reaches the Fermi level, the system becomes a
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Mott insulator. Then, in experiment, when pressure is increased, the lattice spacing

becomes smaller, the overlap between adjacent orbitals increases thus boosting the

kinetic energy, and the system can become metallic again. As already pointed out,

the lattice degrees of freedom do not play a signi�cant role in the Mott transition,

but the state of the electron gas does a�ect the lattice. The Mott transition is usually

accompanied with (sometimes even signi�cant) change in the speci�c volume. The

delocalized electrons tend to be more involved in the cohesive energy of the lattice,

and Mott systems in the metallic state have usually a smaller unit cell.

However, the Mott transition is not a generic quantum phase transition. It was

immediately clear from experiments that it is a �rst order-transition, not much unlike

the liquid-gas transition observed in water or noble gases [28, 29, 30, 31, 32, 33]. The

Mott transition usually displays hysteresis up to some critical temperature Tc above

which the abrupt change in resistivity is no longer observed, but rather a smooth

crossover. On the other hand, two distinct phases often seem to persist all the way

down to zero temperature, which de�nitely puts this transition in a wider group of

quantum phase transitions. Furthermore, there is a clear connection of the Mott

transition and antiferromagnetic order as most Mott insulators are antiferromagnetic

at low temperature. This is easy to understand in terms of excess entropy. A

paramagnetic Mott insulator has a very large entropy because the ground state can

be realized in exponentially many ways. The excess entropy must be quenched

somehow as T = 0 is approached. The huge degeneracy of the ground state is most

easily lifted by antiferromagnetic ordering. Otherwise, dimerization can also occur -

this way there is no long range order, but pairs of electrons on adjacent lattice sites

form correlated bound states. In the presence of frustration of antiferromagnetism,

a spin liquid phase with separation of charge and spin degrees of freedom is also a

possibility at low temperature. Whether a paramagnetic Mott insulator can truly

exist all the way down to zero temperature is actually an open question.

However, the most common scenario is the one of anti-ferromagnetic ordering.

But the ordering tendency can be strong enough to disrupt even the metallic phase

at low temperature. Even when the Coulomb interaction is not strong enough to

drive the system into a Mott insulating state, there is still a competition between

the suppression of double occupancy and virtual hopping processes which yields an

e�ective antiferromagnetic (AF) interaction between electrons on adjacent sites. If

AF interaction is strong enough to order otherwise delocalized electrons, the true

Mott transition is observed only at temperatures higher than the Neel temperature
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Figure 2.10: Phase diagram of the bulk 3D material V2O3. Depending on the
level of doping or pressure, system can be either metallic or insulating. At lowest
temperatures, an antiferromagnetic state is observed. [29]

Figure 2.11: Dynamical mean-�eld theory qualitatively reproduces the main features
of the phase diagram of V2O3. As frustration of antiferromagnetic correlation is
increased, the Néel temperature for the AF order drops, revealing a �rst order Mott
transition line. [34]

of the anti-ferromagnetic order. This is the case in a very famous example of Mott

transition, which is the 3D bulk material vanadium-III-oxide V2O3. The phase

diagram of this material is shown in Fig. 2.10. The antiferromagnetic insulator,

however, is not exotic. It's properties are reproduced by the solution of an AF

Heisenberg model. In DMFT, if breaking of spin symmetry is allowed, the phase
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diagram also features only an antiferromagnetic insulator dome [34]. But as one

gradually turns on frustration in the model (by including, for example, next nearest

neighbor hoppings) the Néel temperature drops, and a �rst order Mott transition

emerges above the reduced AF dome (Fig. 2.11). In this regime, no other theory

can capture the properties of the DMFT solution.

Figure 2.12: The phase diagram of κ-(BEDT-TTF)2Cu[N(CN)2]Cl. A �rst order
Mott transition with a coexistence region is present. The insulating state becomes
anti-ferromagnetic at low temperature [30].

Figure 2.13: The resistivity exhibits hysteresis - in the coexistence region two dif-
ferent states are stable [30].

Another large class of materials, the κ-organics, pose a good example of a pure

Mott transition. The lattice structure in these materials is very complicated, but
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Figure 2.14: The non-monotonic resistivity is a hallmark of strong correlations,
and is observed close to the Mott transition, on the metallic side. DMFT result
reproduces the position and height of the maxima in resistivity with high accuracy
(diamonds - DMFT, circles - experiment) [30].

extensive DFT calculations suggest that it is e�ectively a half-�lled single-band

Hubbard model on a triangular lattice [35]. Due to geometrical frustration in these

materials, antiferromagnetism is usually suppressed, but in the vicinity of the tran-

sition, a high-Tc superconducting dome emerges, which makes the Mott transition

even more intriguing. Examples of phase diagrams and transport in κ-organics

are shown in Figs. 2.12,2.13,2.14 and 2.15. In cases when the triangular lattice is

anisotropic, the antiferromagnetism is not completely suppressed and at low tem-

peratures, the Mott insulator develops the AF order. Otherwise, a gapped spin

liquid characterization of the low temperature Mott insulator is possible. However,

in all cases, a �rst order transition and a coexistence region is observed up to some

temperature, and in the supercritical region, the system is neither a good metal

nor a good insulator, and its resistivity can be tuned continuously through several

orders of magnitude. This constitutes the crossover region of the Mott transition,

and will be in focus in section 4.1.7.

The most important question addressed in this thesis is whether quantum crit-

ical scaling (as introduced in the previous section) can be observed in Mott sys-

tems. The phenomenology of the Mott transition makes a signi�cant departure

from the standard QCP scenario, because the phase transition is not restricted to

zero-temperature, but is rather extended by a �rst order-transition line to �nite
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Figure 2.15: Phase diagram of κ-(ET)2Cu2(CN)3. Metallic state is superconducting
at lowest temperature. AF order is frustrated, and the Mott insulator remains
paramagnetic at low temperature [31].

temperatures. Note that this is di�erent from the case in Fig. 2.3a where the or-

dered phase survives up to T ∗(K) - neither the metallic nor the insulating phase

break any symmetries and the transition is not of the order-disorder type. However,

a classical treatment of the second order critical-end point (CEP) is still possible

because it is at �nite temperature. The behavior of the system in the vicinity of the

CEP is found to correspond to critical phenomena of the classical Ising universality

class with ν = 1 [36]. Still, the Tc is generally low and is not expected to be make

signi�cant di�erence at high T , where quantum critical scaling is expected to hold.

In this thesis we recognize the possibility of Mott Tc going to zero [37, 38], in which

case the Mott transition reduces to a single QCP (Fig. 2.16). In view of this, the

�rst order transition and the pure QCP are considered as two limits of the same

phenomenology, and it seems even less likely that the QCR is entirely absent from

the phase diagram of materials exhibiting the �rst-order Mott transition (Fig. 2.17).
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2.3 MOTT METAL-INSULATOR TRANSITION

Figure 2.16: At least in theory, the Tc for the �rst order Mott transition can be
brought to zero by varying Hamiltonian parameters [37, 38]. Left: the phase diagram
of the double Bethe lattice; the parameter to vary - interlattice hopping. Right: The
phase diagram of the Anderson lattice model; the Mott transition between the hole-
doped metal and the integer �lled Mott insulator displays no coexistence, while the
transition between the integer �lled Mott insulator and the electron doped metal
has a Tc becoming smaller as U is decreased.

Coexistence
Uc1

Uc2

(Uc,T )c

Quantum 
Critical Point

Quantum 
Critical RegionT

U

X=?
Xc

Figure 2.17: The main focus of our work is the possibility of the phenomenology
illustrated above.
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3. Methods

In this chapter I review the methods used in this thesis. The main method employed

is the dynamical mean �eld theory (DMFT) which is used to solve the Hubbard

model. The solution of DMFT reduces to a solution of the Anderson impurity

problem, with a self-consistently determined hybridization bath. How the original

problem is mapped onto this self-consistent calculation is explained in sections 3.1

and 3.3. In section 3.1 I discuss the properties of the DMFT theory, and layout

a very general approach which can be used to derive it. In section 3.3 I use a

more straight-forward approach to derive DMFT. There I show how in the limit of

in�nite dimensionality, an explicit form of the DMFT equation (ready for numerical

treatment), can be obtained by performing a hybridization expansion around a single

site. The limit of in�nite dimensions and its implications for the calculation of optical

conductivity (as performed throughout this thesis) is discussed in section 3.2. The

numerical solution of the impurity problem by stochastic summation of diagrams

and perturbation theory is explained in section 3.4. Finally, in section 3.5 I describe

the method used to analytically continue the result of DMFT to the real axis. This

is a very important step in numerical solution of DMFT, because its result is in some

cases the imaginary time-dependent local Green's function, yet for the calculation of

frequency dependent response functions we need the real frequency Green's function.

3.1 Dynamical mean �eld theory

The dynamical mean �eld-theory (DMFT) in its simplest form provides a prescrip-

tion for the solution of the fermionic single-band Hubbard model, although it can

be easily generalized for various lattice models. It falls in a wider group of methods

which transform an interacting many-body problem into a simpler, representative

(or e�ective) model, which is supplemented with a self-consistency condition [26].

All these methods can be traced back to a very general formalism which relies on

the Legendre transformation of the grand potential. The procedure yields a closed
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3.1 DYNAMICAL MEAN FIELD THEORY

Figure 3.1: Legendre transform approach can reproduce various theories. In each
case one chooses one quantity of interest, and de�nes a representative (e�ective, or
equivalent) local model coupled to an external, generalized Weiss �eld [26].

form self-consistent equation which is in itself exact. However, not all terms in the

equation may be known in general, and then for practical purposes some approxima-

tions must be made. On the other hand, even if the equation is completely known

and solved, the method guarantees only the knowledge of the quantity A which was

used in the Legendre transform. Other quantities may be possible to calculate, but

note that the physical meaning of the quantities in the representative model may

not coincide with that in the original model, and that correspondence between the

original and e�ective models may be unclear.

The Legendre transform formalism can be used to reproduce also the general

mean-�eld theory (for example the Weiss theory of classical Ising model, or WMFT)

and more importantly the density functional theory (DFT) (see table). In view of

this formalism, the di�erence between DFT and DMFT is in the choice of the quan-

tity in focus and also the representative model which needs to be solved (Fig. 3.1).

In DFT, the quantity in focus is the local single-particle density n̂(x), and the rep-

resentative model is a single-particle Schroedinger equation in an e�ective potential

VKS(x)[n] which is a functional of the density n(x). Hence the term density func-

tional theory. In DMFT, the quantity in focus is the local propagator G(τ), and

the representative problem is that of a local impurity coupled to an e�ective bath ,

which is in turn de�ned by a functional of the local propagator, the hybridization

function ∆(τ)[G]. The main di�erence between DFT and DMFT is that in DFT,

the representative model is non-interacting, while in DMFT it is a full many-body

problem, although with only a few degrees of freedom such that it can be solved

by means of numerical simulation. Furthermore, in DFT, the self-consistent equa-

tion is never known entirely. The problematic exchange-correlation potential term
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can be obtained from an empirical �t to a QMC result of some simple model, but

the applicability of such approximation may not be well understood. On the other

hand, in DMFT, the self-consistent equation is known entirely in one speci�c case

- the limit of in�nite lattice dimensionality. As we shall see, the problematic term

here is the total kinetic-energy - while the general formula for kinetic energy is of

course known, it may not always be possible to express it in terms of only the local

propagator. The approximation that needs to be made here is to assume that the

self-energy is purely local

Σk −→ Σ (3.1)

but this is exact in the limit of in�nite dimensions. See section 3.2 for details. DMFT

is also exact in the non-interacting and atomic limits, but it is very important that

there is at least one non-trivial limit in which DMFT is exact because this ensures

that all the quantities will be physical (respecting causality etc.). Anyhow, the lo-

cality of self-energy turns out not to be far fetched, and therefore the approximation

made when DMFT is used to treat 2D or 3D systems is not crude at all. At high

energy, high temperatures, or in the presence of geometrical frustration, DMFT ap-

proximation is shown to be basically exact - the result coincides with experiments

on cold quantum gases in optical lattices as well as large scale quantum Monte Carlo

calculations, and the self-energy is proven to be only weakly dependent on the wave

vector k [39, 40, 41, 42, 26]. Most importantly, solution of the DMFT equation

has brought signi�cant insight to the understanding of strong correlation and its

hallmark embodiment, namely the Mott transition. DMFT has been successfully

used to reproduce experimental phase diagrams and various response functions such

as optical conductivity (see section 3.2.1), spin and charge susceptibility and double

occupancy [43, 44, 26]. The local self-energy calculated in DMFT can be used to

reconstruct the spatially resolved spectral function, and successfully reproduce re-

sults of the angle-resolved photo emission spectroscopy experiments [45, 24]. Unlike

DFT where the single particle excitation spectrum can not be calculated rigorously

even within a given approximation of the self-consistent equation, energy resolution

is built-in in DMFT by construction. This proves to be a very important aspect of

the theory - electrons at di�erent energies may behave drastically di�erently, and

this can be captured by DMFT. Namely, while the low energy electrons (around the

Fermi level) are wave-like, the high-to-intermediate-energy electrons may be experi-

encing strong interactions and localize. This information is contained in self-energy
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which, although local, has a very non-trivial energy dependence. There are also

extensions of DMFT (cellular DMFT and dynamic cluster approximation) which

reintroduce some of the k dependence in the self-energy by constructing the e�ec-

tive impurity problem in a way that it is not purely local. Although approximate,

these methods have shed light on sector selective Mott transition, which is very

important for the understanding of strongly correlated electrons in low dimensions.

However, most information can be obtained from the combination of both DFT and

DMFT (namely, the DFT+DMFT approach), which is currently the cutting edge

tool for modeling complex materials [44].

In the following I overview the Legendre transform approach and then show how

it is applied to the Hubbard model.

3.1.1 Legendre transform approach

Let Ĥ be the lattice Hamiltonian of interest. Then we can split it in two parts, such

that one part is solvable, say Ĥ1

Ĥ = Ĥ1 + Ĥ2 (3.2)

Furthermore, we need to decide what quantity we want to calculate, say Â. Now we

de�ne an operator

Ĥα[λ, a] = Ĥ1 + αĤ2 −
∑
i

λi(Âi − ai) (3.3)

The index i counts lattice sites, and Âi is a local observable. One can also switch

to the continuum limit where the sums are replaced by integrals over space. If the

quantity A is time dependent or non-Hermitian, one must switch to path integral

formalism, where the above operator has the meaning of an action. The operator

Ĥα[λ, a] a function of a single real number α, and a functional of real or complex

�elds λ ≡ {λi} and a ≡ {ai}. λi's have the meaning of local Lagrange multipliers.

Now we immediately see that the observables do not depend on a because it enters

only as an irrelevant constant through λa. Therefore, the statistical average of the

quantity in focus depends only on λ and α

〈A〉α[λ] (3.4)

29



3.1 DYNAMICAL MEAN FIELD THEORY

We are interested in calculating

〈A〉α=1[λ = 0] =? (3.5)

which corresponds to the statistical average in the original Hamiltonian. The grand

potential (or Free energy) now is given by

Ωα[λ, a] = − 1

β
ln Tr exp Ĥα[λ, a] (3.6)

This form of the grand potential is known as the Legendre transform of the original

grand potential Ω = − 1
β

ln Tr exp Ĥ. Immediately,

∂Ωα[λ, a]

∂λi
= ai − 〈Âi〉α[λ] (3.7)

Now for a given a, one can always �nd λ such that 〈Âi〉α[λ] = ai. Therefore, the

solution of
∂Ωα[λ, a]

∂λi
= 0 (3.8)

with respect to λ yields a Lagrange multiplier con�guration implicitly dependent on

a and α which we denote λα[a] and

〈Âi〉α[λα[a]]
def
= ai (3.9)

We now introduce a new potential, de�ned only in the stationary points of Ω

Γα[a] ≡ Ωα[λα[a], a] (3.10)

Note that this functional has no explicit dependence on λ. Taking the above de�ni-

tion, we have quite generally

∂Γα[a]

∂ai
= −λiα[a] (3.11)

so we have
∂Γα=1[a = 〈A〉α=1[λ = 0]]

∂ai
= 0 (3.12)

which is easy to understand. When we request that the statistical average 〈A〉 is
that of the original Hamiltonian, and α=1, no �eld λ is actually needed to ensure
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this. Also, it is clear that the solution of the original problem can be obtained

by minimizing Γα=1. This can not be done straightforwardly, but the following

considerations provide a very general way to circumvent the main di�culty lying in

the H2 part of the Hamiltonian, and �nd the minimum of Γα=1 by only considering

the derivatives of Γα with respect to α and a which may be easier to calculate.

We can always write

Γα=1[a] = Γα=0[a] +

∫ 1

0

dα
∂Γα[a]

∂α
(3.13)

which is a very general statement, and is known as coupling constant integration.

We also know
∂Γα[a]

∂α
= 〈H2〉α[λα[a]] (3.14)

Now we introduce a notational shortcut a∗ ≡ 〈A〉α=1[λ = 0]. Plugging Eq. 3.11 and

Eq. 3.12 into Eq. 3.13 we obtain

∂Γα=1[a∗]

∂ai
=
∂Γα=0[a∗]

∂ai
+

∂

∂ai

∫ 1

0

dα
∂Γα[a∗]

∂α
= 0 (3.15)

and therefore

λi α=0[a∗] =
∂

∂ai

∫ 1

0

dα〈H2〉α[λα[a∗]] (3.16)

Now we have everything we need to work out the following general expression

a∗i = 〈Ai〉α=0[λα=0[a∗]] (3.17)

which can be read and understood in the following way - the true value a∗i of 〈Ai〉
corresponding to the original Hamiltonian is the one corresponding to the Legendre

transformed Hamiltonian with α = 0, but with λ such that it brings 〈Ai〉 to a∗i . This
statement is invaluable in practical terms. The solution of the full Hamiltonian with

respect to some quantity A can be recast in terms of a di�erent, simpler Hamiltonian,

assuming the knowledge of the statistical average of this quantity a = 〈A〉. The fact
that a∗i appears on both sides of Eq. 3.17 makes it a self-consistent equation. When

solved for a∗i , it yields the exact solution of the original problem. For this prescription

to have practical value, one needs to be able to solve the representative (or e�ective)

α = 0 model with a non-zero λ (in case of WMFT, λ is the e�ective Weiss �eld

acting on a single Ising spin; in case of DFT, λ is the e�ective potential entering

31



3.1 DYNAMICAL MEAN FIELD THEORY

<A>=a λ

a*
λ [a*]α=0α=0

α=1

λ
[a]

α
=

0

λ
[a]

α=1

0

λ
[a]

0<α<1

Γ [a] = Ω [λ [a], a]α=1 α=1 α=1 

Figure 3.2: Instead of solving the full α = 1 problem, one can solve the simpler

α = 0 problem but with λ such that
∂Γα=1

[
〈A〉α=0[λ]

]
∂a

= 0, and that way obtain a∗.

the single-particle Schroedinger equation; in case of DMFT it is the hybridization

function in the single-site impurity problem). Also, one needs to be able to express

〈H2〉 in terms of 〈Âi〉, i.e. work out Eq. 3.14, which when plugged into Eq. 3.17,

yields a more explicit form

a∗i = 〈Ai〉α=0

[{
λi =

∂

∂ai

∫ 1

0

dα〈H2〉α[λα[a∗]]

}]
(3.18)

However, it is not always possible to evaluate 〈Ĥ2〉α[λα[a]]. If, for example, Ĥ2

is purely quartic, i.e. the two-particle interaction term of the original Hamiltonian,

then the average value is always possible to split in the disconnected (or mean-�eld)

and connected (correlation) parts. If the correlation part is just assumed zero, the

theory reduces to usual mean �eld theory. Any approximation of the correlation

part then introduces corrections beyond the mean-�eld level. As we shall see, in

DMFT, Ĥ2 is not quartic and therefore 〈Ĥ2〉 can not be split in two, but the full
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statistical average is possible to express in terms of a when the lattice is of in�nite

dimensionality.

Note also that even if all terms in the self-consistent equation are known, the self-

consistent equation may not have a solution at all. There is the fundamental issue

of representability - can one �nd a �nite and physical λ such that 〈Ai〉α=0[λ] = a∗?

In other words, can one solve Eq. 3.8 for any a? On Fig. 3.2 the problem would

correspond to orange line λα=0[a] having no intersection with the grey dotted a∗

line. Still, in cases of interest this proves not to be the case.

A few more remarks are here in order, regarding the grand potential landscape

in the vicinity of a stationary point. Since the grand potential must be analytic, one

can always Taylor expand it in terms of derivatives with respect to λ. Close enough

to λ[a], a one may keep only the second order term

Ωα[λ ≈ λα[a], a] = Ωα[λα[a], a] +
∑
ij

∂2Ωα[λ, a]

∂λi∂λj
(λi − λiα[a])(λj − λjα[a]) (3.19)

We can switch to matrix notation

Ωα[λ ≈ λα[a], a] = Ωα[λα[a], a] + δ~λM δ~λ (3.20)

where M is the �uctuation matrix

Mij =
∂2Ωα[λ, a]

∂λi∂λj
(3.21)

and

(δ~λ)i = λi − λiα[a] (3.22)

Then, the gradient of the grand potential is

∂Ωα[δλ, a]

∂λi
=
(
M δ~λ

)
i

=

(∑
m

εm

(
δ~λ
)
m
~em

)
i

=
(
~a− 〈 ~A〉α[λ]

)
i

(3.23)

where m labels eigenvalues/eigenstates of the matrix M,
(
δ~λ
)
m
is the m-th com-

ponent of δ~λ in the eigenbasis of M. Note now that the above holds for any α

including α = 0. This equation is very important, as it will later be used to con-

nect the convergence rate of the forward recursion loop leading to the solution of

the self-consistent equation, and the curvature of the Free energy functional in the
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vicinity of the stationary point a∗, λα=0[a∗].

In the following, I sketch how the above formalism can be straightforwardly

applied to the case of the Hubbard model.

3.1.1.1 Application to the Hubbard model

We start from the general Hubbard Hamiltonian

Ĥ = −
∑
ij σ

(
tij c

†
iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ − µ
∑
i σ

niσ (3.24)

The �rst term is the total kinetic energy T̂ and will play the role of Ĥ2. The second

term is the interaction energy Û . Although this term is quartic in fermionic oper-

ators, a single site with interactions is not impossible to solve, and this oportunity

is used in DMFT. Together with chemical potential µN̂ , Û plays the role of the

solvable Ĥ1, which in this case is purely local.

The quantity of interest in DMFT is the local single-particle propagator, or

Green's function

Gii σ(τ − τ ′) = 〈Tτciσ(τ)c†iσ(τ ′)〉 (3.25)

The Legendre transformed grand potential can be written in the path-integral form

Ω[∆, G, α] = − 1

β
ln

∫
D[c+, c]e−βS[c+,c; ∆,G,α] (3.26)

where

S[c+, c; ∆, G, α] =

∫ β

0

dτ

(∑
ij σ

c+
iσ(τ) (δij(∂τ − µ)− α tij) cjσ(τ) (3.27)

+U
∑
i

c+
i↑(τ)c+

i↓(τ)ci↓(τ)ci↑(τ)

)

−
∫ β

0

dτdτ ′
∑
i σ

∆ii σ(τ − τ ′)
(
Gii σ(τ − τ ′)− ciσ(τ)c+

iσ(τ ′)
)

Here, ∆ plays the role of the Lagrange multiplier λ and will have the physical

meaning of hybridization function in the representative, impurity model. G plays

the role of a and ciσ(τ)c+
iσ(τ ′) is A. Without loss of generality, in the following

I restrict to homogeneous paramagnetic solutions such that Gii σ = G (and also
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∆ii σ = ∆. The representative model is obtained by letting α = 0. The fermionic

operators do not couple to G, and since hopping terms vanish with α = 0, our

representative model is a set of decoupled single impurity problems which all yield

a same solution for the same hybridization bath ∆, so it is su�cient to solve only

one.

Si[c
+, c; ∆, α = 0] =

∫ β

0

dτ

(∑
σ

c+
iσ(τ) (∂τ − µ) ciσ(τ) + Uc+

i↑(τ)c+
i↓(τ)ci↓(τ)ci↑(τ)

)

−
∫ β

0

dτdτ ′
∑
σ

c+
iσ(τ) ∆(τ − τ ′)ciσ(τ ′) (3.28)

Although the �elds ∆ and G are uniform, they are frequency dependent and need

to be evaluated at all Matsubara frequencies n. In the following, G(iωn) ≡ Gn.

The self-consistent equation is then given immediately by

G∗n = Gn

[
∆[G∗, α = 0], α = 0

]
(3.29)

where Gn [∆, α = 0] is the solution of the impurity problem stated in Eq. 3.28, for

a given ∆. More explicitly, and omitting the asterisk in superscript

Gn = Gn

[{
∆n =

∂

∂Gn

∫ 1

0

dα〈T̂ 〉[G,α]

}
, α = 0

]
(3.30)

The above two equations correspond directly to equations Eq. 3.17 and Eq. 3.18

in the general discussion. However, the kinetic energy is de�ned in terms of the

spatially resolved Green's function

〈T̂ 〉 =
∑
k,n

εkGkn (3.31)

and in general is not possible to express in terms of only the local propagator.

However, if the self-energy is assumed local and therefore equal to the local self-

energy of the impurity problem, the issue is easily resolved. If we have calculated

the self-energy in the impurity problem, then the spatially resolved propagator is

easily obtained through the general expression

Gkn =
1

iωn + µ− εk − Σn

(3.32)
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self-consistency condition

impurity problem

2Δ(iω )=t G(iω )n n

G =G [Δ,α=0]n n

Figure 3.3: Self-consistency in the DMFT equation is achieved by forward recursion.

Once again, in in�nite dimensions this is not an approximation, and the self-consistent

equation can be worked out completely. In the case of the in�nitely dimensional

Bethe lattice with only the nearest neighbor hopping t, it is even very simple - simi-

larly to the local density approximation in DFT where the exchange-correlation po-

tential is no longer considered a functional but rather a function of n(x) (Vxc(x)[n]→
Vxc(n(x), x)), here ∆n becomes a function of Gn

Gn = Gn

[{
∆n = t2Gn

}
, α = 0

]
(3.33)

This self-consistent equation can be solved most easily by forward recursion as de-

picted in Fig. 3.3.

However, the prescription for the evaluation of the local propagator in the repre-

sentative α = 0 problem here is not yet speci�ed, and although possible in principle,

is not easy. In the following I discuss the in�nite dimensionality limit and later

use the obtained conclusions to straightforwardly prove the validity (exactness) of

DMFT in d = ∞. It can be shown that hybridization expansion of the Hubbard

model around a single site leads to a completely explicit self-consistent equation

(Eq. 3.99, section 3.3.2.1) of the above form. The practical value of Eq. 3.99 is that

its right-hand side is ready for a numerical evaluation by stochastic summation of

diagrams, i.e. continuous time quantum Monte Carlo which is discussed in section

3.4.1. Furthermore, Eq. 3.99 can be translated to path integral form and �unrolled�

to yield the α = 0 action which is the impurity model stated in Eq. 3.28. The meth-

ods used for achieving self-consistency of the DMFT equation are also discussed in

section 3.3.2.1.
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3.2 Limit of in�nite dimensions

The prerequisite for the exact mapping of the Hubbard model onto a model of an

interacting single-site impurity coupled to a non-interacting bath is that the self-

energy (and the irreducible vertex function) are fully local. The physical meaning

of this is that intersite (non-local) correlations are negligible, even for nearest neigh-

bors. When the lattice is in�nitely dimensional or at least the coordination number

(the number of neighbors of each lattice site) is in�nite, this condition is satis�ed.

However, for the Hubbard Hamiltonian to retain its physical meaningfulness in the

(unphysical) limit of in�nite lattice dimensionality, it is necessary to rescale the hop-

ping amplitude with
√
Z where Z is the coordination number [46, 24]. Otherwise,

terms other than the kinetic energy would be completely negligible, and the solution

would be trivial.

It is easily veri�ed that for a tight-binding Hamiltonian with nearest neighbor

hopping of amplitude t, intersite Green's function falls o� with the power of Man-

hattan distance between the sites

Gij(ω) =

〈
i

∣∣∣∣∣∣
(

1

(ω + µ)Î − t̂

)−1
∣∣∣∣∣∣ j
〉
∼ t|i−j| (3.34)

where t̂ is the hopping matrix, and Î is the identity matrix. In the limit of in�nite

coordination Z →∞, t→ t√
Z
, and therefore, Gij(ω) goes to zero. However, this does

not mean that we can discard all the non-local Green's functions immediately. The

k-dependence of the Green's function is retained even in this limit, because although

a single Gij(ω) is in�nitesimal, a sum over in�nitely many Green's functions may

still be �nite (and even in�nite).

However, a similar conclusion does not hold for all quantities. Most importantly,

the self-energy is necessarily purely local in in�nite dimensions. Consider a second

order skeleton diagram in the interaction expansion of the local propagator (Fig. 3.4).

G
(2)
ii (τ) = U2Gij(τ

′) G2
jk(τ

′′ − τ ′)Gkj(τ
′ − τ ′′) Gki(τ − τ ′′) (3.35)

The summation over internal degrees of freedom (in this case times τ ′, τ ′′ and lattice

sites j and k) is implicit. Say we want to evaluate the above on a d =∞ hyper-cubic

lattice with only the nearest neighbor hopping t. The number of di�erent sites at

a Manhattan distance R from the site 0 (located at r0 = 0) is equal to the surface
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i j k
i

0 τ’ τ’’ τ

Figure 3.4: Example of the second order skeleton diagram. In in�nite dimensions,
the only contribution comes from the j = k = i term.

area of a hypercube of size R, i.e. 2dRd−1. Then, the number of �rst neighbors Z is

proportional to d. In the case i 6= j 6= k, if |i− j| and |j−k| are independent, |i−k|
can be anywhere from 1 to |i− j|+ |j − k|. For a given con�guration of times, the

order of the diagram is then at most

∑
jk

(
1√
d

)|i−j|+3|j−k|+|k−i|

.
∑

R1,R2≥1

d2

(
1√
d

)R1+3R2+1

.
1√
d

(3.36)

The situation is not di�erent even on the in�nitely dimensional Bethe lattice (a.k.a.

the Cayley tree). When each branch of the tree is the root of another d branches,

the number of neighbors at a distance R goes as dR. Nothing, however, changes

∑
jk

(
1√
d

)|i−j|+3|j−k|+|k−i|

.
∑

R1,R2≥1

dR1+R2

(
1√
d

)R1+3R2+1

.
1√
d

(3.37)

Although longer distance contributions are now less severely suppressed, they still

amount to zero. As long as there are at least 3 propagators connecting any two

internal vertices at sites j and k, the non-local (j 6= k) contribution of the diagram

will be zero. In such diagrams, one can readily replace all the propagators with their

local counterparts, simply ignoring the momentum conservation at all vertices. This

is the case for any proper self-energy skeleton diagram, except for the �rst order

(Hartree-Fock mean �eld) diagram, but this one is fully local in any case. In in�nite

dimensions,

Σij(iω) = δijΣii(iω) =⇒ Σk(iω) = Σ(iω) (3.38)

The same stands for the two-particle irreducible vertex function Γ - when cal-

culating many-body Green's functions in in�nite dimensions, one needs to consider

only vertices with all four terminals at the same site, i.e. Γ looses all the k,k′,q
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dependence. This has important implications for the derivation of DMFT, as well

as calculation of two-particle correlation functions, most notably the frequency de-

pendent uniform optical conductivity σ(q = 0, iν).

3.2.1 Implications of d =∞ limit for optical conductivity

The quantity in primary focus of this thesis is the zero-frequency (DC) linear-

response resistivity. Although in general, evaluating this quantity requires a sum-

mation of an in�nite series of diagrams, in in�nite dimensions, the irreducible vertex

function Γ (and therefore also the full vertex function F ) is purely local making the

contribution of all the higher order (order larger than 2) terms cancel exactly. This

can be most easily proven in the case of the d =∞ hypercubic lattice, but holds as

well in the case of the Bethe lattice [47, 48]. In this work, we solve the DMFT equa-

tions for the d =∞ Bethe lattice, and therefore calculate resistivity using only the

�rst, bare bubble term which is not particularly hard to evaluate. In the following

I derive the equation used in this purpose.

Let O(q) be an operator of the form.

O(q) =
∑
k,σ

vkσc
†
kσck+qσ (3.39)

de�ned by the vertex factor vkσ. Then, the corresponding linear response function

is given by

χ(q, iν) =

∫ β

0

dτeiντ 〈O(q, τ)O(−q, 0)〉 (3.40)

=
∑
iω,k,σ

vkσ G
iω
kσ G

iω+iν
k+qσ vk+qσ

+
∑

iω,k,iω′,k′,σ,σ′

vkσ G
iω
kσG

iω+iν
k+qσ Γiω iω

′ iν
kk′qσσ′ G

iω′

kσ′G
iω′+iν
k′+qσ′ vk′+qσ′ + ...

where Giω
kσ is the full single-particle propagator given by

Giω
kσ =

1

ω + µ− εkσ − Σiω
kσ

. (3.41)

See Fig. 3.5. The compact notation with frequecies omitted or denoted in the su-

perscript will be used occasionally throughout this thesis, for the sake of clarity. In
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F+

k+q,ω+ν

k,ω

q,ν q,ν q,ν q,ν
k+q,ω+ν

k,ω k’, ω’

k’+q, ω’+ν

ω,ω’,ν

k,k’,q
vk vk+q vk vk’+q

Figure 3.5: When the full vertex function is local, q = 0 and vk = −v−k, the
response function can be calculated from the bare bubble term only.

in�nite dimensions, Σk = Σ, and Γkk′q = Γ. If the system is invariant under coor-

dinate inversion x −→ −x (which is the case for most lattices), and spin-symmetry

is preserved at the level of the non-interacting Hamiltonian, εkσ = εk = ε−k, and

therefore, Gk = G−k. Then, if q = 0 and∑
k,σ

vkσ = 0 (3.42)

all the vertex corrections get canceled, and one needs to evaluate only the bare

bubble term (it can not be canceled as v2
kσ is always positive). In the case of

current-current correlation along the x direction, vertex factor is nothing but the

group velocity

vkσ =
∂εk
∂kx

(3.43)

which on the hypercubic lattice is spin independent and yields

vk = −2t
∂
∑∞

i=1 cos kxi
∂kxj

= −2t sin kxj (3.44)

so

vk = −v−k (3.45)

This expression satis�es Eq. 3.42 and therefore, the uniform current-current correla-

tion function can be calculated from the knowledge of the single-particle properties

only

Λ(iν) = T
∑
iω,k,σ

v2
kG

iω
kσ G

iω+iν
kσ (3.46)

The uniform optical conductivity is calculated from the uniform current-current
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correlation function

σ(iν) =
Λ(0)− Λ(iν)

ν
(3.47)

This expression can be analytically continued to the real frequency. First we note

that

Giω
k = −

∫
dω′

Aω
′

k

iω − ω′
(3.48)

where Aωk = − 1
π
ImGω

k is the spectral function. This expression corresponds to the

analytical continuation from the real to the imaginary axis. Plugging this back in

the expression for the current-currect correlation function, we obtain

Λ(iν) = 2
∑
k

v2
k

∫
dω′Aω

′

k

∫
dω′′Aω

′′

k T
∑
iω

1

(iω − ω′)(iω + iν − ω′′)
(3.49)

where the prefactor 2 comes from the summation over spin. The Matsubara sum

can be now performed for each ω′ and ω′′ to yield

Λ(iν) = −2
∑
k

v2
k

∫
dω′Aω

′

k

∫
dω′′Aω

′′

k

f(ω′)− f(ω′′)

ω′ − ω′′ + iν
(3.50)

where f is the Fermi distribution

f(ω) = (exp(βω) + 1)−1 (3.51)

Now only the denominator depends on the matsubara frequency and one can perform

the analytical continuation by formally letting iν → ν. However, the integrand now

has poles at ω′ − ω′′ + ν = 0. The well known relation

lim
η→0

1

x+ iη
= P 1

x
− iπδ(x) (3.52)

yields for the imaginary part in our case

ImΛ(ν) = 2π
∑
k

v2
k

∫
dω′Aω

′

k Aω
′+ν

k (f(ω′)− f(ω′ + ν)) (3.53)

We see immediately that in real frequency

ImΛ(ν = 0) = 0 (3.54)
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end therefore the real part of the optical conductivity, obtained with 1
ν

= i
iν
→ i

ν

and ω ≡ ν

Reσ(ω) =
2

π

∑
k

∫
dω′ v2

k ImGω′

k ImGω+ω′

k

f(ω′)− f(ω′ + ω)

ω
(3.55)

On the Bethe lattice, translational symmetry is not satis�ed, and k is not a good

quantum number. However, the same considerations apply and the group velocity

can be shown to depend on the energy of the non-interacting state as

v(ε) = ±
√
W 2 − ε2 (3.56)

where W = 2t is the half-bandwidth. One can then switch to the integral over

energy

Reσ(ω) =
2

π

∫
dεdω′ v2(ε)ρ(ε) ImGω′

ε ImGω+ω′

ε

f(ω′)− f(ω′ + ω)

ω
(3.57)

where ρ is the non-interacting density of states (DOS) on the Bethe lattice, Gω
εσ

is simply (ω + µ − ε − Σ(ω))−1. Note that up to a prefactor, v(ε) is the same as

the non-interacting density of states on the Bethe lattice. The vertex factor can be

absorbed into DOS to yield the �transport density of states� which is only slightly

di�erent than the original DOS. It has been shown earlier and con�rmed in this work

as well, that excluding this vertex factor altogether (setting it to 1) does not change

the result noticably (only up to a multiplicative constant). The zero frequency limit

is

σDC ≡ Reσ(ω = 0) = − 2

π

∫
dεdω′ v2(ε)ρ(ε)

(
ImGω′

ε

)2 ∂f

∂ω

∣∣∣∣
ω=0

(3.58)

which is the formula used throughout this thesis.

3.3 Explicit DMFT self-consistent equation

In this section I derive the DMFT self-consistent equation by performing a hybridiza-

tion expansion of the local propagator around a single lattice site of the Hubbard

model [49]. The derivation is kept general in section 3.3.1 where I discuss the hy-

bridization expansion in the context of a generalized impurity problem. Then in
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section 3.3.2 I identify the impurity and bath Hamiltonians with a single lattice

site and the rest of the lattice. In the end, a detailed prescription for achieving

self-consistency of the DMFT equation is given in form of a simple algorithm. The

derivation is carried out for the d =∞ Bethe and hypercubic lattices.

3.3.1 Hybridization expansion of a generalized impurity model

We start from a general (particle number conserving) Hamiltonian such that it can

be split in 3 parts

Ĥ = Ĥa + Ĥb + Ĥhyb (3.59)

Hamiltonians a and b depend on disjunct sets of fermionic degrees of freedom di and

ci respectively, and the third part Ĥhyb de�nes the hybridization between the two

subsystems, i.e. connects some of di's with some of ci's. In general

Ĥhyb =
∑
α,p

(V α∗
p d†αcp + h.c.) (3.60)

α enumerates the ��avor� (merged spin, band, site index etc.) of the states in

the a subsystem, and p of the states in the b subsystem. V α∗
p is the hybridization

amplitude between the states α and p and in general may be complex. The type of

Hamiltonian Ĥ corresponds to a general impurity problem.

To calculate the expectation value of an operator Â one must evaluate the fol-

lowing expression

〈Â〉 =
1

Z
Tr
[
Tτ Â(τ1, τ2, ...) e

−
R β
0 dτĤ(τ)

]
(3.61)

where β = 1/T is the inverse temeprature, τ is the imaginary time, Tτ is the time-

order operator. If the Hamiltonian Ĥ is interacting, then the trace is taken over

a many-body basis. We �rst analyze the partition function Z. After plugging our

Hamiltonian in the general expression for Z, we obtain

Z = Tr
[
Tτ e

−
R β
0 dτ(Ĥa+Ĥb+Ĥhyb)

]
(3.62)

Here we assume that the Hamiltonian is only trivially dependent (not actually de-

pendent) on time, but in general, this may not be the case (e.g. phonon medi-

ated interactions are usually retarded; e�ects of screening may also be included as
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frequency dependence of on-site interaction). We can now Taylor-expand in the

hybridization part of the Hamiltonian so we get

Z = Tr

[
Tτ e

−
R β
0 dτ(Ĥa+Ĥb)

∞∑
k=0

(−1)k

k!
(

∫ β

0

dτĤhyb)
k

]
(3.63)

Z = Tr
[
Tτ e

−
R β
0 dτ(Ĥa+Ĥb)

×
∞∑
k=0

(−1)k

k!

∫ β

0

dτ1

∫ β

0

dτ2...

∫ β

0

dτk Ĥhyb(τ1)Ĥhyb(τ2)...Ĥhyb(τk)

]
(3.64)

Now we introduce notation

Ĥhyb = Ĥ†h + Ĥh (3.65)

where

Ĥ†h =
∑
α,p

V α∗
p d†αcp

Ĥh =
∑
α,p

V α
p c†pdα (3.66)

We also note that ∫ a

0

∫ a

0

...

∫ a

0

dx1dx2...dxNf(x1)f(x2)...f(xN) (3.67)

= N !

∫ a

0

∫ a

x1

...

∫ a

xN−1

dx1dx2...dxNf(x1)f(x2)...f(xN) (3.68)

so we have

Z =
∞∑
k=0

(−1)k
∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τk−1

dτk Tr
[
Tτ e

−
R β
0 dτ(Ĥa+Ĥb)

×(Ĥ†h(τ1) + Ĥh(τ1))...(Ĥ†h(τk) + Ĥh(τk))
]

(3.69)

Because both Hamiltonians (Ha and Hb) conserve the number of particles, only the

terms with equal number of H†h and Hh can give non-zero trace, so we're left with

only the even orders k and only a fraction of 2k terms for each k - for a given k we
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get (2k)!/(k!)2 terms with k H† and k H factors

Z =
∞∑
k=0

∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τ2k−1

dτ2k

Tr

Tτ e− R β
0 dτ(Ĥa+Ĥb) ×

(2k)!/(k!)2∑
P=1

2k∏
i=1

Ĥ
(Xi(P ))
h (τi)

 (3.70)

where P goes over all possible choices {Xi} such that exactly k out of 2k operators

are �daggered� (each X is either † or 1). Now let's look at a concrete example, say

k = 2. We have ∫ β

0

dτ1

∫ β

τ1

dτ2

∫ β

τ2

dτ3

∫ β

τ3

dτ4 (3.71)

×
(
H†h(τ1)H†h(τ2)Hh(τ3)Hh(τ4)+ (3.72)

H†h(τ1)Hh(τ2)H†h(τ3)Hh(τ4) + (3.73)

H†h(τ1)Hh(τ2)Hh(τ3)H†h(τ4) + (3.74)

Hh(τ1)H†h(τ2)H†h(τ3)Hh(τ4) + (3.75)

Hh(τ1)H†h(τ2)Hh(τ3)H†h(τ4) + (3.76)

Hh(τ1)Hh(τ2)H†h(τ3)H†h(τ4)
)

(3.77)

Now, we can conveniently rewrite the above expression by noting that each term can

be obtained from the �rst one by an appropriate exhchage of the indices, respectively

2 ↔ 3, 2 ↔ 4, 1 ↔ 3, 1 ↔ 4 and both 2 ↔ 4, 1 ↔ 3. So instead of always having

τ4 > τ3 > τ2 > τ1 we can rearrange the integration limits to allow τ1 > τ3, τ1 > τ4,

τ2 > τ3, τ2 > τ4, but keep τ1 < τ2 and τ3 < τ4 and this way account for all the terms

only once. Note that this is possible because all the terms will in the end be time

ordered, so nothing depends on the order of operators at this stage - only which

operator (H†h or Hh) acts at what time is important. We have

Z =
∞∑
k=0

∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τk−1

dτk

∫ β

0

dτ ′1

∫ β

τ ′1

dτ ′2...

∫ β

τ ′k−1

dτ ′k

Tr
[
Tτ e

−
R β
0 dτ(Ĥa+Ĥb)

×Ĥ†h(τ1)Ĥ†h(τ2)...Ĥ†h(τk) Ĥh(τ
′
1)Ĥh(τ

′
2)...Ĥh(τ

′
k)
]

(3.78)
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where we have two sets of k times - one associated with H†h and the other with Hh.

Now let's write the operators explicitly

Z =
∞∑
k=0

∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τk−1

dτk

∫ β

0

dτ ′1

∫ β

τ ′1

dτ ′2...

∫ β

τ ′k−1

dτ ′k

Tr

Tτ e− R β
0 dτ(Ĥa+Ĥb)

∑
α1...αk

∑
α′1...α

′
k

∑
p1...pk

∑
p′1...p

′
k

V α1∗
p1

...V αk∗
pk

V
α′1
p′1
...V

α′k
p′k

×d†α1
(τ1)cp1(τ1)...d†αk(τk)cpk(τk)c

†
p′1

(τ ′1)dα′1(τ ′1)...c†p′k
(τ ′k)dα′k(τ

′
k)
]

(3.79)

Since the Hamiltonian Ĥa + Ĥb does not mix α and p states, we can do the trace

independently with respect to d and c operators

Z =
∞∑
k=0

∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τk−1

dτk

∫ β

0

dτ ′1

∫ β

τ ′1

dτ ′2...

∫ β

τ ′k−1

dτ ′k

×
∑
α1...αk

∑
α′1...α

′
k

Trd

[
Tτ e

−
R β
0 dτĤad†α1

(τ1)...d†αk(τk)dα′1(τ ′1)...dα′k(τ
′
k)
]

×
∑
p1...pk

∑
p′1...p

′
k

V α1∗
p1

...V αk∗
pk

V
α′1
p′1
...V

α′k
p′k

×Trc

[
Tτ e

−
R β
0 dτĤbcp1(τ1)...cpk(τk)c

†
p′1

(τ ′1)...c†p′k
(τ ′k)

]
(3.80)

However, if both Ha and Hb are interacting, evaluating these traces is in general an

impossible task. It is only possible if both a and b systems are small (of the order or

10 states), but if they are non-interacting, the calculation is rather straight-forward

even for in�nite systems. Note that both traces correspond to evaluating k-body

propagators. If partial Za and Zb are known than we can rewrite

Z = ZaZb

∞∑
k=0

∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τk−1

dτk

∫ β

0

dτ ′1

∫ β

τ ′1

dτ ′2...

∫ β

τ ′k−1

dτ ′k

×
∑
α1...αk

∑
α′1...α

′
k

Ga
α′1,...,α

′
k,α1,...,αk

(τ ′1, ..., τ
′
k, τ1, ..., τk)

×
∑
p1...pk

∑
p′1...p

′
k

V α1∗
p1

...V αk∗
pk

V
α′1
p′1
...V

α′k
p′k

×Gb
p1,...,pk,p

′
1,...,p

′
k
(τ1, ..., τk, τ

′
1, ..., τ

′
k) (3.81)

where Ga and Gb are the many-body Green's functions, evaluated with respect to a
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and b Hamiltonians. See Fig. 3.6

=

impurity

bath

+
impurity

bath

+ +
impurity

bath

V
...Z V

V V V V V V V V V V

Trd

Trc

Figure 3.6: The hybridization expansion series of partition function diagrams.
�Bath� and �impurity� correspond to b and a Hamiltonians respectively.

3.3.2 Hybridization expansion of the Hubbard model around

a single site

So far, the analysis has been completely general. We will now focus on concrete

example of the Hubbard model in in�nite dimensions. Let Ĥ be the Hubbard Hamil-

tonian

Ĥ = −t
∑
〈i,j〉,σ

(
c†icj + h.c.

)
+ U

∑
i

ni↑ni↓ − µ
∑
i,σ

ni,σ (3.82)

where the rescaling of the hopping apmlitude is assumed implicit t ≡ t/
√
d. µ is

the chemical potential and U is the on-site interaction amplitude. We now split this

Hamiltonian to resemble the impurity model. We single out one site and make it

subsystem a (the atomic part), the rest of the lattice is then the bath b, and the

hopping terms between a and b are the hybridization part of the Hamiltonian Hhyb.

Ĥa = −µ
∑
σ

n0σ + Un0↑n0↓ (3.83)

and

Ĥb = Ĥ(0) = −t
∑

〈i,j〉,i,j 6=0,σ

(
c†icj + h.c.

)
+ U

∑
i 6=0

ni↑ni↓ − µ
∑
i 6=0,σ

ni,σ (3.84)

where Ĥ(0) denotes the full hamiltonian with site 0 excluded, even from the hopping

terms, and therefore

Ĥhyb = −t
∑
〈0,j〉,σ

(
c†0cj + h.c.

)
(3.85)
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Here we make an indeti�cation d† ≡ c†0, i.e. the atomic Hamiltonian has only 2

states (d↑ and d↓), so α counts only spins and will be replaced by σ. Note that there

is now a restriction on the order of appearance of the d operators because d†↑d
†
↑ = 0,

so creation and annihilation operators of the same spin must appear in alternating

order. Hybridization amplitudes are now purely real and all the same −t.

Z = ZaZb

∞∑
k=0

∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τk−1

dτk

∫ β

0

dτ ′1

∫ β

τ ′1

dτ ′2...

∫ β

τ ′k−1

dτ ′k

×
∑
σ1...σk

∑
σ′1...σ

′
k

Ga
σ′1,...,σ

′
k,σ1,...,σk

(τ ′1, ..., τ
′
k, τ1, ..., τk)

×
∑
p1...pk

∑
p′1...p

′
k

t2k Gb
p1,...,pk,p

′
1,...,p

′
k
(τ1, ..., τk, τ

′
1, ..., τ

′
k) (3.86)

Note that p indices do not necessarily run over all states in the bath (though this

is true for the fully connected lattice), but only over the nearest neigbors of site 0.

Until now we haven't speci�ed the type of the lattice. Now we analyze the bath

propagator on two d =∞ lattices of interest.

3.3.2.1 Bethe lattice

Between any two sites on the Bethe lattice, there is only one independent path.

When a site is taken out from this lattice, all its nearest neighbors become completely

disconnected. As p states go over the nearest neighbors of the site 0 which is the

one site missing in b, we immediately see that

Gb
pp′ = δpp′ G

b
pp (3.87)

Note also that p and p′ need to have the same spin because both Ha and Hb do not

mix spins. Furthermore, in the thermodynamic limit, nothing must change when

we cut one single branch o� the Bethe lattice. Therefore,

Gb
pp = Ga+b+hyb

pp ≡ Gpp (3.88)

In a homogenous phase, also must hold

Gpp = G,∀p (3.89)
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So, in the �rst order k = 1, we loose one sum, but we have d nearest neighbors to

cancel the rescaling of the hopping amplitude. We have

t2

d

∑
pp′

Gpp′ =
t2

d

∑
p

Gpp =
t2

d
dG = t2G (3.90)

where the rescaling factor of the hopping amplitude is written explicitly.

Now, let's see what happens in the second order, where the summation is carried

over the two-particle propagators. Here we use i, j, k, l to denote the p states for

clarity. The times τ1..τ
′
2 are assumed �xed.

t4

d2

∑
ijkl

Gb
ijkl (3.91)

In the non-interacting limit, many-particle propagators can be expressed in terms

of the single-particle propagator, using the Wick theorem. In our case, Hamiltonian

conserves the number of particles, so anomalous Green's functions do not contribute.

We get two terms

Gijkl = GijGkl −GilGkj (3.92)

When there are interactions, however, this is not possible. Even if the full single-

particle propagator is known, all the possible arrangements of vertices still must

be included. These are summed in the full vertex function F . The Bethe-Salpeter

equation for the two-particle propagators reads (Fig. 3.7)

Gijkl = GijGkl −GilGkj

+Gii′Gkk′ Fi′j′k′l′ Gj′jGl′l

−Gii′Gkk′ Fi′j′k′l′ Gi′lGl′j (3.93)

where the summation over the internal site indices and intergration over internal

times are implicit. In our case, i, j, k and l are disconnected, so only the propagators

with all indices doubled are di�erent from 0

Gb
iijj = GiiGjj +Gii′Gjj′ Fi′j′i′′j′′ Gi′′iGj′′j (3.94)

and

Gb
ijij = −GiiGjj −Gii′Gjj′ Fi′j′i′′j′′ Gi′′iGj′′j (3.95)
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=

F F

i j

k l

i j

k l

i i’ j’ j

k l’ lk’

i i’ j’ j

k l’ lk’

-

+ -

G

i j

k l

Figure 3.7: The direct space Bethe-Salpeter equation.

where i′, i′′ run over the sites in the i branch, and j′, j′′ over the sites in j branch.

As no interactions can occur between electrons on di�erent (disconnected) branches,

unless i = j, F here is strictly zero. Note that the single-particle propagators are

already dressed - the full vertex function only includes interactions between the two

incoming fermionic lines (which may be mediated by bubbles, but if the two lines

can not meet at the same site, no vertices can appear). We obtain

t4

d2

∑
ijkl

Gb
ijkl =

t4

d2

(∑
i

Gb
iiii +

∑
ij,i6=j

Gb
iijj +

∑
ij,i6=j

Gb
ijij

)
(3.96)

However, the �rst term contains only one sum, so its contribution will be zero

t4

d2

∑
i

Gb
iiii ∼

t4

d2
d ∼ 1

d
(3.97)

So, even though theHb contains interactions, the two-body (and any many-body)

propagator in expression Eq. 3.86 can be calculated in a Wick-like manner, i.e. the

bath is e�ectively non-interacting and can be expressed entirely in terms of the local

Green's function of the whole lattice (a+ b+hyb). Using the notation from Eq.3.88

and stating the times explicitly

t4

d2

∑
ijkl

Gb
ijkl = t4 (G(τ1, τ

′
1)G(τ2, τ

′
2)−G(τ1, τ

′
2)G(τ2, τ

′
1) ) (3.98)

= t4 det

(
G(τ1, τ

′
1) G(τ1, τ

′
2)

G(τ2, τ
′
1) G(τ2, τ

′
2)

)

Note that the Hamiltonian preserves time translation symmetry, so nothing must
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=

-

+ + -

-

= det Δbath

b2t G

Figure 3.8: No two-body vertices can appear in the many-body Green's function
through the bath, i.e. the bath is e�ectively non-interacting. Just as in the non-
interacting case, the many-bopdy propagator reduces to a sum of products of single-
particle propagators.

depend on the times but only on the di�erence between times.

A similar analysis can be carried out for the arbitrary order of diagram k to

obtain the mean-�eld self-consistent equation

Gσ(τ ′ − τ) =
∞∑
k=0

∫ β

0

dτ1

∫ β

τ1

dτ2...

∫ β

τk−1

dτk

∫ β

0

dτ ′1

∫ β

τ ′1

dτ ′2...

∫ β

τ ′k−1

dτ ′k

×
∑
σ1...σk

∑
σ′1...σ

′
k

Trd

[
Tτ e

−
R β
0 dτĤad†σ(τ)dσ(τ ′)d†σ1

(τ1)...dσσk(τk)dσ′1(τ ′1)...dσ′k(τ
′
k)
]

×det∆k (3.99)

where

∆k =


∆σ1σ′1

(τ1 − τ ′1) ∆σ1σ′2
(τ1 − τ ′2) ... ∆σ1σ′k

(τ1 − τ ′k)
∆σ2σ′1

(τ2 − τ ′1) ∆σ2σ′2
(τ2 − τ ′2) ... ∆σ2σ′k

(τ2 − τ ′k)
... ... ... ...

∆σkσ
′
1
(τk − τ ′1) ∆σkσ

′
2
(τk − τ ′2) ... ∆σkσ

′
k
(τk − τ ′k)

 (3.100)

and the t2 has been absorbed into what will have the physical meaning of the hy-

bridization function in the e�ective impurity problem

∆σσ′(τ) = t2 Gσσ′(τ) (3.101)

See Fig. 3.8 and Fig. 3.9.

As the Hamiltonian does not mix spins, we know Gσσ′ = δσσ′Gσ. However,

this is not a restriction - a DMFT treatment of Hamiltonians including spin-orbit
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-
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F
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Figure 3.9: The hybridization expansion is the sum of all �crab jumping rope� dia-
grams.

interaction is possible, and in that case, the Green's function is not spin diagonal.

Otherwise, furher simpli�cation of the above expressions is possible. As ∆σσ′ =

δσσ′∆σ, the matrix ∆ can always be rearranged in the block diagonal form with two

blocks corresponding to spin up and down (the blocks need not be of the same size).

Then, the total determinant is

det∆ = det∆↑det∆↓ (3.102)

and one can deal with the two matrices separately. Also, on the Bethe lattice, the

antiferromagnetism is not frustrated, and one may even look for solutions where

Gσ 6= Gσ̄.

Note that the expression Eq. 3.99 is formally identical to what one obtains by

performing the hybridization expansion of a single-site impurity model in which the

bath is non-interacting. In this case, the hybridization part of the Hamiltonian can

always be rewritten in terms of the eigenstates m of the Hamiltonian b, and the

hybridization function is just

∆(τ) =
∑
m

|Vm|2Gm(τ) (3.103)
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where the non-interacting Green's function depends only on the energy of the state

m and can be obtained by Fourier transformation of the general expression

Gm(iω) =
1

iω − εm
(3.104)

Having this in mind, after switching to the path-integral formalism, the Taylor series

can be unrolled back up into the exponent. Due to the linked cluster theorem

1 +
∑

(all diagrams) = exp(
∑

connected diagrams) (3.105)

all the higher order terms drop out as they are necessarily disconnected (no vertices

can appear). This yields a much more compact and elegant statement of DMFT

Given the local single-particle propagator of the entire lattice, the action of the

Hubbard model can be expressed as that of an interacting impurity coupled to a non-

interacting bath

S =
∑
σ

∫
dτ dτ ′ d̄σ(τ) (δτ,τ ′(∂τ − µ)−∆σ(τ − τ ′)) dσ(τ ′) (3.106)

+U

∫
dτ d̄↑(τ)d̄↓(τ)d↓(τ)d↑(τ) (3.107)

Solving this impurity problem for the local Green's function self-consistently such

that Eq. 3.101 is achieved is equivalent to solving the Hubbard model on a d = ∞
Bethe lattice exactly.

The prescription for the solution of DMFT then goes as follows

1. start with an initial guess for the hybridization function ∆σ(iω)

2. solve for the local impurity Green's function Gσ(iω) in the problem of an

interacting single-site impurity coupled to a non-interacting bath determined

by ∆σ(iω)

3. calculate a new hybridization function using ∆σ(iω) = t2Gσ(iω)

4. repeat 2-3 until the calculation converges.

This method of solving self-consistent equations is known as the forward recursion.

There are, however, more so�sticated methods which yield the solution in fewer

iterations (Broyden root �nding algorithm, Conjugate gradient method) and also in
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cases where forward recursion fails completely (phase space extension method can

converge a solution in the vicinity of a critical point and can even converge unstable

solutions). In the work presented in this thesis, forward recursion and sometimes

Broyden root �nding are used.

Note that DMFT as an exact solution is not speci�c to the Bethe lattice, and

can be derived even for the general d = ∞ translatory symmetric lattice, although

the derivation is a bit more involved, and the connection between the hybridization

function and the local Green's function of the lattice is less simple.

3.3.2.2 General translatory symmetric d =∞ lattice

On a general translatory symmetric lattice, taking out one lattice site does not

disconnect the rest of the lattice, so already in the �rst order diagrams, we need

to take into account both the local and the intersite Green's functions, i.e. Gb
ij's

may not be immediately discarded. However, intersite propagators still go to zero

in the d = ∞ limit, and we �rst need to evaluate the order of contribution of the

single-particle terms. On the cubic lattice, the Manhattan distance between the

nearest neighbors of site 0 through the bath is either 2 or 4, but note that for each

site i, there is only one site j(i) such that |i − j| = 4 and that is the site which is

opposite of i with respect to site 0. Note also, that there are ∼ d nearest neighbors

to each site.

t2

d

∑
ij

Gb
ij =

t2

d

 ∑
ij, i6=j,j(i)

Gb
ij +

∑
i

Gb
ii +

∑
i

Gb
ij(i)

 (3.108)

∼ t2

d

(
d2

(
1√
d

)2

+ d+ d

(
1√
d

)4
)
∼ 1

We see, that although not all intersite propagators contribute, most of them do so

we keep this expression as is, for now. Note also, that Gb
ij 6= Gij. The bath part

of the system is not even translationally symmetric because it is missing the site at

r = 0. However, the rotational symmetry in all planes around r = 0 is preserved,

so all the pairs ij such that |i − j| = 2 are equivalent, so there must be only one

distinct Gb
ij that contributes to the above expression.

We now turn to the second order terms. As before, the full two-particle propaga-

tor can be expressed with the Bethe-Sapleter equation. However, all the neighbors
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of site 0 belong now to the same sublattice, so the full vertex F is never immedi-

ately zero. In in�te dimensions, however, it is still always local. That means that

if i 6= j 6= k 6= l, we need to bring both particles to the same site before they can

interact. To place an interaction vertex in a diagram of the interaction expansion of

Gb
ijkl, it would have to bring in at least a factor of (1/

√
d)|i−j|+|k−i|+|i−l|, as can be

seen from Fig. 3.7, and we know that |i− j| ≥ 2, ∀i, j.

t4

d2

∑
ijkl,i 6=j 6=k 6=l

Gb
ijkl =

t4

d2

∑
ijkl,i 6=j 6=k 6=l

(
Gb
ijG

b
kl −Gb

ilG
b
kj +Gb

iiG
b
ki F

b
iiiiG

b
ijG

b
il + ...

)
.

1

d2

(
d4

(
1√
d

)4

+ d4

(
1√
d

)6
)
∼ 1 +

1

d
∼ 1 + 0 (3.109)

As a counter example, Gb
iiij needs to bring only (1/

√
d)|i−j|, but here we lose two

sums

t4

d2

∑
ij,i6=j

Gb
iiG

b
ii F

b
iiiiG

b
iiG

b
ij &

1

d2
d2

(
1√
d

)2

∼ 1

d
∼ 0

It is clear now that even for the arbitrary translatory symmetric d = ∞ lattice,

vertices play no role, and that Ĥb part of the Hubbard model is in Eq. 3.86 e�ec-

tively non-interacting. The Taylor expansion can again be rolled back to obtain the

e�ective action of the Hubbard hubbard model, but now the e�ective Hybridization

function is given by

∆σ(τ) = t2
∑
ij

Gb
ij σ(τ) (3.110)

and Gb
ij(τ) is not yet known - we need to relate it to the local Green's function of

the whole lattice for the method to be practical.

First we note that since the bath is e�ectively non interacting, the following

expansion is possible, for any i and j (Fig. 3.10)

whole system bath whole system bathbath
t t= +i j i j i i’ j’ j0 0

Figure 3.10: On going from i to j sites, an electron can either avoid the site 0, or
go over it any number of times.
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Gij = Gb
ij +Gb

ii′ tG00 tG
b
j′j (3.111)

The summation over nearest neighbors of site 0 (i′, j′) and integration over internal

times is implicit. The integration over times makes Eq. 3.111 a coupled system of

equations, where each equation corresponds to a di�erent time τ on the lefthand

side. However, if Fourier transformed, energy conservation can be used to decouple

the equations for each Matsubara frequency. In the following, all quantities are

assumed to be at the same frequency. Note that there are no further terms with

t4, t6, ... because going away from site 0 and comming back to it arbitrary number

of times is already included in G00. We also know

Gi0 = Gb
ii′ tG00 (3.112)

and therefore

Gb
ij = Gij −

Gi0G0j

G00

. (3.113)

We will now use this to relate G00 with Gb
ij. In a homogeneous solution, G00 = G.

The e�ective Hybridization function is given by

∆ = t2
∑
ij

Gb
ij = t2

∑
ij

(
Gij −

Gi0G0j

G

)
(3.114)

Now we take into account

Gij =
∑
k

eik·(ri−rj)Gk

and obtain:

∆ = t2
∑
ij

(∑
k

eik·(ri−rj)Gk −
∑

k e
ik·(ri−r0)Gk

∑
k′ e

ik′·(r0−rj)Gk′

G

)
(3.115)

∆ =
∑
k

Gk

∑
i

teik·ri
∑
j

te−ik·rj −
∑

kGk

∑
i te

ik·(ri−r0)
∑

k′ Gk′
∑

j te
k′·(r0−rj)

G

(3.116)

Furthermore, we know the general expression for the electron dispersion

εk =
∑
j

tij e
ik·(ri−rj)
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In this expression, j goes over all sites of the lattice. However, in our Eq. 3.114,

i and j go over only the nearest neighbors of site 0. Still, we can use the above

identity since in our model t0j for all sites j except the nearest neighbors of site 0 is

0, and otherwise it is t. Furthermore r0 = 0. We obtain

∆ =
∑
k

ε2
kGk −

(
∑

k εkGk)2

G
(3.117)

We can now evaluate the k-sums:∑
k

εkGk =
∑
k

ε2
k

iωn + µ− ε~k − Σ(iω)
=
∑
k

εk − ξ + ξ

ξ − ε~k
= −1+ξ

∑
k

Gk = −1+ξG00

(3.118)

Here we have introduced a notational shortcut ξ = iω + µ−Σ(iω) and we used the

locality of self-energy to pull ξ out of the sum.

∑
k

ε2
kGk =

∑
k

εk(εk − ξ) + εkξ

ξ − ε~k
= −

∑
k

εk + ξ
∑
k

εkGk (3.119)

The �rst term is explicitly 0 and the other term we have already evaluated:∑
k

ε2
kGk = ξ(−1 + ξG) = −ξ + ξ2G (3.120)

Plugging these back into the previous equation yields:

∆ = −ξ + ξ2G− (−1 + ξG)2

G
(3.121)

= −ξ + ξ2G− 1 + ξ2G2 − 2ξG

G
= −ξ + ξ2G−G−1 − ξ2G+ 2ξ

and �nally

∆ = iω + µ− Σ−G−1 (3.122)

As we see, the relation between ∆ and the local Green's function of the whole

lattice now involves also the (local) self-energy of the whole lattice. To �x all three

quantities (G,Σ and ∆) in the self-consistent calculation, we need another equation
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- the one that connects the lattice Green's function with the lattice self-energy

G(iω) =

∫
dε

ρ(ε)

iω + µ− ε− Σ(iω)
(3.123)

where ρ(ε) is the non-interacting density of states of the whole lattice. Note that the

above expression and Eq. 3.122 are both completely general and can also be used

in the case of the Bethe lattice. The prescription for solution of DMFT by forward

recursion goes as follows

1. start with an initial guess for the hybridization function ∆σ(iω)

2. solve for the local impurity Green's functionGσ(iω) (and/or self-energy Σσ(iω))

in the problem of an interacting single-site impurity coupled to a non-interacting

bath determined by ∆σ(iω)

3. if only Gσ(iω) is known, calculate Σσ(iω) from Σ = iω + µ−∆− G−1. Oth-

erwise, skip this step.

4. calculate the new lattice Green's function from self-energy using Gnew(iω) =∫
dε ρ(ε) (iω + µ− ε− Σ(iω))−1

5. calculate a new hybridization function using ∆ = iω + µ− Σ−G−1
new

6. repeat 2-5 until the calculation converges.

Note that the Eq. 3.122 can be derived with much less e�ort by relating the

hybridization function with the impurity Green's function and self-energy. As we

shall see in the next section, the equation obtained is identical to Eq. 3.122 and since

the self-consistency requires that both the local Green's function and self-energy on

the impurity are the same as everywhere else on the lattice, we need not consider the

connection between the lattice Green's function, lattice self-energy and hybridization

function on general grounds at all, and so the derivation from Eq. 3.111 to Eq. 3.122

is unnecessary.

3.3.3 Interaction expansion of the e�ective impurity model

Now that we have shown that the bath is e�ectively non-interacting, some further

considerations can be made. We �rst split the atomic part of the Hamiltonian into
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noninteracting and purely interacting parts

Ĥ = Ĥ0
a + Ĥ i

a + Ĥb + Ĥhyb (3.124)

Ĥ0
a = −µ

∑
σ

n0σ (3.125)

Ĥ i
a = Un0↑n0↓ (3.126)

The Green's function calculated at the impurity with respect to only Ĥ0
a is then

simply

Ga
0 =

1

iω + µ
(3.127)

Because the bath is e�ectively non-interacting, the local single-particle propagator

G0 calcualted at the impurity site with respect to Ĥ0
a + Ĥb + Ĥhyb can be expanded

in terms of Ĥhyb much more simply (Fig. 3.11)

G0 = Ga
0 +Ga

0 tG
b
ij tG

a
0 +Ga

0 tG
b
ij tG

a
0 tG

b
i′j′ tG

a
0 + ...

= Ga
0 +Ga

0 tG
b
ij t
(
Ga

0 +Ga
0 tG

b
i′j′ tG

a
0 + ...

)
= Ga

0 +Ga
0 tG

b
ij tG0 (3.128)

where summation over site indices is again implicit. Now we write it explicitly

(Ga
0)−1 = G−1

0 + t2
∑
ij

Gb
ij (3.129)

where we immediately recognize ∆ = t2
∑

ij G
b
ij as the hybridization function of the

impurity model. We have

G0 = ((Ga
0)−1 −∆)−1 =

1

iω + µ−∆
(3.130)

The propagator G0 has the physical meaning of the Weiss �eld in the e�ective im-

purity problem, because it contains all the processes except the on-site interaction.

Now, the full single-particle propagator (at the impurity site) of the impurity

problem can be obtained by interaction-expansion around the non-interacting part
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Δ

Figure 3.11: When the interaction on the impurity is turned o�, the hybridization
expansion becomes very simple.

of the Hamiltonian so

G = G0 + G0ΣG (3.131)

where Σ is assumed to be proper (ireducible), and of course

G−1
0 = G−1 + Σ (3.132)

which is the well known Dyson equation. Plugging this back into Eq. 3.130, we

obtain an expression formally and physically equivalent to Eq. 3.122

∆ = iω + µ− Σ−G−1 (3.133)

because the G and Σ of the whole lattice must be the same as the ones on the

impurity.

Now, the DMFT self-consistent equation can be restated in terms of the Weiss

�eld. The explicit Taylor series in Ĥ i
a yields (Fig. 3.12)

Gσ(τ − τ ′) =
∞∑
k=0

(−U)k
∫ β

0

dτ1...

∫ β

τk−1

dτk (3.134)

×Tr
[
Tτe

−
R β
0 (Ĥ0

a+Ĥb+Ĥhyb)d†σ(τ ′)dσ(τ)

× d†↑(τ1)d†↓(τ1)d↓(τ1)d↑(τ1)...d†↑(τk)d
†
↓(τk)d↓(τk)d↑(τk)

]
The many-body Green's function can be now expressed solely in terms of the local

60



3.3 EXPLICIT DMFT SELF-CONSISTENT EQUATION
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Figure 3.12: The interaction expansion series.

propagator G0

Gσ(τ − τ ′) =
∞∑
k=0

(−U)k
∫ β

0

dτ1...

∫ β

τk−1

dτk detΓk+1
σ detΓk

σ̄ (3.135)

where

Γk
σ =


G−1

0σ (0) G−1
0σ (τ2 − τ1) ... G−1

0σ (τk − τ1)

G−1
0σ (τ1 − τ2) G−1

0σ (0) ... G−1
0σ (τk − τ2)

... ... ... ...

G−1
0σ (τ1 − τk) G−1

0σ (τ2 − τk) ... G−1
0σ (0)

 (3.136)

and the extra two operators are absorbed as an extra row and column in the matrix

Γ of corresponding spin.

This equation is, however, not practical as even and odd orders k will have a

di�erent sign, and a naive summation of this series would lead to a serious sign

problem. However, this can be resolved easily by performing a simple transforma-

tion of the d operators. Further discussion on how to do stochastic summation of

interaction expansion diagrams can be found elsewhere and is of no relevance for

the results presented in this thesis.

Note also, that the summation in Eq. 3.135 includes all the diagrams, including

the disconected and reducible ones. One can ofcourse restrict to only connected and

proper self-energy diagrams, in which case the algorithm is called the diagrammatic

quantum monte-carlo.
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3.4 Solution of the e�ective impurity model

Identifying the solution of the Hubbard model with the solution of an impurity

model with a self-consistently determined hybridization function is only the �rst

step. Solving the impurity model in itself is still not easy, and there is a variety of

numerical methods which aproach this problem in di�erent ways. First, the starting

point of the approach can be either the hybridization expansion from Eq. 3.99 or

the interaction expansion in Eq. 3.135. Then, a number of approximations may

be utilized. Either the series of diagrams is cut o� at some order (perturbation

theory) [50, 51] or only some subclasses of diagrams are summed (OCA, NCA) to

all orders semi-analytically [52]. Otherwise, the bath can be approximated with a

�nite set of states, and then the problem can be solved by exact diagonalization

of the e�ective Hamiltonian [53]. However, this scheme introduces the systematic

error of �nite system size, and is also restricted to zero temperature. If instead of

exact diagonalization a renormalization group method is used (NRG, DMRG), a

larger system can be treated to lessen the �nite size e�ects, but then the solution is

again not exact [54, 55]. Finally, one can use stochastic (Monte Carlo) summation

of all the diagrams. These methods necessarily introduce Gaussian numerical error

as calculation is always performed a �nite amount of time. The simplest approach is

to decouple the interaction at the impurity using a Hubbard-Stratonowich transfor-

mation, and this way reduce the book-keeping task to going over all con�gurations

of a single 1D Ising-like �eld (the Hirsch-Fye method) [56]. However, this approach

su�ers from an additional systematic error introduced by a �nite discretization of

the imaginary time coordinate. The cutting edge methods overcome this by going

through all time con�gurations of the diagram explicitly and are therefore called

the continuous-time methods [57, 58]. However, the main limitations are common

to all stochastic methods - very low temperatures (of order 10−3 non-interacting

bandwidth and lower) are inaccessible and in some cases the fermionic sign problem

is prohibitive of getting meaningful results.

In the work presented in this thesis, only the hybridization-expansion continuous

time quantum monte carlo (HYB-CTQMC) and second order perturbative impurity

solvers are used. In the next two sections I review the numerical challenges arising

in these methods.
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3.4.1 Hybridization expansion continuous-time quantumMonte

Carlo

Hybridization expansion continuous-time quantum Monte Carlo (HYB-CTQMC)

carries on from Eq. 3.99 [49, 57, 58]. The problem to solve is threefold

1. how to obtain a reliable estimate of the in�nite sum of diagrams?

2. how to evaluate the trace over the impurity degrees of freedom of a given

diagram?

3. how to e�ciently calculate the hybridization determinant and measure Green's

function?

Here I deal with the three issues separately.

3.4.1.1 Stochastic summation

In Eq. 3.99, the sum over diagram orders k goes all the way to in�nity, but it

turns out that the diagrams of order higher than some kmax contribute negligibly.

However, this kmax in practice is not small, and one needs a way to evaluate highly

dimensional integrals. For a diagram of order k, the variables of the integrand are

2k di�erent times and the choices of 2k di�erent σ indices, altough Pauli exclusion

renders most of the possible choices of {σ} irrelevant.
The cutting edge tool for calculation of highly dimensional integrals is the Monte

Carlo method. It relies on a stochastic, importance sampling of integration variables,

and in this context, the sampling will run over diagrams of di�erent orders, and

di�erent con�gurations of the internal degrees of freedom of the diagrams ({τ} and
{σ}).

We start with some general considerations. Say we want to calculate an integral

of the form

a =

∫
A(x)dx (3.137)

and that the function A can be calculated as a product of two other functions

A(x) = B(x)p(x) (3.138)

so we have

a =

∫
B(x)p(x)dx (3.139)
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The variable x may be a vector of arbitrary dimension and in present context I will

refer to it as 'con�guration'. Now it is enough to perform the random sampling

such that any con�guration x is visited at a rate proportional to p(x) (i.e. perform

importance sampling with respect to p(x)), and then we have

a = 〈B(x)〉MC (3.140)

When we do the monte carlo average - we only sum the B quantity, and the weight

p(x) is automatically included.

In our problem, the co�guration x corresponds to a vector (k, {τ}, {σ}) and the

function A is the Green's function

〈Tτdσ(τ ′)d†σ(τ)〉 =
1

Z
Tr
[
Tτdσ(τ ′)d†σ(τ) e−

R β
0 dτĤ(τ)

]
(3.141)

It is immediately clear that if one was to calculate the Green's function straightfor-

wardly, the integral would have to be performed many times, for each value of τ ′−τ ,
and this is not very e�cient. The way to perform the measurement of the Green's

function is to pick two operators from the existing ones, and �cut� the hybridization

line that connects them - i.e. remove the corresponding row and column in ∆. The

measure of Green's function at a given con�guration is then

Gσiσ′j
(x; τ ′j − τi) = Trd[Tτ e

−
R β
0 dτĤ(τ)] det ∆(i,j) =

det ∆(i,j)

det ∆
Z(x) (3.142)

where ∆(i,j) is the matrix ∆ with row i and column j removed, and Z(x) =

Trd[...] det ∆ is the weight of partition function in the current con�guration. This

means that one constructs only the bubble (partition function) diagrams Z(x), and

as the order of diagram is typically large, one can perform many measurements of

the Green's function at various τ 's from each con�guration x. If the importance

sampling is performed with respect to Z(x) (which we have already calculated by

the time con�guration x has been accepted) we have

Gσ(τ) = 〈det ∆(i,j)

det ∆
〉MC (3.143)

where i and j are chosen in each measurement such that σi = σ′j = σ and τ ′j−τi = τ .

So, we only need to calculate the ratio between determinants, which we are able to
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do rather e�ciently (see section 3.4.1.3 for a detailed discussion on the measurement

of the Green's function).

However, for this calculation to work, we need to ensure that any con�guration

x will be visited at precisely the rate of Z(x). This can be done by employing an

algorithm of stochastic sampling of con�gurations such that two criteria are satis�ed

• ergodicity - any con�guration must be reachable from any other con�guration

in a �nite number of steps

• stationarity (or global balance) - the probability to go from any con�guration

y to con�guration x in one step is in total Z(x)∫
dy Wyx = Z(x) (3.144)

The array of con�gurations visited is referred to as the Markov chain. For the

Markov chain to satis�y ergodicity, in our case it is enough to update the con�gu-

ration in each step by

• adding pairs of operators (d†σ and dσ) at random times

• removing random pairs of operators (d†σ and dσ)

However, it is of practical value to sometimes also

• shift times of randomly chosen operators

• exchange all the ↑ and ↓ operators

as these updates reduce the auto-correlation time.

As for the global balance - it can be satis�ed in various ways. Because of relative

simplicity, in practice one satis�es the detailed balance criterion although it is a

stronger requirement than actually needed (i.e. stronger than global balance). The

detailed balance requires
Wxy

Wyx

=
p(x)

p(y)
(3.145)

where x and y are di�erent con�gurations, Wxy is the probability to go from x to y,

and p(x) is the weight of a given con�guration (in our case p(x) = Trd[...]det∆ =

Z(x)). Note also that

Wxy = W prop
xy W acc

xy (3.146)
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i.e. the probability to go from x to y is probability to propose y while at x, times

the probability to accept y while at x (once y is proposed). The detailed balance

is satis�ed when the acceptance of a con�guration to the Markov chain is always

decided by the Metropolis algorithm. The proposed update is accepted if a random

number r ∈ [0, 1) is lower than the acceptance ratio

Rxy = min

[
p(y)

p(x)

W prop
yx

W prop
xy

, 1

]
(3.147)

Now we need to determine W prop
xy

W prop
yx

for all types of updates. For the time shift

update, we �rst choose one of the 2k times (i). Then we determine to operator of

what spin this time corresponds. Then, the maximal shift to both earlier and later

times is determined by the times of previous (τmin) and next (τmax) operators of the

same spin. Choose a random time τ between τmin and τmax and perform the shift

τi → τ (while respecting the cyclic nature of the time coordinate). Total probability

W prop
xy = 1

2k(τmax−τmin)
. The probability to go from the new state back to the old

state is just the same as it was to go from the old to the new one. So, the time-shift

update is self-balancing, i.e. W prop
yx

W prop
xy

= 1.

Rshift
xy = min

[
pnew
pold

, 1

]
(3.148)

The same holds for the global update of exchanging all ↑ and ↓ operators.
For the addition of two operators, the situation is more complicated. When we

add two operators, we �rst choose the spin (probability 1/2), choose one random

time (1/β) and then another in range (τmax− τmin) (which one of the two times will

correspond to the creation operator is determined by whether the next of the old

operators is creation or annihilation operator) in total 1
2β(τmax−τmin)

. But to return

to the original state, we need to remove two operators. This we do by choosing

spin σ (probabaility 1/2), and then choosing one annihilation operator out of kσ/2

operators, and then choosing the creation operator of the same spin that is either

the �rst after or the �rst before the chosen annihilation operator (kσ is one larger

then kσ of the original state, so the total probability is 1
4(kσ+1)

). For the addition of

two operators we have

Radd,σ
xy = min

[
pnew
pold

β(τmax − τmin)

2(kσ + 1)
, 1

]
(3.149)
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Analogous consideration leads to the acceptance ratio for removal of two operators

of spin σ

Rrmv,σ
xy = min

[
pnew
pold

2kσ
β(τmax − τmin)

, 1

]
(3.150)

Now it is easy to see that as long as kσ � β, addition of two σ operators will most

likely be accepted. The same holds for the removal of two operators when kσ � β.

That means that the typical order k of the diagram visited in the simulation will be

proportional to β - the larger the compacti�cation radius of the imaginary time, the

more creation/annihilation events will typically appear in the time evolution. This

means that there is some preferred �density� of the d operators, or in other words,

there is a time scale of order 1 which sets the average time distance between two

operators. This scale, however, is determined by the amount of interaction on the

impurity sites - the higher the order of the diagram, the more fermions appear in

the time evolution thus experiencing more interaction. In practice, the histogram

of k in the CTQMC is sharply peaked around NflavorsβEkin where Ekin is the total

kinetic energy.

3.4.1.2 Evaluation of the trace

In the case of a single-site impurity (we can have more then one orbital as long as

they are orthogonal, i.e. there are no hoppings between the orbitals (�avors)), and

in the absence of o�-diagonal interactions (such as Hund's coupling), the atomic

Hamiltonian Ha commutes with the density operators, and is diagonal in the Fock

basis. This allows for a silmple and direct estimation of the trace Trd[...]. For

the sake of simplicity, we restrict here to the single-orbital case. We insert 2 unit

decompositions around each d operator and obtain

Trd

[
Tτ e

−
R β
0 dτĤad†σ1

(τ1)...d†σk(τk)dσ′1(τ ′1)...dσ′k(τ
′
k)
]

= sP
∑

n,n1,n2...n4k

〈n|e−(β−τ2k)Ĥa|n4k〉 (3.151)

×〈n4k|d(X2k)
σ2k
|n4k−1〉〈n4k−1|e−(τ2k−τ2k−1)Ĥa|n4k−2〉...

×...〈n2|d(X1)
σ1
|n1〉〈n1|e−τ1Ĥloc|n〉

where we have applied the time order operator �rst, and then relabeled the times

(and the σ indices) so that they appear in order. The sign sP comes from the
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Figure 3.13: When the local Hamiltonian is diagonal in the Fock basis (as is the case
in the single-site impurity problem), one can easily evaluate the contribution of a
given con�guration. The illustration shows an example of a k = 3 con�guration, and
the contribution of individual time segments. The larger the overlap (light blue),
the smaller the contribution of the con�guration.

permutation of the operators needed to establish the time order. Xi is either † or
1, depending on the choice of original τi's and τ ′i 's. The many-body states |n〉 run
over the Fock basis. Since the Hamiltonian Hloc is diagonal in the Fock basis we

have 〈n|e−∆τĤa |m〉 = δ|n〉,|m〉e
−∆τEn , where En is the energy of the many-body state

|n〉. This reduces the number of sums so we have

sP
∑

n,n1,n2...n2k−1

e−(β−τ2k)En〈n|d(X2k)
σ2k
|n2k−1〉e−(τ2k−τ2k−1)En2k ...〈n1|d(X1)

σ1
|n〉e−τ1En

Also, we know that for each creation(annihilation) operator 〈n|d†σ|m〉 = δ|n〉,d†σ |m〉
must hold, there can be only one sequence of states |ni〉 that accomodates the given

order of d operators, i.e. all the sums vanish. Since Ha = −µ
∑

σ nσ + Un↑n↓

Trd[...] = sP e
µ

P
σ Lσ−UO (3.152)

where Lσ is the total time the spin-state σ is occupied, and O is the total time both

↑ and ↓ are occupied. See Fig. 3.13. Note also that nothing must depend on the

particular times - the contribution of the diagram must remain unchanged if all the

operators are shifted the same amount of time. Because of this, one may keep one
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operator at a �xed time (say, 0) and not keep track of the sign sP at all. If we

shift all the operators so that the �rst one becomes the last one, we have performed

an odd number of permutations (because of the particle number conservation, the

number of operators of the same spin is always even, and so is the total number of

operators) and the overall trace changes sign. However, the same happens with all

the Hybridization lines connected to this operator, and therefore the change in sign

is cancelled by the change in sign of det∆.

3.4.1.3 Quick update of det ∆

To evaluate the probability R for accepting an update of a con�guration (which

must be done in each MC step, and the total number of steps in each solution of the

impurity problem is of the order of 109), one must calculate the determinant of a

k× k matrix ∆k. As k can be very large (of the order of 1000), and the calculation

of determinant is a O(k3) operation, it is extremely important to optimize this

procedure. Luckily, the matrix ∆k does not change much when an update is made,

and one can make use of Shermann-Morisson formula to update the determinant in

O(k) steps.

Note that in the case there is not mixing of spins ∆σσ′ = δσσ′∆σ, the matrix ∆

can always be rearranged in the block diagonal form such that

det∆ = det∆↑det∆↓ (3.153)

and one can deal with the two matrices separately. For the sake of completness, I

present here the derivation for the general case.

First, it is much more convenient to store (and manipulate) the matrix inverse

of ∆

M = ∆−1 (3.154)

When two operators are added, ∆ grows in size by one - i.e. one row and one column

are added. The new elements are

∆k+1,l = ∆σk+1σ
′
l
(τ ′l − τk+1)

∆l,k+1 = ∆σlσ
′
k+1

(τ ′k+1 − τl)

∆k+1,k+1 = ∆σk+1,σ
′
k+1

(τ ′k+1 − τk+1) (3.155)
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where l runs over the old internal degrees of freedom, and k + 1 are the added σ's

and τ 's.∆σσ′(τ) is the hybridization function. We now de�ne two vectors of size k+1

(~L and ~R) and two scalars (p and q) that depend on the old (stored) M matrix, and

the added elements of ∆

Li =

{ ∑
lMil∆l,k+1, i < k + 1

−1, i = k + 1

Ri =

{ ∑
l ∆k+1,lMli, i < k + 1

−1, i = k + 1

q =
∑
l<k+1

∆k+1,lLl

p = (∆k+1,k+1 − q)−1 (3.156)

Now, the new (enlarged) matrix M can be obtained by �rst expanding it with zeros

M̃ij =

{
Mij, i < k + 1 ∧ j < k + 1

0, otherwise
(3.157)

and then applying the Sherman-Morrison formula directly yields

Mnew = M̃ + p ~L⊗ ~R (3.158)

Otherwise, one can update the matrix element-wise

Mnew
ij = M̃ij +


pLiRj, i, j < k + 1

−pRj, i = k + 1, j ≤ k + 1

−pLi i < k + 1, j = k + 1

(3.159)

When two operators are removed, the update procedure is far simpler. We �rst

rearange the matrix so that the row and column that need to be removed are last

(at position k). Then

Mnew
ij = Mij −

MikMkj

Mkk

(3.160)

where the new matrix has dimension k − 1.

However, for the trial step we just need the ratio between the new and old

determinant, and the updates of M are performed only if the step is accepted. In
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the case of adding two operators, the ratio of determinants is given by

det ∆new

det ∆old
=

1

p
(3.161)

When two operators are removed, it is even simpler - if we want to remove the row

n and column m
det ∆new

det ∆old
= Mnm. (3.162)

For the time shift update things are little di�erent. We have two cases - one of

the τ has changed or one of the τ ′ times has changed. That means that either a row

or a column needs to be updated (respectively). Let's say a time τn has changed.

We de�ne two vectors of size k

Ui = δni

Vi = −∆σn,σ′i
(τ oldn − τ ′i) + ∆σn,σ′i(τ

new
n − τ ′i) (3.163)

where the second vector is the di�erence that needs to be applied to the row n of

∆, i.e. we subtract what is currently in the row, and add what now should be in

the row. In the case τ ′n has changed, it is the other way around

Ui = −∆σi,σ′n(τi − τ ′oldn ) + ∆σi,σ′n(τi − τ ′newn )

Vi = δni (3.164)

and the �rst vector is the change that needs to be applied to the column n. Now we

de�ne as previously

~L = M~U

~R = ~VM

q = ~VM~U = ~V · ~L

p =
1

1 + q
(3.165)
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By the elements

Li =
k∑
j=1

MijUj

Ri =
k∑
j=1

VjMji

q =
k∑

i,j=1

ViMijUj =
k∑
j=1

VjLj =
k∑
i=1

RiUi (3.166)

Now the updated M can be obtained as

Mnew = M− p ~L⊗ ~R (3.167)

i.e.

Mnew
ij = Mij − pLiRj (3.168)

Same as before, in the trial step we only need the ratio of determinants, and

det ∆new

det ∆old
=

1

p
(3.169)

which is also known as matrix determinant lemma. Note that either ~U or ~V will

have a single non-zero element, and it will be 1, so q is just the n-th element of ~R or
~L respectively. For the trial step, p can be obtained very cheaply, as we only have

to calculate a single element of R or L.

The formula Eq. 3.162 can be used to e�ciently perform the measurement of the

Green's function in a given con�guration x. We have

Gσiσ′j
(x; τ ′j − τi) = Mij (3.170)

We can go over all pairs ij and obtain an average, in each monte carlo step. Each

combination of operators will yield a measurement at a di�erent value of τ . We have

Gσσ′(x; τ) =

〈
Mijδσ′jσ′δσiσ

{
δ̃(τ, τ ′j − τi), τ ′j − τi > 0

δ̃(τ, β + τ ′j − τi), τ ′j − τi < 0

〉
ij

(3.171)
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where the averaging is performed over all i and j, and δ̃ is the �approximate� Kro-

necker delta - one must discretize time and store measurements into bins. A simpler

way is to measure directly in imaginary frequency

Gσσ′(x; iωn) =
1

β

〈
eiωn(τ ′j−τi)Mijδσ′jσ′δσiσ

〉
ij

(3.172)

The 1
β
factor comes from the fact that we are integrating over one more variable

than is needed. Note also that the averaging must be performed at each step, and

then once more at the end of Monte Carlo procedure. If all the measurements were

summed, then the diagrams with large k would be overrepresented, as the number of

measurements available goes as k2. Also, the measurement of the Green's function

at high frequences can not be performed with high accuracy. In practice one patches

the high-frequency �tail� by employing some analytic approximation. Namely the

Hubbard-I approximation, or the atomic limit approximation which I state here

Gσ(iω � 1) =
1− 〈nσ〉
iω + µ

+
〈nσ〉

iω + µ− U
(3.173)

Note that the Green's function is measured in each step, regardless of wheather

the con�guration has been updated. To be more precise, the measurements are best

made each Nac steps, to avoid autocorrelation. In the end we have

Gσσ′(iωn) = 〈Gσσ′(x; iωn)〉MC =
1

Nmeasurements

∑
i

Gσσ′(xi; iωn) (3.174)

3.4.2 Perturbative solution (IPT)

A very succesful approximate scheme for solving DMFT is known as the Iterative

Perturbation Theory (IPT) [50, 51]. This approach carries on from Eq. 3.135 but

keeps only the lowest two orders in the interaction expansion. Then, one can calcu-

late self-energy directly, and restrict to only connected, proper self-energy diagrams.

The �rst order diagram includes only one interaction vertex (Fig. 3.14) and corre-

sponds to the mean-�eld contribution as it is not time (frequency) dependent. In

second order, there are 5 possible diagrams of proper self-energy. However, three

of them are immediately forbidden because in the Hubbard model, electrons of the

same spin can not interact. The �fth diagram is not a skeleton diagram, and needs

not be considered as its contribution will be included during DMFT iterations.
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IPT
Σ = +

forbidden

not skeleton

Figure 3.14: Upper row - irreducible, second order self-energy diagrams. Lower row
- IPT approximation of self energy.

The second order contribution to self-energy then is just

Σ(2)
σ (τ) = U2G2

0 σ̄(τ)G0 σ̄(−τ) (3.175)

Note that all propagators in imaginary time are always purely real. G0 σ(0) = nσ is

the average occupancy of a given spin, but with respect to the non-interacting part

of the Hamiltonian and in general does not correspond to the physical occupancy

of the Hubbard model. If we restrict to paramagnetic solutions and particle-hole

symmetry, this is, however, the case, and also

n↑ = n↓ =
1

2
= G(0) = G(β) (3.176)

G0(τ) = G0(β − τ) = −G0(−τ) (3.177)

Furthermore, in imaginary frequency all the the propagators are purely imaginary.

ReG0(iω) = 0 (3.178)
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The real part of self-energy is just a constant coming from the �rst-order diagram.

ReΣ(iω) =
U

2
(3.179)

The imaginary part of the self-energy can be obtained by Fourier transformation of

Σ(2)(τ). Note that the particle-hole symmetry is enforced by setting

µ = U/2 (3.180)

One of the biggest advantages of IPT, apart from its relative e�ciency compared

to CTQMC, is that it can be formulated in real frequency so as to avoid the need

for doing the numerical continuation of the imaginary-axis data to the real axis.

Similarly as in the case of optical conductivity, the second order self-energy diagram

can be analytically continued to the real axis. Here, however, there is an additional

simpli�cation - in self-energy diagrams all the propagators can be exchanged for

their local counterparts and there is no need for the summation over k. The resulting

expression for the imaginary part of self-energy is

ImΣ(2)(ω) = −U2

∫
dω′
(
A−(ω + ω′)P (ω′) + A+(ω + ω′)P (−ω′)

)
(3.181)

where

A±(ω) = − 1

π
ImG0(ω)f(±ω) (3.182)

and

P (ω) = π

∫
dω′ A+(ω′ + ω)A−(ω′) (3.183)

The real part can be obtained from the imaginary part using the Kramars-Kronig

relation

ReΣ(2)(ω) =
1

π

∫
dω′

ImΣ(2)(ω′)

ω − ω′
(3.184)

and �nally

Σ(ω) =
U

2
+ Σ(2)(ω) (3.185)
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Furthermore, at p-h symmetry, all the real frequency propagators satisfy

G(ω) = G∗(−ω) (3.186)

including the second-order contribution of self-energy.

Note that away from particle-hole symmetry, additional considerations and a

correction of the expression Eq. 3.185 must be made to ensure the correctness of the

approximation in various limits. In this work, we used IPT only at half-�lling.

The evaluation of the self-energy in this approximation boils down to calculating

a 2D integral. However, a careful treatment of divergences in the integrands is

essential for obtaining relieble results.

3.5 Maximum Entropy Method

The stochastic methods produce only the imaginary axis data. For example, the

result of DMFT on the Bethe lattice is fully contained in the local Green's function

G(τ) where τ goes from 0 to β, or G(iω), where iω are the Matsubara frequnces up

to some cuto� frequency. However, to compute frequency dependent observables, in

general one needs the real-axis spectral function. The relation between the Matsub-

ara frequency and real frequency Green's functions is the following integral equation

G(iω) =
1

π

∫
dω′

ImG(ω′)

iω − ω′
(3.187)

or equivalently, applying the Fourier transformation

G(τ) =
1

π

∫
dω′ ImG(ω′)T

∑
iω

eiωτ
1

iω − ω′

=

∫
dω′A(ω′)K(ω′, τ) (3.188)

where A(ω) = − 1
π
ImG(ω) and

K(ω, τ) =
e−ωτ

1 + e−βω
(3.189)

is the fermionic kernel function. Evaluating the integral on the right-hand side of this

equation is trivial and the continuation of the real-axis data to the imaginary-axis

is not problematic. However, it turns out that inverting this equation is an ill-posed
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task. Usually, the inversion of an integral equation is straightforwardly performed

by switching to matrix notation. Suppose we have G(τ) in L time slices. Then we

can consider the imaginary time data an L-dimensional vector ~G. The same stands

for A(ω), which is necessarily calculated in a �nite number (say L) of descrete real

frequences. Then, the kernel function can be considered an L×L matrix. We have

~G = K ~A =⇒ ~A = K−1 ~G (3.190)

However, the kernel function at high-frequences and �nite τ is exponentially small

and so is the determinant of K. Therefore, the inverse of K is ill-de�ned and this

approach is useless. The information contained in G(τ) which is de�ned on a �nite

range of τ is spread out across (−∞,∞) on the real axis. Furthermore, the higher

the frequency ω, the less G(τ) is sensitive to the features in A(ω). This means that

there are in�nitely many di�erent A(ω) which correspond to any given G(τ) within

an in�nitesimal error-bar.

The other straight-forward approach to the continuation would be the weighted

least squares method. Here, one minimizes the disrepancy

χ2[G,A] =
L∑
l=1

(G(τl)−GA(τl))
2

σ2
l

(3.191)

where GA(τl) =
∫
dω A(ω)K(ω, τl) is the imaginary time Green's function as ob-

tained from the proposed real-frequency spectrum A(ω) and σ2
l =

∑N
i=1(Gi(τl) −

G(τl))
2/(N(N − 1)) is the standard deviation of the statistically averaged G(τl) (i

goes over N measurements (MC steps) in the stochastic procedure, and Gi(τl) is the

measure of the Green's function in the given step i). Unless one is looking for only

the rough features of A(ω) and keeps the ω discretization very sparse, this method

also fails and produces unphysical oscillations and noisy results.

When the DMFT result is well resolved and smooth, it is sometimes possible to

continue data by �tting the Pade approximant (which is a ratio of two high order

complex polynomials) to G(iω) and then formally replacing iω → ω. This method

boils down to solving a system of L linear equations. For example, the G(iω) result

obtained from the imaginary axis IPT can be of very high quality, but even then, the

Pade method fails in some cases, producing unphysical features or appearantly noisy

results. However, the method is of virtually no use when the original imaginary-axis
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3.5 MAXIMUM ENTROPY METHOD

data is degraded by numerical noise, as is usually the case with stochastic methods.

The cutting-edge method for the numerical continuation of the imaginary-axis

data to the real-axis is the Maximum entropy method [59]. The main idea behind

this method is to use Bayesian statistical reasoning to choose among many di�erent

A(ω) that reproduce G(τ) through Eq. 3.188 equally well. The working hypothesis

of this approach is that the true A(ω) will have only the features necessary to

reproduce G(τ), but will otherwise be featureless. The amount of structure, or

correlation, in A(ω) can be quanti�ed by a generalized Shannon-Jaynes entropy,

which is a functional of both A(ω) and the default model m(ω)

S[A,m] =

∫
dω

(
A(ω)−m(ω)− A(ω) ln

A(ω)

m(ω)

)
(3.192)

such that it goes to zero when A(ω) = m(ω). Otherwise, the result of this integral is

always negative, as the integrand can be only negative or zero. Say, A(ω)/m(ω) = x.

Then the sign of the integrand is the sign of x−1−x lnx which can be only negative

or zero (when x = 1). Note that both A and m are positive de�nite and normalized

to 1. If m(ω) is just a constant, say a box distribution (m(ω) = 1
2ωmax

where

|ω| < ωmax, where ωmax de�nes the range of frequences in which A is calculated),

then S will be a measure of deviation from a smooth featureless spectrum. Then,

one can look for a spectrum A(ω) that not only minimizes the discrepancy χ2, but

also maximizes S. The quantity to maximize is then

P (A,G,m, α) = eαS[A,m]− 1
2
χ2[A,G] (3.193)

The relative importance of the two criteria is determined by the parameter α. Note,

that in the absence of data (α→∞) MEM yields the default model m. The choice

of α and m constitutes the variant of MEM.

The Classic MEM maximizes P with respect to both A and α. This is done by

nesting two optimization routines - the inner one searches for the optimal A given

the value of α, and the outer one searches for the optimal α such that the Pmax
resulting from the inner routine is maximized. However, the distribution of Pmax(α)

can be very broad and skewed, such that mode does not correspond to the mean.

The Bryan variant goes over a range of the values of α and averages the result

for A

〈A〉 =

∫
dαPmax(α)A(α) (3.194)
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Furthermore, the default model can be chosen to incorporate the a priori knowl-

edge of A. In the annealing procedure, one starts by doing the continuation of the

results obtained at some high temperature, where the spectrum is expected to be

the smoothest and easiest to obtain. Then the result is used as the default model

for the lower temperature, and so on.

In the work presented in this thesis, we used the classic MEM, both in the

annealing scheme, and with a �at model. For further details of the procedure we

used, see section 4.2.4.
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4. Results: Quantum criticality of the Mott
metal-insulator transition

The generic phase diagram of materials exhibiting the Mott transition and the resis-

tivity in its vicinity are well reproduced by single-site DMFT. The main task in this

chapter is to perform a detailed study of the DC resistivity throughout the DMFT

phase diagram, identify di�erent regimes, try to �nd evidence of quantum critical

behavior at high temperatures, and compare the results to experiments.

The work is divided in two parts. In the �rst part we consider the interaction-

driven phase transition at half-�lling (section 4.1). On this example, we work out

the generalization of the QC scaling formula necessary in the presence of a �rst

order transition, by introducing the concept of quantum Widom lines (QWL, section

4.1.5). We then test the validity of this generalized scaling law in the case of DC

resistivity, around the quantum Widom line. The results are then compared to the

recent experiments on κ-organic systems.

In the second part we consider the doping-driven Mott transition at a large value

of on-site interaction U . Here we complete the 3D (U, µ, T ) phase diagram of the

single-site DMFT and show that Tc for the �rst order transition reduces quickly as U

is increased (sections 4.2.1 and 4.2.2). Then, we use the concepts introduced in the

half-�lled case to show that QC scaling is observed in this case as well, but down to

much lower temperature, revealing a phenomenology much more similar to the pure

QCP case. Furthermore, we �nd that the QC region matches the linear resistivity

bad-metal region and �nd a surprising relation between the two phenomena (section

4.2.6). The results are compared with the experiment on superconducting cuprate

�lms.

The work presented in this chapter is published in three papers [60, 61, 62].
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4.1 INTERACTION-DRIVEN MOTT MIT AT HALF-FILLING

4.1 Interaction-driven Mott MIT at half-�lling

In single-site DMFT, at T = 0, a true Mott insulator is only observed at strictly

half-�lling. In the case of a Hubbard model on a particle-hole symmetric lattice,

the �lling factor of n = 0.5 is enforced by setting µ = U/2, i.e. the Hubbard model

reads

Ĥ = −t
∑
〈i,j〉,σ

c†iσcjσ + U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
(4.1)

Then, the phase diagram is examined by varying the value of on-site interaction U

and temperature T . In this work we use the semi-circular non-interacting density

of states, corresponding to the in�nitely dimensional Bethe lattice or the fully-

connected lattice with random hoppings such that their overall mean is zero (also

known as the maximally frustrated Hubbard model). For the latter, only a fully

paramagnetic solution is possible, and this is the one we focus on. The unit of

energy is taken to be the half-bare-bandwidth D = 2t = 1 where t is the (unscaled,

see section 3.2) hopping amplitude.

4.1.1 Phase diagram

Interaction

Te
m

p
e
ra

tu
re

Fermi liquid

Bad metal

Mott
insulator

Coexistence

Figure 4.1: Paramagnetic single-site DMFT phase diagram.

The phase diagram in the U−T plane is shown in Fig. 4.1 . The DMFT solution

reproduces the three regimes usually found close to a metal-insulator transition

(MIT): Fermi liquid (FL), bad metal and Mott insulator, in qualitative agreement

with experiments on various Mott systems.[24] We begin their characterization by

�rst analyzing the behavior of the resistivity in the relevant range of parameters.
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Figure 4.2: Resistivity (in units of ρ
Mott

) calculated in the entire U − T plane.
The white stripes follow the lines of constant resistivity and separate the orders of
magnitude in the resistivity. Spinodals are denoted with black lines, and the �rst
order phase transition line is the (dashed) purple line.

Our IPT (see section 3.4.2) results are plotted in Fig. 4.2, where the value of

resistivity is color-coded, with white stripes separating the orders of magnitude

between 10−3 and 1013. In this plot, the resistivity is given in the units of ρ
Mott

, the

maximal metallic resistivity in the semiclassical Boltzmann theory, de�ned as the

resistivity of the system when the scattering length is equal to one lattice spacing.[63,

64] At zero temperature, the resistivity in the FL phase vanishes, while the Mott

insulator has an in�nite resistivity. With increasing temperature, the di�erence

between the two states becomes less and less pronounced. Between the spinodals,

both metallic and insulating solutions are possible, but in this plot only the metallic

resistivity is shown. In the intermediate interaction U < Uc and high temperature

T > Tc regime, the resistivity is comparable to or even larger than ρ
Mott

, but it still

(weakly) increasing with temperature, which is a characteristic of the "bad metal"

regime observed in several Mott systems.[63]

It is remarkable how this way of presenting the data immediately creates the

familiar "fan-shape" structure, generally expected for quantum criticality.[4] At high

temperatures all the white constant-resistivity stripes seem to converge almost to

the same point U ∼ Uc. The perfect convergence, however, is interrupted by the
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4.1 INTERACTION-DRIVEN MOTT MIT AT HALF-FILLING

emergence of the coexistence done at T < Tc, but such behavior is exactly what one

expects for "avoided quantum criticality",[65].

β=2

β<2

β>2
8β    

β=0

β<0

- 8β    

U

T

Figure 4.3: The e�ective exponent of the temperature dependence of resistivity
(β = d log ρ/d log T ) calculated in the entire U − T plane illustrates the di�erent
transport regimes (see text).

Di�erent regions of the phase diagram are also distinguished by the qualita-

tively di�erent form for the temperature dependence of the resistivity. To make this

behavior even more apparent, we follow a commonly-used procedure to displaying

the data around QCP's - we compute the logarithmic derivative of resistivity with

respect to the temperature, i.e. the "e�ective exponent"[66, 67]

β(T, U) = d log ρ(U, T )/d log T, (4.2)

which is color-coded in Fig. 4.3. On the metallic side, at the lowest temperatures,

one �nds a typical metallic dependence of the form ρ ∼ T 2 and here we have

β = 2 (white). Far from the transition, this regime survives up to relatively high

temperatures, but eventually the temperature dependence of the resistivity gradually

slows down, displaying behavior sometimes described as "marginal Fermi-liquid"

transport (green, β ∼ 1). Closer to the transition, this is preceded by an increase in
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Figure 4.4: Upper left: on the metallic side, close to the transition, resistivity is
non-monotonic. Upper right: on the insulating side, resistivity is exponentially
decreasing with temperature. This trend is slightly modi�ed close to the transi-
tion. Lower panel: above the critical end-point, there is a clear in�ection point in
log ρ(U)|T .

the e�ective exponent (red), which is a re�ection of the existence of the critical end-

point in which β diverges (yellow). Very close to the transition, a maximum of the

resistivity is reached at some temperature (pink) (see also Fig. 4.4) and the trend of

the resistivity increase is then reversed. On the other side of the phase diagram, deep

in the Mott insulator, one �nds typical activation curves (see also Fig. 4.4) which

exhibit the exponential drop in the resistivity with increasing temperature, due to

the gap in the excitation spectrum (black and purple). However, just above the

coexistence dome, one �nds an intermediate regime, where the behavior is generally

insulating because the resistivity decreases with temperature, but the gap is not yet

fully open, and the temperature dependence deviates from exponential (blue). This

region is sometimes referred to as the "bad insulator."
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Figure 4.5: Various de�nitions for the crossover lines between the Fermi liquid and
the bad metal. The meaning of each de�nition is illustrated on a smaller panel to
the right. The results are obtained with the CTQMC.

4.1.2 Crossover lines

In the previous section we have characterized the di�erent regimes in the vicinity of

the Mott MIT: Fermi liquid, bad metal and Mott insulator. However, apart from

the spinodals, the properties of the system change continuously in the entire phase

diagram. The lines separating the di�erent regimes are thus a matter of convention

and many de�nitions can be found in literature.

In Fig. 4.5 we present the lines corresponding to various de�nitions of a crossover

line between the Fermi liquid and the bad metal regimes. The de�nition of each line

is illustrated on a smaller panel on the right, where the corresponding feature in

the resistivity and other relevant quantities is marked with the dots of the same

color. All the results are obtained with CTQMC impurity solver (see section 3.4.1).

The dark blue line (a) is de�ned by ρ = 0.1ρ
Mott

and it roughly corresponds to the

Fermi coherence temperature TFL (the temperature above which the temperature-

dependence of resistivity is no longer quadratic; this can also be seen in Fig. 4.3).

The corresponding small panel (a) shows the resistivity as a function of temperature,

plotted for three di�erent values of U. The dotted horizontal line marks ρ = 0.1ρ
Mott

.

The arrow denotes the direction of increase of U . The light blue line (b) corresponds
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to the in�ection point of the resistivity, d2ρ(ω = 0)/dT 2 = 0 (see also Fig. 4.4), and

the green line (c) is determined as the in�ection point of the spectral density at

the Fermi level with respect to the temperature, d2A(ω = 0)/dT 2 = 0. These are

illustrated on smaller panels (b) and (c) where the DC resistivity and A(ω = 0) are

plotted versus the temperature, for three di�erent values of U. The in�ection points

are marked with the dots of color corresponding to the (b) and (c) lines on the main

panel. The additional two dotted lines are: (d) the quasi-particle weight at zero

temperature de�ned by

Z =
[
1− dImΣ(iωn)/dωn|ωn→0

]−1

and (e) the zero temperature local spin susceptibility χ(iν = 0) = 1
β

∫
dτdτ ′ 〈~Si(τ) ·

~Si(τ
′)〉. Both quantities are divided by 10 to �t in the temperature range of the

plot and to be more easily compared to the crossover lines. It is evident that

the coherence temperature is roughly proportional to the quasi-particle weight at

zero temperature, but with the prefactor 0.1, TFL(U) ∼ 0.1 Z(U). As compared

with the doped Hubbard model,[45, 68] TFL is higher, but still distinct from the

temperature corresponding to ρ
Mott

, in agreement with the experiments on organic

materials.[64, 69, 70] The quasiparticle weight Z is weakly temperature dependent

and the Drude peak in the optical conductivity is still pronounced for ρ . ρ
Mott

.[71]

In contrast with these lines, one can also de�ne the lines separating the bad

metal from the (bad) Mott insulator. In Fig. 4.6, we present several criteria for

their de�nition. In analogy to the line (a) of Fig. 4.5, one can use the resistivity to

distinguish between the two regimes. The dark blue line (a) plotted here, connects

the points where the resistivity is equal to the one found precisely at the critical end-

point, which we estimate to be roughly 10ρ
Mott

. The light-blue line (b) marks the

in�ection point of logarithmic resistivity as a function of U (∂2 log ρ(U, T )/∂U2 = 0).

It is well pronounced feature up to high temperatures, and it is a direct consequence

of the discontinuity along the spinodals at T < Tc. These two are illustrated on the

small panel to the right, where log ρ(U) is plotted at three di�erent temperatures.

The dark blue dots are the intersections of these lines with the dotted, 10ρ
Mott

line.

The in�ection points are marked with the light blue dots, and are found at slightly

lower values of U. Another natural de�nition for the crossover is the β = 0 line (c),

as it marks the place where the trend of resistivity growth is reversed. At its right-

hand side, the resistivity decreases with temperature, which is a sign of insulating
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Figure 4.6: Various de�nitions for the crossover lines between the bad metal and
the Mott insulator. The meaning of each de�nition is illustrated on a smaller panel
to the right. The results are obtained with the CTQMC.

behavior. This is illustrated on the corresponding small panel, where log ρ(T ) is

plotted for 3 di�erent values of U and the maxima are marked with the green dots.

The double occupancy nd has an obvious change in trend on crossing the line (d).

Here, the second derivative ∂2nd/∂U
2 has a sharp maximum, and separates the

two distinct regimes of nd(U), both almost linear but with di�erent slopes. This is

apparent on the small panel (d) where double occupancy is plotted as a function of

U at various temperatures.

It is striking that these lines almost coincide, in sharp contrast to what is seen in

Fig. 4.5. Although the opening of the gap is very gradual, it is possible to pin-point

the boundary between the two regimes and actually divide the supercritical part of

the phase diagram into metallic and insulating-like regions.

4.1.3 Generalization of the QC scaling formula

In the standard scenario for quantum criticality [4, 72], the system undergoes a zero-

temperature phase transition at a critical value of some control parameter g = gc,

and within a �V-shaped" �nite temperature region stemming from the QCP, physical

87
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quantities display scaling behavior of the form

A(g, T ) = Ac(T ) F

(
g − gc
T 1/zν

)
(4.3)

where Ac(T ) ≡ A(gc, T ). Mott MIT is a �rst order phase transition [73], but the

corresponding coexistence region is con�ned to extremely low temperatures, and

at temperatures su�ciently above the classical critical end-point Tc, the quantum

e�ects are expected to set in [4], and restore the QC behavior. However, to test the

QC scaling hypothesis in the case of a �rst-order transition, one must �rst identify

the appropriate gc which enters the argument of the scaling function (Fig. 4.7).

It is immediately clear that the critical value gc of the control (transition-driving)

parameter g must be replaced by a more general, temperature dependent quantity.

Below Tc one may identify it with the line of the �rst order transition gc(T ) along

which the two coexisting phases are equally favorable (purple dashed line in Fig. 4.2).

However, above Tc, no actual transition takes place, and the trajectory gc(T ) can

only be a crossover line - therefore it is not uniquely de�ned. In this work we choose

to use the general concept of Widom lines and de�ne gc(T > Tc) in a way that it is

a well de�ned and logical continuation of gc(T < Tc). In the next section we discuss

the concept of Widom lines and then devise a way to apply it in a completely general

case.

However, there is an additional problem in treating the �rst-order Mott transi-

tion in terms of quantum critical behavior. The Eq. 4.3 assumes that there is no

phase transition away from zero temperature, so all the quantities must be analytic

 T

ggc

 T

g

g (T)c

g (T)*

QCP I order PT

QCR QCR

Figure 4.7: Standard QCP scenario is modi�ed in the case of the Mott MIT. The
critical transition-driving parameter gc is replaced by a more general, temperature
dependent quantity. Below Tc this is the line of �rst order transition gc(T ) where
the two states are equally favorable. Above Tc it is the line of "maximal instability"
of the ground state (see section 4.1.5), or the quantum Widom line g∗(T ).
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functions of g and T . Only at precisely the QCP (g = gc, T = 0), the argument

of the scaling function F changes from −∞ to ∞ thus allowing for a non-analytic

behavior of A. Then if we apply the Eq. 4.3 to the case of resistivity in single-site

DMFT, we have

ρ(U, T ) = ρc(T ) F

(
U − Uc(T )

T 1/zν

)
(4.4)

and we run into a problem immediately, even if Uc(T > Tc) is known - the �rst

derivative of resistivity is divergent at the critical point (Uc, Tc) (Fig. 4.3)

∂ρ

∂U

∣∣∣∣
Uc,Tc

→∞ (4.5)

which certainly can not be described by Eq. 4.4. Furthermore, the vicinity of the

critical point has been described by a classical scaling theory in the work of Kotliar

and Rozenberg Ref. [36] with a great level of success, and revealed that the second

order transition here is of the classical Ising type with ν = 1. Therefore, the quantum

critical behavior is necessarily spoiled by the presence of the �nite temperature

critical point, but at temperatures su�ciently higher than Tc, it is still justi�ed to

pursue an understanding of the system behavior in terms of quantum criticality.

4.1.4 Widom crossover lines

The notion of a crossover line is very general and di�erent physical motivations

can be used for its precise de�nition. The concept of the Widom crossover line is,

however, more strict and relies on one fundamental principle - non-analytic features

at the critical point become smoothed out at super-critical temperatures, but remain

well de�ned.

TheWidom line was originally de�ned in the context of liquid-gas phase transition,[74]

as the line connecting the maxima of the isobaric speci�c heat as a function of pres-

sure (∂Cp/∂p = 0), above Tc (Fig. 4.8). It was conceived as a logical continuation

of the �rst order phase transition line to supercritical temperatures. Cp is divergent

at the critical end-point, which directly causes the maxima in Cp present above the

critical temperature. This concept is easily generalized to include all the lines that

mark features directly caused by non-analyticities due to a phase transition.[75] As

such, a Widom line can be de�ned by any quantity that exhibits either a divergence

or a discontinuity because of a phase transition, and thus a maximum or an in�ection
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point above Tc.

Very recently,[76] in the super-critical region of argon liquid-gas phase diagram,

an unexpected non-analyticity has been found in sound velocity dispersion curves,

precisely at the Widom line. The authors give a new depth and physical meaning to

the concept, by observing that there is no single super-critical �uid phase, and that

the Widom line actually separates two regimes of �uid-like and gas-like dynamical

behavior. This �nding makes it clear that the Widom lines should not be exclusively

connected with thermodynamics of the system. The changes in transport that follow

certain features in thermodynamic quantities can also be used for making meaning-

ful and possibly even equivalent de�nition of the Widom line. The signi�cance of

this concept was recognized once more[77, 78] in the context of hole-doped high-Tc
superconductors, where the characteristic temperature T ∗ of the pseudogap phase

is shown to correspond to the Widom line arising above a �rst-order transition at

critical doping.

In the above sense, we emphasize that the the concept of Widom lines can also

be easily connected with our model, possibly giving it new physical importance in

the context of quantum phase transitions. One can immediately recognize that the

log ρ(U)|T in�ection-point line (Fig. 4.6) quali�es as a generalized Widom line - it

emanates from the the critical end-point, separates regions of metallic and insulating
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m

p
e
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Widom line
C (P)P

not zero T

Figure 4.8: Widom line is de�ned in the context of classical liquid-gas transitions.
The isobaric speci�c heat diverges at the critical point, and has clear maxima at
supercritical temperatures.
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behavior, and marks a feature that is directly caused by a non-analyticity (divergence

of ∂ρ
∂U

∣∣
Uc,Tc

) due to the phase transition. However, we also want to base the de�nition

of the Widom line in a purely thermodynamic quantity such that it is possible to

de�ne it in an arbitrary model, and then compare it to the in�ection point line

and other crossover lines separating the metallic-like and insulating-like behavior

shown in Fig. 4.6. Furthermore, we want our Widom line to be well de�ned even

when Tc for the �rst order transition goes to zero - if the Widom line is de�ned in

a quantity that diverges (goes to zero) at the critical point, then the existence or

non-existence of the �rst order transition below the critical point is irrelevant for

the supercritical behavior, and the Widom line should be possible to de�ne even

in the case of a purely zero-temperature (quantum) phase transition, i.e. when the

critical point has been brought down to zero temperature. In the following, we �nd

a thermodynamic quantity that goes to zero at precisely the critical point, has a

clear minimum above Tc, and should be possible to calculate in any method based

in the Legendre formalism, as described in section 3.1.1.

4.1.5 Instability line as the quantum Widom line

One possible intuitive interpretation of the scale invariance of a critical point is that,

at this point, system is completely indecisive of its behavior - since the transition is

of the second order, thermodynamic quantities do not exhibit discontinuity, which

means that the two phases on di�erent sides of the CP become the same at the

CP. At precisely the CP, there are excitations available at virtually no cost, and the

�uctuations are present at all time and length scales. Therefore, at a supercritical

temperature, the point analogous to the CP is the one at which low lying collective

excitations available are the least costly. This point of indecisiveness, or instability,

may be interpreted as the point at which the system is in equal proximity to the

two competing phases. In the usual Ginzburg-Landau �eld theory, the spectrum of

low-lying collective excitations is in principle given by the landscape of an appro-

priate Free energy functional, in the vicinity of its global minimum. As has been

shown in section 3.1.1, DMFT procedure can be identi�ed with minimizing one such

Free energy functional of the hybridization function. The curvature (we denote it

λ) of this Free energy functional in its global minimum (or local, which is the case

in the phase coexistence region) is actually a very general quantity that describes

the response of the system to an in�nitesimal external perturbation, which may
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be a time-dependent �eld of an arbitrary form. As such, λ is very important in

describing a thermodynamic state close to the Mott MIT, since it has a fundamen-

tally dynamic nature. Indeed, λ vanishes precisely at the critical end-point, as the

free-energy functional becomes �at around GDMFT . This is directly connected to

the critical slowing down of dynamics, which manifests as the vanishing of a char-

acteristic frequency scale. Above Tc, λ is related to the local stability of a given

thermodynamic state and has a minimum precisely where the system is the least

stable. Therefore, we de�ne the instability line as the line connecting the minima

of λ vs. U . It emanates from the critical point where λ = 0 and can therefore be

considered a generalized Widom line. Since it does not require the presence of a

�nite T transition and can be de�ned even if Tc = 0, we dub it quantum Widom

line.

A few more comments are in order - ∆(iωn) is an in�nitely dimensional vector

in the corresponding Hilbert space, and the curvature of the Free energy at the

self-consistent ∆
DMFT

(iωn) may be di�erent in di�erent directions. However, it

is the curvature along the direction along which the curvature is the least, that

matters. Luckily, this is the one that can be measured straight-forwardly in the

DMFT procedure.

Here we present in detail the considerations that connect the convergence rate

of the DMFT loop to the curvature of the Free energy functional, precisely at the

stationary point corresponding to a self-consistent DMFT solution. The discussion

presented here builds on the Taylor expansion presented in Eq. 3.19-Eq. 3.23 and is

a concrete example how these general considerations become useful.

4.1.5.1 Connecting the Free energy curvature with the convergence rate

Immediately from Eq. 3.26, the free energy functional Ω[∆, G, α = 0] is given by

[24, 79, 36]

Ω[∆, G, α = 0] = −Tr ∆G+ Fimp[∆], (4.6)

where the �rst term may be interpreted as the energy cost of forming the generalized

Weiss �eld ∆ around the singled-out Hubbard site at which the local Green's function

is given by G, while the second term is the free energy of an electron at this site in

the presence of the Weiss �eld ∆. The �rst term comes from the non-local processes

and corresponds to the kinetic energy, while the second term corresponds to the
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potential energy, gained from the local, on-site interaction of electrons.

Close to a stationary point ∆ = ∆[G,α = 0], we can Taylor expand Ω[∆, G, α =

0] in terms of deviation from this point δ∆ = ∆−∆[G,α = 0]:

Ω
[
∆ ≈ ∆[G,α = 0], G, α = 0

]
= Ω

[
∆ = ∆[G,α = 0], G, α = 0

]
+
∑
mn

δ∆(iωm)Mmnδ∆(iωn) + . . .

where

Mmn =
∂2Ω

[
∆, G, α = 0

]
∂∆(iωn)∂∆(iωm)

∣∣∣∣∣∣
∆=∆[G,α=0]

(4.7)

is the �uctuation matrix. Note that M is not an implicit functional of G because

taking the second derivative with respect do ∆ washes out the G dependence, and

Fimp is not a functional of G from the start. In matrix notation we write

Ω
[
∆ ≈ ∆[G,α = 0], G, α = 0

]
= Ω

[
∆ = ∆[G,α = 0], G, α = 0

]
+ ~δ∆M ~δ∆ (4.8)

Taking the derivative of the above expression and taking into account Eq. 4.6, we

have immediately that in the vicinity of the stationary point

∂Ω[∆, G, α = 0]

∂∆(iωn)
= Gn −Gn[∆] ≈

(
M ~δ∆

)
n

(4.9)

Up until now the considerations closely followed Eq. 3.19-Eq. 3.23. Now we

consider our particular case - the DMFT solution in the case of the Bethe lattice

corresponds to the stationary point of Ω such that ∆(iωn) = t2G(iωn). This solution

can be obtained by following the forward recursion procedure, as described in section

3.3.2.1. In each new iteration i + 1, we take the result G of the impurity problem

in the previous iteration i, and construct the hybridization function for the next

iteration as ∆
(i)
n = t2G

(i)
n . Therefore, G(i+1)

n = Gn[∆(i)]. Taking this into account

and subtracting the DMFT self-consistent solution from both sides of the Eq. 4.9

we obtain
~δG

(i+1)
= ~δG

(i)
−M ~δG

(i)
(4.10)

where we have absorbed the t2 factor into the �uctuation matrix. The above equation

can be understood in the following way: the gradient of the functional Ω with respect

to ∆ in the point [{∆n = t2Gn}, G, α = 0] is given by the di�erence between G
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and G[{∆n = t2Gn}, α = 0], i.e. the Green's function obtained as the result of

the impurity problem and the one used to construct the hybridization bath for the

impurity problem. The DMFT self-consistent solution G∗ corresponds to the gradient

(M ~δG
∗
) being zero (because ~δG

∗ def
= 0 by de�nition), which is observed when the

impurity problem yields the same Green's function that has been used in constructing

the hybridization bath.

When we are su�ciently close to the self-consistent solution, equation Eq. 4.10

connects the Green's functions in two consecutive iterations of the forward recursion

procedure. Then, we can use the recursive form of this equation to connect the

Green's function in any iteration, with the initial guess

~δG
(i+1)

= ~δG
(i−1)
−M

(
~δG

(i−1)
−M ~δG

(i−1)
)

= ~δG
(i−2)
−M

(
~δG

(i−2)
−M

(
~δG

(i−2)
−M ~δG

(i−2)
))

= (1−M)i+1 ~δG
(i=0)

(4.11)

Furthermore, the eigenbasis {~Gm} and eigenvalues λm of matrix M̂ are de�ned

by

M~Gm = λm ~Gm. (4.12)

We can write δ ~G(i) as

δ ~G(i) =
∑
m

a(i)
m
~Gm (4.13)

where a(i)
α are the coe�cients of δ ~G(i) in the eigenvalue basis. Substituting into

Eq. 4.11, one obtains

δ ~G(i) =
∑
α

e−iBma(0)
m
~Gm, (4.14)

where

Bm = − ln(1− λm) (4.15)

For large iteration index i the term with lowest Bm = Bm0 , which corresponds

to the lowest eigenvalue λm0 ≡ λ, is dominant

δ ~G(i) = e−iBm0a(0)
m0
~Gm0 , i� 1. (4.16)

Here am0 is the coe�cient corresponding to the eigenvector ~Gm with the lowest

eigenvalue λm. Now it is obvious that through iterations, the solution ~G approaches
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Figure 4.9: Convergence rate in the iterative solution of DMFT equations at
T/Tc = 2.33 using IPT impurity solver, panel (a), and CTQMC impurity solver,
panel (b). The dashed lines in panel (b) are linear �ts to the data. The insets are
the corresponding eigenvalues determined from the slopes shown in the main panels.

to the self consistent solution ~G
DMFT

exponentially, along a direction de�ned by the

eigenvector of M̂ corresponding to its minimal eigenvalue λ. The coe�cient Bm0

and the corresponding eigenvalue λ are then obtained from the slope in the iterative

relation

ln
[
G(iωn)(i+1) −G(iωn)(i)

]
= const− iBm0 , (4.17)

which follows from Eq. (4.16).

4.1.5.2 Determining the instability line

In practice, to obtain λ (and thus the curvature of free energy), we monitor DMFT

loop convergence rate, G(iωo)
(i+1)−G(iωo)

(i), in as many iterations as possible and

then linearly �t ln
(
G(iωo)

(i+1) −G(iωo)
(i)
)
versus iteration index i. Here ωo = πT
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Figure 4.10: Phase diagram obtained with IPT, panel (a), and CTQMC, panel
(b). Temperature and interaction are scaled by their values at the critical endpoint
(T IPTc = 0.046, TQMC

c = 0.03 and U IPT
c = 2.472, UQMC

c = 2.3). Red dashed line is
the instability line U∗(T ), full red line is the line of the �rst order MIT, and green
and blue dotted lines are left and right spinodals.

is the lowest Matsubara frequency. For small λ, Bm0 ≈ λ. It takes few iterations of

the DMFT loop to enter into the linear regime given by Eq. (4.17). We then repeat

this procedure for di�erent values of U at the same temperature T to determine

U∗(T ) in which λ(U)|T is minimal.

An example of our calculations is shown in Fig. 4.9, where the eigenvalues λ

at several temperatures are plotted as a function of interaction U . The minima of

these curves de�ne the instability trajectory U?(T ) , which terminates at the critical

end-point (Uc, Tc), as shown on Fig. 4.10.

With IPT impurity solver, we can use data from several tens of iterations to

determine the slope Bm0 , Fig. 4.9a. The solution with CTQMC impurity solver

has a statistical error and the number of iterations we can use is limited. When

the di�erence |G(iωo)
(i+1)−G(iωo)

(i)| becomes comparable to the level of numerical
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Figure 4.11: Instability line lies among the other crossover lines. log ρ(U) is linear
in this crossover region, which is a manifestation of the mirror-symmetry of the
scaling function (see section 4.1.6.1).

noise in CTQMC, the impurity Green's function just �uctuates around the self-

consistent solution and no further convergence is observed. Nevertheless, we were

able to determine rather precisely the eigenvalue λm0 and the interaction U∗(T ) for

which it becomes minimal, Fig. 4.9b. The "instability line" corresponding to the

minimum curvature of the free energy is shown in Fig. 4.10a (IPT phase diagram),

and Fig. 4.10b (CTQMC phase diagram). Error bars in Fig. 4.10b are estimates of

the uncertainty in the position of the instability line.

In Fig. 4.11 we compare the instability line with other possible crossover lines and

�nd that it clearly lies among them. The instability line truly represents a boundary

between a metallic and insulating transport and it lies in the region where

∂2 log ρ(U, T )

∂U2
≈ 0. (4.18)

This derivative is color-coded in the (U, T ) plane in Fig. 4.11.

The properties of the system in the crossover region are best illustrated in

Fig. 4.12 The middle column shows the DOS along the instability line for three

di�erent temperatures. While the DOS at the Fermi level is strongly suppressed,

the gap is not yet fully open. Left column shows the density of states in the metallic

phase following a trajectory parallel to the instability line: there is a clear quasipar-

ticle peak at low temperatures, which gradually disappears as the bad metal region

is reached by increasing the temperature. At larger U (right column) the system is

in the insulating phase with fully open Mott gap, featuring activated transport.
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Figure 4.12: Density of states (QMC results) along the instability line U∗(T ) (middle
column), and along the parallel trajectory for smaller (left column) and larger U
(right column).

4.1.5.3 Visualizing the Free energy landscape

We can visualize the shape of the in�nitely dimensional free energy surface by cal-

culating F [G] = Ω[∆ = t2G,G, α = 0] along a single direction going through the

self-consistent ~GDMFT . Below Tc, we do this along the direction connecting the two

solutions, constituting a parametric trajectory

~G(l) = (1− l)~GM − l ~GI . (4.19)

Above Tc, where there is only one solution, we follow the eigenvector ~Gλ with

~G(l) = ~GDMFT + l ~Gλ (4.20)

The relative change of the free energy is calculated[37] as an integral

∆F(l) = F
[
~G(l)

]
−F

[
~GM/DMFT

]
= t2T

∫ l

0

dl′ ~e · ~g
[
~G(l′)

]
(4.21)

where ~e is the unit vector of the followed direction (~e = (~GM− ~GI)/|~GM− ~GI | below
Tc and ~e = ~Gλ/|~Gλ| above Tc). The gradient vector takes the form

~g
[
~G
]

= ~G
[
~∆ = t2 ~G

]
− ~G (4.22)
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Figure 4.13: Free energy landscape (IPT results): (a) Along the instability/�rst
order transition line (δU = 0). At T > Tc, the curvature of the free energy increases
with temperature, and it is zero at T = Tc. Below Tc, at the �rst order transition
line metallic and insulating solutions have the same free energy. (b) Along a line
parallel to the instability/�rst order transition line (δU = −0.05). At T > Tc, the
curvature of the free energy is greater than at the instability line. In the coexistence
region one of the minima is energetically favored. Note that the spacing between
∆F curves for di�erent temperatures is arbitrary.

where ~G
[
~∆ = t2 ~G

]
is the output of the impurity solver.

Panel (a) shows the free energy landscape around GDMFT , precisely at the in-

stability line. The curvature of the global minimum vanishes as one approaches Tc,

which is consistent with eigenvalue λ being zero at this point. Below Tc there are two

minima and the instability line is no longer well de�ned, but it is logically continued

to the line of the �rst order phase transition, where two possible solutions are of the

same energy. On panel (b), we move along a parallel trajectory, de�ned by δU 6= 0.

It is immediately obvious that λ never reaches zero and that in the coexistence re-

gion one of the solutions is energetically favoured. This physical picture is common

to various models. For example, it is seen in the Ising model in an external �eld,

where the analogy is between the strength of the magnetic �eld and δU in our case.

4.1.6 QC scaling tests

To reveal quantum critical scaling, we calculate the temperature dependence of

resistivity along a set of trajectories parallel to our instability trajectory (�xed δU =

U − U?(T )). The resistivity results are shown in Fig. 4.14 , where on panel (a)

IPT resistivity data for δU = 0,±0.025,±0.05,±0.1,±0.15,±0.2 in the temperature
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Figure 4.14: (Color online) (a) DMFT resistivity curves as function of temperature
along di�erent trajectories −0.2 ≤ δU ≤ +0.2 with respect to the instability line
δU = 0 (black dashed line, see the text). Data are obtained using IPT impurity
solver. (b) Resistivity scaling; essentially identical scaling functions are found from
CTQMC (open symbols) and from IPT (closed symbols)

range of T ≈ 0.07− 0.2 are presented (CTQMC data are not shown for the sake of

clarity of the �gure). The resistivity is given in units of ρMott, maximal resistivity

according to the Boltzmann quasi-classical theory of transport [63]. The family of

resistivity curves above (δU > 0) the �separatrix� ρc(T ) (dashed line, corresponding

to δU = 0) has an insulating-like behavior, while metallic dependence is obtained

for δU < 0.

According to the quantum critical scaling hypothesis (see section 2.2), our family

of curves should satisfy the following scaling relation:

ρ(T, δU) = ρc(T )f(T/To(δU)). (4.23)

We thus �rst divide each resistivity curve by the �separatrix� ρc(T ) = ρ(T, δU = 0)

and then rescale the temperature, for each curve, with an appropriately chosen

parameter T0(δU) to collapse our data onto two branches, Fig. 4.14b. Note that

this unbiased analysis does not assume any speci�c form of To(δU): it is determined

for each curve simply to obtain optimum collapse of the data [80]. This puts us

in a position to perform a stringent test of our scaling hypothesis: true quantum

criticality corresponds to To(δU) which vanishes at δU = 0 and displays power law

scaling with the same exponents for both scaling branches. As seen in Fig. 4.15a T0

falls sharply as U = U? is approached, consistent with the QC scenario, but opposite
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Figure 4.15: (Color online) (a) Scaling parameter T0(δU) as a function of control
parameter δU = U − U?; the inset illustrates power-law dependence of scaling pa-
rameter T0 = c|δU |zν ; (b) Resistivity ρc(T ) of the �separatrix�. Excellent agreement
is found between IPT (closed symbols) and CTQMC (open symbols) results.

to what is expected in a �classical� phase transition. The inset of Fig. 4.15a with

log-log scale shows clearly a power-law behavior of T0 = c|δU |zν , with the estimated

power (zν)
IPT

δU<0
= 0.56± 0.01 for �metallic � side, and (zν)

IPT

δU>0
= 0.57± 0.01 for an

insulating branch.

We also �nd (Fig. 4.15b) a very unusual form of our critical resistivity ρc(T ),

corresponding to the instability trajectory. Its values largely exceeds the Mott

limit, yet it displays metallic-like but non-Fermi liquid-like temperature dependence

ρc(T ) ∼ T. Such puzzling behavior, while inconsistent with any conventional trans-

port mechanism, has been observed in several strongly correlated materials close to

the Mott transition [63, 81]. Our results thus suggest that it represents a generic

feature of Mott quantum criticality.

To specify the scaling behavior even more precisely, we compute the correspond-

ing β-function [22] β(g) = d ln g
d lnT

, with g = ρc/ρ being the inverse resistivity scaling

function. Remarkably (Fig. 4.16), it displays a nearly linear dependence on ln g, and

is continuous through δU = 0 indicating precisely the same form of the scaling func-

tion on both sides of the transition - another feature exactly of the form expected for

genuine quantum criticality. This functional form is very natural for the insulating

transport, as it is obtained even for simple activated behavior ρ(T ) ∼ e−Eg/T . The

fact that the same functional form persists well into the metallic side is a surprise,

especially since it covers almost an order of magnitude for the resistivity ratio. Such

a behavior has been interpreted [22] to re�ect the "strong coupling" nature of the

critical point, which presumably is governed by the same physical processes that
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Figure 4.16: (Color online) (a) β−function shows linear in ln(ρc/ρ) behavior close
to the transition. Open symbols are for metallic branch (δU < 0) and closed ones
are for the insulating side (δU > 0) ; vertical dashed lines indicate the region where
mirror symmetry of curves is found. (b) Re�ection symmetry of scaled curves close
to the transition.

dominate the insulator. This points to the fact that our QC behavior has a strong

coupling, i.e. non-perturbative character.

Fermi liquid Mott insulator

U* (T)

T0

Tc

U (T) Uc2(T)

Quantum critical

region
Instability trajectory

Figure 4.17: DMFT phase diagram of the fully frustrated half-�lled Hubbard model.
The thick dashed line, which extends at T > Tc shows the �instability trajectory�
U∗(T ), and the crossover temperature To delimits the QC region (dash-dotted lines).

The fact that the β−function assumes this logarithmic form on both sides of the

transition is mathematically equivalent [22] to stating that the two branches of the

corresponding scaling functions display "mirror symmetry" over the same resistivity

range. Indeed, we �nd that transport in this QC region exhibits a surprisingly

developed re�ection symmetry (dash vertical lines of Fig. mark its boundaries).
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Such a symmetry is clearly seen in Fig. 4.16b, where the resistivity ρ/ρc (for δU > 0)

and conductivity σ/σc = ρc/ρ (δU < 0) can be mapped onto each other by re�ection

with ρ(δU)
ρc

= σ(−δU)
σc

[23]. Note that T/To = 1 sets the boundary of the quantum

critical region, over which the re�ection symmetry of scaled curves is observed. It

is depicted by dash-dotted crossover lines T0 on phase diagram of Fig. 4.1.6.

These remarkable features of the β−function, and the associated re�ection-

symmetry, have been observed earlier in experimental [82, 23] and theoretical [22]

studies, which tentatively associated this with disorder-dominated MIT's. Spec-

ulation that β ∼ ln g reveals disorder as the fundamental driving force for MIT,

presumably re�ects the fact that, historically, it has �rst been recognized for An-

derson transitions [83]. Our work, however, shows that such behavior can be found

even in absence of disorder - in interaction-driven MIT's. This �nding calls for

re-thinking of basic physical processes that can drive the MIT.

4.1.6.1 Scaling around the in�ection points line

As stated in the previous section, the curvature λ must be directly related to an

appropriate relaxation rate of a system perturbed away from the equilibrium, a

quantity that in principle should be possible to measure on any system. However,

it is currently very hard to make such measurements on the Mott systems and

precisely determine the instability line. Our calculations, however, show that it lies

just among the crossover lines that separate the bad metal and the Mott insulator, so

it might not be necessary to know its exact position to observe quantum criticality.

In the following, we present a scaling analysis that can be performed around the

resistivity in�ection points line (or any of the other crossover lines) to test the

scaling hypothesis. As it turns out, the scaling is a robust feature, not particularly

sensitive to the choice of Uc(T ).

We �rst observe that the resistivity curves display almost a perfect mirror sym-

metry when plotted on the log-scale (Fig. 4.14). This puts a strong constraint on

the functional form of the scaling function f (as we show below) and also indicates

that the resistivity curve along the in�ection points line, ∂ log ρ(U)/∂U = 0, could

also serve as the separatrix. The mirror symmetry requires that

f(y) = 1/f(−y). (4.24)
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For the above to be satis�ed, the function f must be of the form

f(y) = eh(y), (4.25)

where h is an antisymmetric function of y. It is clear that f(0) = 1 and therefore

h(0) = 0. h must also be smooth, so it can be represented as a Taylor series with

only odd terms

h(y) = ay + by3 + ... (4.26)

In our calculations, it turns out that only the linear term is signi�cant, and here we

show how this can be tested. First we make a substitution of variables T/δU zν →
δUT−1/zν and then take the logarithm of both sides of the scaling formula to obtain

log

(
ρ(Uc(T ) + δU, T )

ρ(Uc(T ), T )

)
= log(f(δUT−1/zν)). (4.27)

If the mirror symmetry is satis�ed, than

log

(
ρ(Uc(T ) + δU, T )

ρ(Uc(T ), T )

)
= h(δUT−1/zν), (4.28)

which means that the precise form of h(y) can be deduced by plotting the left-hand

side of the above equation as a function of y = δUT−1/zν and than making a �t of a

polynomial curve to the data. This is possible because in the region where the scaling

formula is valid, all the data points should collapse onto a single curve. To test

whether h(y) is truly antisymmetric, it is convenient to �rst split it into symmetric

and antisymmetric parts, h(y) = hs(y) +ha(y), where hs(y) = 1
2

(h(y) + h(−y)) and

ha(y) = 1
2

(h(y)− h(−y)). If the resistivity is mirror symmetric, hs should be 0 and

ha should be equal to h. In Fig. 4.18 we plot these functions around the in�ection

point line and �nd hs to be negligible. Also, it is easily seen that h(y) is purely

linear in the region where the data points perfectly collapse on a single curve.

Now it is clear that there are two conditions that Uc(T ) has to satisfy for the

scaling with mirror symmetry to be possible. First, if we take the partial derivative

over U at both sides of the equation, we get

∂ log ρ(U, T )

∂U
= aT−

1
zν + bδU2T−

3
zν + .... (4.29)

If h(y) is a linear function, then only the �rst term in the above equation remains,
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Figure 4.18: The symmetric and asymmetric part of scaling function, hs and ha
at various temperatures. The small value of hs(y) shows that the mirror symmetry
of resistivity curves is present. The ha(y) curves collapse around the in�ection-
point line which shows that the exponent, zν = 0.953, is well evaluated. Fitting a
third order polynomial to ha(y) in the range where these curves collapse can reveal
the exact form of the scaling formula. In our calculations only the linear term is
signi�cant.

which means that the logarithm of resistivity is a linear function of U in the entire

region in which the scaling formula holds. Even if there are higher terms in h(y),

the above has to be true at least close to Uc (small δU), where the linear term is

dominant in any case. This imposes a constraint on Uc(T ), such that it has to be

in a region where the second derivative of logarithmic resistivity is zero, or at least

small,
∂2 log ρ(U, T )

∂U2
≈ 0. (4.30)

This derivative is color-coded in the (U, T ) plane in Fig. 4.11 so that yellow color

corresponds to a small absolute value. As it is readily veri�ed, the above condition is

not ful�lled anywhere exactly (except precisely at the log ρ(U) in�ection point line

by its de�nition), but all of the crossover lines lie in the region where this condition

is approximately satis�ed.

There is an additional requirement for Uc(T ) which is not in any way implied by

de�nition of any of the crossover lines. Namely, the �rst derivative of the logarithmic

resistivity has to be decreasing along Uc(T ) as a power law of temperature. This
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Figure 4.19: The derivative of resistivity with respect to U (∂ρ(U, T )/∂U |Uinfl
)

along the in�ection-point line. Above roughly 2Tc, it �ts well to a power law curve of
exponent −0.95. This can be used to evaluate the value of scaling formula exponent.
At lower temperatures the decrease in resistivity is faster and the behavior deviates
from the power-law and the scaling formula fails at temperatures below 2Tc.

can be shown by taking the limit δU → 0 in Eq. (4.29),

∂ log ρ(U, T )

∂U

∣∣∣∣
Uc

∝ T−
1
zν . (4.31)

The above holds regardless of the value of the cubic (or any higher) term coe�cient.

One can even use this to give a good assessment of the exponent zν, by �tting such

experimental (or theoretical) curve to a power law as shown in Fig. 4.19. As it is

seen here, the derivative Eq. 4.31 calculated along the in�ection point line �ts well to

a power law curve of exponent 0.95, but only above roughly 2Tc. The same analysis

of the IPT results yields a slightly lower value zν = 0.63.

Finally, an estimate of how well the scaling works can be made by comparing

the value of resistivity obtained by the scaling formula and the one measured in

experiment or, as it is in our case, calculated from the DMFT solution. In Fig. 4.20

it is shown how the scaling formula works within the 5% error bar in a large region,

for the in�ection point line. This result is qualitatively the same for the other

crossover lines. It is important to note that in the case of instability line (and all

the other crossover lines other than the in�ection point line), one is able to improve

the quality of scaling by using di�erent exponents zν depending on sign(δU), and

that way compensate for the lack of exact mirror symmetry. Also, when only the

linear term in h(y) is used, slightly lowering the value of zν obtained from the
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The dotted lines are the boundary of the scaling region. Two green �laments below
2Tc are where the scaling formula intersects with the actual DMFT result.

power-law �tting procedure typically broadens the region of validity of such scaling

formula.

In conclusion, the log ρ(U) in�ection points line is easily observable in experiment

and our calculations show that it lies very close to the instability line. The analysis

presented here, indicates that the quantum critical scaling previously found to hold

around the instability line, should also be observable around the in�ection point line.

We show that the scaling formula valid around this line displays almost a perfect

mirror symmetry of resistivity curves. In general, mirror symmetry, or �duality�,

should not be considered a necessary ingredient for a quantum critical scaling. In

fact, we �nd that the scaling is of better quality around the instability line, although

it is slightly less symmetric.

It is also very important to examine how the resistivity changes along the separa-

trix and our results are presented in Fig. 4.21. In this crossover region, the resistivity

far exceeds the Mott limit and is only weakly dependent on temperature. We �nd

that along the instability line, the resistivity is roughly a linear, increasing function

of T . Along the in�ection points line and ρ(T ) = max lines, the resistivity is slowly

decreasing. We note that these results, however, must be model speci�c. Above the

critical end-point, the resistivity is strongly dependent on U , and a small change in

the shape or position of these lines can cause a signi�cant change in the temperature

dependences of resistivity presented in Fig. 4.21.
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4.1.7 Comparison with experiments

Very recently, an extensive experimental investigation has been performed on several

κ-organic systems, corroborating our results and illustrating the usefulness of our

approach. In this section we present the most important results of this work Ref.[84]

and compare it to our theoretical result.

Figure 4.22: Illustration of the lattice structure of κ-organics. Two large molecules
form a dimer and share a single electron with the valence band, thus making it
e�ectively half-�lled.

The samples used in this experiment are three types of quasi-two-dimensional

organic Mott insulators with anisotropic triangular lattices, κ − (ET)2Cu2(CN)3,

κ − (ET)2Cu[N(CN)2]Cl and EtMe3Sb[Pd(dmit)2]2 (hereafter abbreviated to κ −
Cu2(CN)3, κ − Cl and EtMe3Sb − dmit, respectively), where ET and dmit rep-

resent bis(ethylenedithio)tetrathiafulvalene and 1,3-dithiole-2-thione-4,5-dithiolate,

respectively (see Fig. 4.22 for a sketch of the lattice structure). In the Mott insulat-
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ing phases, κ−Cu2(CN)3 and EtMe3Sb− dmit host quantum spin liquids (QSL's),

whereas κ− Cl is an antiferromagnet (AFM). In the metallic phases,κ− Cu2(CN)3

and κ−Cl are superconducting (SC) at low temperatures, whereas EtMe3Sb− dmit

remains a paramagnetic metal (PM). Then, the three systems have di�erent types

of Mott transition at T = 0 - QSL-SC, AFM-SC and QSL-PM transitions respec-

tively. Clear �rst-order Mott transitions are observed in κ− Cu2(CN)3 and κ− Cl

up to Tc values of 20K and 38K, respectively, whereas there is no clear �rst-order

nature in the Mott transition in EtMe3Sb− dmit; its critical temperature, if any, is

well below 30 K. The critical temperatures of the three compounds are two or three

orders of magnitude lower than the values of W (bandwidth) and the estimate for

on-site interaction energy U , which are several thousand Kelvin or more.

Figure 4.23: The shape of iso-resistive curves is strikingly similar to the theoretical
result (see Fig. 4.2) [85].

The resistivity was measured throughout the phase diagram by varying pressure

and temperature (Fig. 4.23). In practice, temperature was held �xed, while the

controlled He-gas pressure P was varied continuously. The in�ection point in log ρ

is clearly observed in all samples (Fig. 4.25) and a wide range of temperature, so the

authors performed the analysis analogous to the one presented in section 4.1.6.1. In

Fig. 4.24 (taken from Ref.[84]), an example of normalized resistivity ρ̃ = ρ/ρc(T )
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Figure 4.24: Curves of constant ρ̃(P, T ) = ρ(P, T )/ρc(T ) spread out in an obviously
power-law fashion, which is immediately suggestive of quantum-critical behavior
[84].

Figure 4.25: In�ection point in logarithmic resistivity is always observed in a wide
range of temperature and is used as the quantum Widom line in the scaling analysis
[84].
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is shown as a function of pressure at various temperatures. The collapsed data

points are shown in Fig. 4.26. The quality of the scaling and prominence of mir-

ror symmetry in all three materials suggests there is a universal high-temperature

behavior in connection with the Mott transition which stems from the essentially

quantum nature of the transition, i.e. these materials obviously feature two distinct

ground states depending on the pressure, and these must be ultimately separated

by a purely quantum phase transition.

Figure 4.26: In all three materials, resistivity data points collapse on two branches,
in agreement with the scaling hypothesis [84].
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4.2 Doping-driven Mott MIT

At half-�lling, strong enough on-site interaction U opens a spectral gap at the Fermi

level and produces the Mott insulating state [24]. However, the Mott insulator can

be destroyed by adding electrons to the system, i.e raising the chemical potential µ.

When µ reaches the upper Hubbard band, the system is once again conducting [86].

Similarly to the interaction-driven MIT, here the transition is of the �rst order up

to some Tc, and is a smooth crossover at T > Tc.

In this section we consider a single-band Hubbard model de�ned by the Hamil-

tonian

H = −t
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ − µ
∑
i,σ

c†iσciσ,

and µ denotes the chemical potential. We solve the DMFT equations using the

hybridization-expansion continuous time quantum Monte Carlo (CTQMC) algo-

rithm for the impurity solver [57, 58, 49] (see section 3.4.1). We �x U at some large

value U = 3.2, 4.0, such that at half-�lling system is a Mott insulator, and then

vary the chemical potential and temperature to scan the phase diagram. Note that

the Hubbard model on a particle-hole symmetric lattice (as is the Bethe lattice or

the fully connected lattice) is invariant under t −→ −t and µ̃ ≡ µ − U/2 −→ −µ̃.
Therefore, we only need consider the electron doped case, and all the conclusions

hold for the hole doped case as well. For the Green's function this means ImGµ̃(ω) =

ImG−µ̃(−ω), or more precisely Gµ̃(ω) = −i(iG−µ̃(−ω))∗, Gµ̃(iωn) = −i(iG−µ̃(iωn))∗

, while the optical conductivity σ(ω) remains the same regardless of the sign of µ̃.

4.2.1 Phase Diagram

At low-temperature the Mott transition is observed as the �rst order transition,

and features a pronounced jump in the value of resistivity and other quantities [87].

Around the �rst order transition line, a small coexistence region is present, where

both metallic and insulating phases are locally stable. Our calculations show that

the critical end-point temperature Tc(U) for the doping-driven transition rapidly

drops with increasing interaction, and at U = 4 it already is less than 10% of that

at half-�lling. This is illustrated in Fig. 4.27a. At the critical end-point (red dots)

the two solutions merge, and above it no true distinction between the phases exists;

only a rapid crossover is observed upon variation of U or µ. For a more detailed
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Figure 4.27: (a) Phase diagram of the maximally frustrated Hubbard model. The
quantum critical scaling is observed in the green region which extends to lower
temperatures as Tc (red dots) is reduced. (b) Color plot of the resistivity in the
µ − T plane for U = 4. The quantum Widom line (see text) passes through the
crossover region where the resistivity is around the MIR limit. The coexistence
region (gray) is barely visible on the scale of this plot.

discussion of the coexistence region and Tc(U) dependence see the next section.

In Fig. 4.27b, we color-code the resistivity in the (µ, T ) plane, calculated for

U = 4. The resistivity is given in units of the Mott-Io�e-Regel limit ρ
MIR

which is

de�ned as the highest possible resistivity in a Boltzmann semi-classical metal, cor-

responding to the scattering length of one lattice spacing. Numerical value for ρ
MIR

is taken consistently with Ref. [45]. At µ = U/2 the system is half-�lled. At approx-

imately µ = U −D = 3, the Fermi level enters the upper Hubbard band, and a �rst-

order doping-driven MIT is observed at temperatures below Tc = 0.003D. While

the chemical potential is within the gap, a clear activation behavior, ρ ∼ eEg/T ,

is found at low temperatures. On the metallic side of the MIT, due to the strong

electron-electron scattering, the resistivity grows rapidly with temperature, and typ-

ical Fermi-liquid behavior is observed only below rather low coherence temperature
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TFL (denoted with the gray dashed line).

4.2.2 Tc and the coexistence region

The �rst order phase transition is most easily observed by looking at the occupation

number. At very low temperature, while the chemical potential is within the spec-

tral gap, �lling is roughly a constant, i.e. n(µ) ≈ 0.5. When the chemical potential

reaches the upper Hubbard band, a quasi particle peak forms abruptly at its lower

edge causing an immediate transfer of spectral weight from the lower Hubbard band

to the vicinity of the Fermi level [24, 88]. This is observed as a jump in the occu-

pancy from nearly half-�lling to around 2-3% doping. An insulating solution is not

possible when µ is in the upper Hubbard band, hence its bottom edge determines

the insulating (right) spinodal. However, a metallic solution is possible even when

µ is in the gap. This type of state features an in-gap quasi-particle peak [89] and

is observed in the coexistence region. The lowest value of the chemical potential at

which the quasi particle peak can survive constitutes the metallic (left) spinodal,

and this one is strongly temperature dependent. The disappearance of the QP peak

at the metallic spinodal is also abrupt, and occurs at �nite doping. Therefore, there

is a range of doping that is not achievable locally at any value of the chemical po-

tential, but only globally through phase separation. With increasing temperature,

the forbidden doping range shrinks and disappear together with the hysteresis loop,

precisely at Tc [87, 90]. Note also, that the range of forbidden doping vanishes at

T = 0 as well, where a metallic solution is possible even at in�nitesimal doping [24],

although in this case particle-hole symmetry is broken and µ 6= U/2. In Fig. 4.28a,b

we show the hysteresis curves of the occupancy for two values of interaction U . The

position of spinodals and the width of the coexistence region are easily determined

from the jumps in n(µ). We considered the lowest temperature at which no coexis-

tence is observed to be the critical temperature. Note also that due to the numerical

error of the CTQMC, some unphysical doping is observed in the insulating state at

the lowest temperatures. We were not able to obtain physically meaningful results

below T ≈ 0.0015 and this is the lowest temperature at which we have found the

method to be reliable. The numerical error from the CTQMC becomes signi�cant

at low temperature and a precise assessment of Tc's lower than ≈ 0.002 proves very

di�cult. The coexistence regions at the two values of U are shown in Supplementary

Figure 4.28c and d. The T = 0 position of the left spinodal is taken from the ED
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Figure 4.28: Coexistence region of the �rst-order doping-driven Mott metal-
insulator transition can be determined in di�erent ways. (a),(b),(c),(d) The position
of spinodals can be determined from the jumps in the occupation number. In the co-
existence region, two types of solution are possible, depending on the initial guess in
the DMFT procedure. This is observed as a hysteresis loop in the occupation num-
ber and other quantities. (e),(f) Precisely at the critical point, physical quantities
often have extremal values (zero or in�nity). By extrapolating such quantities from
higher temperatures, one can estimate the critical temperature. (e) The maxima
of the inverse charge compressibility with respect to the chemical potential can be
extrapolated to obtain a good estimate for Tc. (f) The values of λ along the instabil-
ity line µ∗(T ) become scattered and overestimated close to the critical point, due to
numerical error from the CTQMC. This makes it unpractical to to use extrapolation
of λ∗ for estimation of Tc.
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calculation found in [89] and seems to �t well our �nite temperature results.

A better understanding of why Tc is decreasing with U can be obtained by

plotting the T = 0 phase diagram in a fashion more commonly utilized in the context

of the bosonic Hubbard model. On Fig. 4.29 we illustrate the phase diagram with

t/U and µ/U on the axes. Here, µ/U = 1/2 corresponds to half-�lling, and t/U = 0

corresponds to the atomic limit. It is clear that there can be no coexistence in the

atomic limit where the transition is trivial and corresponds to the band transition

between the half-�lled Mott and full (empty) band insulators (chemical potential is

either below or above | ↑↓〉 state).

4.2.2.1 Tc from the charge compressibility

The alternative way of determining Tc is by looking at the uniform charge suscep-

tibility χ = ∂n
∂µ
. Precisely at the critical point, χ is divergent and above Tc, there

is a line of maxima in χ(µ)|T . Furthermore, it can be shown [91] that close to the

critical point χ−1 ∼ T−Tc
a+b(T−Tc) . This is useful as one can extrapolate the values of

χ−1
max(T ) to lower temperatures and see where it goes to zero. However, such method

is of inferior accuracy compared to the direct observation of the coexistence, and we

use it only for cross-checking of our results. In Fig. 4.28e we show such calculation

in the case of U = 3.2.
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4.2.2.2 Tc from the λ analysis

In Figure 4.28f we plot the values of λ along the instability line (see the next Sec-

tion). Close to the the critical point, it is very di�cult to make a precise estimate of

the DMFT convergence rate, as high convergence is not achievable at all. The low

temperature values are therefore much more scattered and systematically overesti-

mated. Although in principle one could estimate Tc from higher temperatures by

extrapolating λ∗(T ) ≡ λ(µ∗(T ), T ), the numerical noise makes such a method very

impractical. Further di�culty lies in the possibility of λ∗(T ) changing trend before

going to zero, which introduces additional systematic error to the estimate of Tc.

4.2.3 λ-analysis and the instability line

In section 4.1.5, we have discussed a possible generalization of the Widom line

(originally de�ned in the context of classical liquid-gas transitions [76]), to strictly

zero-temperature (quantum) phase transitions. The most natural way of de�ning

such a quantum Widom line is by looking at the free-energy landscape around the

ground state of the system, as it is well de�ned in all physical models. Regardless of

the speci�cs of the phase transition, precisely at the critical point, the free energy

minimum is �at, i.e. its curvature λ is zero. At higher temperatures, this leads to

a line of minima in λ with respect to the parameter that is driving the transition

(at half-�lling we had ∂λ
∂U

∣∣
T

= 0). It is at those minima that the �uctuations are

most pronounced - the system is �equally close� to the two competing phases and

thus the least stable. Now we utilize this concept in the case of doping-driven Mott

transition, and at each temperature search for the minimum value of λ with respect

to the chemical potential.

In practice, we calculate λ by monitoring the convergence rate of the itera-

tive DMFT procedure. Given the model parameters, the free energy functional

FU,T,µ[G(iωn)] yields a smooth manifold in the Hilbert space of the Green's func-

tions. Being Taylor expandable, the local environment of any free-energy minimum

has to be parabolic. Thus, in the advanced stage of the DMFT procedure, i.e. close

to the self-consistent solution, a steady, exponential convergence should be observed.

The curvature λ is then directly related to the exponent of the functional depen-

dence of the di�erence between the consecutive solutions versus the iteration index.

When determining the convergence rate, however, it is not always su�cient to look

at the Green's function in only the lowest Matsubara frequency, and one must use
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the generalized Raileigh-Ritz (RR) formula [92]

λi = 1−
∑
n

|Gi+1
n −Gi

n||Gi
n −Gi−1

n |
|Gi+1

n −Gi
n|2

, (4.32)

where i stands for the iteration index, and ideally, λ = limi→∞ λi. However, the

highest achievable level of convergence is determined by the amount of statistical

noise in the CTQMC result, and when it is reached, G(iωn) just �uctuates around

the self-consistent solution, and no further convergence is observed. Especially near

the critical point, CTQMC error becomes substantial and a high convergence can

not be reached at all. Here, typically only a few iterations are available for the

estimation of λ as most of the parabolic region is below the level of numerical noise,

and one must look carefully for the range of iterations in which a steady exponential

convergence is observed.

The result presented with gray dots in Fig. 4.30a is obtained by employing the

RR formula from equation (4.32) at each iteration i, and then taking the average

over the set of 5 consecutive iterations that shows the least variance, i.e. the one

corresponding to the period of the steadiest exponential convergence.

Away from half-�lling, however, there are additional di�culties. Namely, G(iωn)

is complex, which means that it has additional degrees of freedom as compared to

its purely imaginary analogue at particle-hole symmetry. Thus, the �uctuations

encountered in the convergence rate of G(iωn) are more severe, and the λ-analysis

is harder to perform compared to the half-�lled case. This is why the data points

presented with gray dots in Fig. 4.30 exhibit considerable scattering, but the overall

trend is still rather obvious. In all of the calculations regarding the quantum critical

(QC) scaling analysis, we use the smooth �t (orange dashed line) as the instability

line and denote it with µ∗(T ). Note that no other smoothing has been performed

on the data, and all the minima are estimated automatically from the raw λ results.

Although there are considerable error bars on each µ∗(T ) value, the high resolution

in temperature increases the certainty of the result.

It is interesting that µ∗(T ) is very close to the line of maxima of the second

derivative of the occupation number versus the chemical potential, ∂2n
∂µ2

∣∣∣
T

= max.

This is the place where n(µ) changes trend, and as expected, the instability line

separates the metallic-like and insulating-like behavior on the phase diagram. Also

note that µ∗(T ) roughly follows an iso-resistive curve and so the resistivity does
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not change considerably along the instability line. At T > 0.08 ρ∗ is found to be

constant and equal to the Mott-Io�e-Regel (MIR) limit. Above T = 0.14, λ-analysis

can not give reliable results as the minimum in λ(µ)|T becomes very shallow, i.e.

of depth comparable to the level of numerical noise. Throughout the paper we

extrapolate the instability line to high temperatures T > 0.14 by imposing the

criterion ρ∗ = ρMIR. Also note that at very low temperature, the actual form of

ρ(µ∗(T ), T ) depends strongly on the precise values of µ∗(T ) because, in this region,

the resistivity changes rapidly with the chemical potential.

4.2.4 Analytical continuation and calculation of resistivity

The straightforward application of the maximum entropy method (MEM) [59, 93] for

analytical continuation of the Green's function can in some cases lead to unphysical

results. In the metallic phase, this method tends to overestimate the height of the

quasi-particle (QP) peak in the single-particle energy spectrum given by − 1
π
ImG(ω+

i0+). Sometimes in those cases, the imaginary part of the self-energy falsely goes to

zero at several frequencies (usually two or four), yielding an unphysical vanishing

DC resistivity. Given the analytically continued Green's function on the real axis,

the self-energy is obtained from the DMFT self-consistency condition

Σ(ω) = ω + µ−G−1(ω)− t2G(ω), (4.33)

and the imaginary part of the above equation reads

ImΣ(ω) = ImG(ω)(|G(ω)|−2 − t2). (4.34)

It is immediately obvious that |G(ω)| = 1/t yields ImΣ(ω) = 0, at any frequency.

When there is an unphysical excess of QP weight, precisely this is seen, usually at

the edges of the QP peak. This makes the conductivity integral divergent and the

DC resistivity exactly zero.

We �nd that much better results are obtained by performing MEM on the spec-

tral function

A(ε, iωn) =
1

iωn + µ− ε− Σ(iωn)
. (4.35)
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Figure 4.30: The instability line µ∗(T ) (orange dashed) corresponds to the minima in
λ(µ)|T , which is related to the convergence rate of the DMFT loop. (a) The precision
of λ results is limited by the statistical noise in CTQMC. However, the minima
in λ(µ)|T are still clearly present, and µ∗(T ) can be determined with satisfactory
accuracy. At high temperature, QWL is found to coincide with the iso-resistive
curve of the MIR limit (black dashed), which is then used to extrapolate the QWL
to temperatures above T = 0.14, where λ-analysis is no longer reliable. (b) The
QWL is also very close to the point where occupancy n(µ)|T changes trend, i.e. has
a maximum of the second derivative. The line of maxima in d2n/dµ2|T can also
be considered a crossover line between metallic and insulating behavior (light blue
dotted line on panel (a)).
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Figure 4.31: Evolution of the density of states with increasing temperature. At
low temperature there is a clear quasiparticle peak in the density of states. The
quasiparticle peak gradually disappears in the bad metal regime which is centered
around the QWL. The orange line is the density of states at the QWL. The data
are shown for the �xed chemical potential µ = 3.5 and U = 4, which corresponds to
roughly 15 % doping.

The self-energy is then easily extracted from the real-axis result

Σ(ε;ω) = ω + µ− ε− A−1(ε, ω). (4.36)

This procedure should in principle yield the same self-energy for any value of ε, but

in practice this is not found to be the case. However, a good estimate of Σ(ω) is

obtained by averaging the results of each continuation, i.e.

Σ(ω) =
1

N

N∑
i=1

Σ(εi;ω). (4.37)

Similarly, one could �rst calculate the Green's function

G(ω) =

∫
dερ0(ε)A(ε, ω) (4.38)

and then get the self-energy from the DMFT self-consistency. In practice, we have

used 40 values of ε, equally spaced within the energy range of the non-interacting

band, and found that the systematic and numerical error of MEM gets canceled by

the averaging. We have found that in this approach, physically meaningful solutions

are always obtained, results are more consistent and have less numerical noise, but

at the expense of performing a much larger number of analytical continuations.
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Figure 4.32: (a) Family of resistivity curves calculated along lines parallel to the
QWL (orange). (b) Upon rescaling the temperature with adequately chosen param-
eter T0, the resistivity curves collapse and reveal mirror symmetry of metallic-like
and insulating-like behavior around the QWL. T0 depends on the distance from the
QWL as To(dµ) ∼ dµzν , with zν ≈ 1.35.

Where available, we cross-checked our results with the �ndings in Ref. [45] where

the analytical continuation is performed via Pade approximant on the high-precision

CTQMC data, and found very good agreement.

4.2.5 QC scaling tests

We carried out a careful λ-analysis for the doped Mott insulator (see section 4.1.5.2),

and we display the resulting QWL trajectory µ∗(T ) as an orange line in all plots

(throughout the following, an asterisk in the superscript indicates physical quantities

evaluated along the QWL; e.g. ρ∗(T ) is resistivity calculated at temperature T at

µ = µ∗(T )). The QWL, separating the metallic-like and the insulating-like behavior,

marks the center of the corresponding QC region, where the resistivity curves are

expected to display the scaling behavior of the form

ρ(µ, T ) = ρ∗(T )F (T/T0(dµ)). (4.39)

Here the parameter T0 should assume power law dependence on the deviation from

the QWL: To(dµ) ∼ dµzν , with dµ = µ− µ∗(T ).

To check validity of the scaling hypothesis Eq. (4.39), we calculate the resistivity

along the lines parallel to the QWL, as shown in Fig. 4.32a. We �nd that the

resistivity shows very weak temperature dependence along the QWL. In particular,

above T = 0.08 it follows the line of constant resistivity which coincides with the
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MIR limit, ρ∗(T > 0.08) = ρ
MIR

(in contrast to the behavior previously established at

half-�lling where ρ� ρ
MIR

along the QWL). In fact, all curves converge precisely to

the MIR limit at high temperatures, suggesting its fundamental role in characterizing

the metal-insulator crossover for doped Mott insulators. The curves also display the

characteristic "bifurcation" upon reducing temperature, and a clear change in trend

upon crossing the QWL. The scaling analysis con�rms that all the curves indeed

display fundamentally the same functional dependence on temperature, and that

they all can be collapsed onto two distinct branches of the corresponding scaling

function (Fig. 4.32b). The scaling exponent has been estimated to be zν ≈ 1.35 ±
0.1 for both branches of the scaling function, which display mirror-symmetry [22]

over almost two decades in T/T0, and the scaling covers more than three orders of

magnitude in resistivity. The QC region (green in Fig. 4.27a) spreads above the

critical end-point (red points and dotted line) and extends to lower temperatures as

Tc is reduced.

4.2.5.1 Boundaries of the QC scaling region

The explicit form of the scaling function can be obtained by considering the following

(equivalent) form of the scaling equation

ρ(µ, T ) = ρ∗(T )F̃

(
dµ

T 1/zν

)
. (4.40)

with the advantage of F̃ (x) being a smooth analytical function in x. Then, the

scaling function F̃ (x) can be obtained by plotting the DMFT resistivity data versus

the argument x = dµ
T 1/zν and performing a numerical �t. This is shown in Figure

4.33a. F̃ (x) is approximately linear on the logarithmic scale which implies that

F̃ (x) ≈ 10Bx, where B ≈ −0.33. This analytical form is consistent with the mirror

symmetry of the scaling formula near the QWL, F̃ (x) = 1/F̃ (−x). We can see that

the scaling region goes beyond the mirror symmetry of the scaled resistivity curves,

especially on the metallic side of the QC region.

The scaling region can be estimated from the color plot of the relative error

r = |ρDMFT − 10Bx|/ρDMFT , which is shown in Figure 4.33b, analogously to the

Fig. 4.20. The boundaries of the QC scaling region de�ned by r < 10% are shown

with gray dashed lines and correspond to the values xmin = −1.0 and xmax = 1.5.

Note that they coincide with the µ = 3.0 line (red dashed; it corresponds to chemical
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Figure 4.33: The extent of the scaling region.(a) The DMFT data are plotted as a
function of the scaling argument x to obtain a �t for the scaling function. The range
of x where DMFT data points fall on a single, well de�ned curve can be used as
an estimate of the scaling region. (b) Between x = −1.0 and x = 1.5 (gray dashed
lines), the relative error of the scaling formula is below 10%. The boundaries of the
scaling region coincide with the µ = 3.0 line (dashed red) and the knee-like feature
in resistivity ρ(T )|δ which marks the boundary of the linear resistivity bad metal
region (blue line). (c) The mirror symmetry is found where the two branches of
| logF (y)| coincide. (d) The scaling region in the µ − T plane; the scaling is valid
for T & 4Tc.
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potential being at the lower edge of the upper Hubbard band), and the knee-like

feature in ρ(T )|δ curves (blue dashed; it corresponds to the boundary of the linear

resistivity bad metal region). It is obvious from this plot that the QC scaling region

completely matches the region of typically bad metallic temperature dependence of

the resistivity (see next section).

The boundaries of the QC scaling region can alternatively be estimated simply

by looking at Fig. 4.33a and observing the maximum and minimum values of x for

which the DMFT results fall on a single well de�ned curve. This yields xmin = −1.0

and xmax = 1.5. These lines are also shown in Fig. 4.33b (gray dashed) and are in

good agreement with the independent estimate based on relative error r.

Finally, the region of mirror-symmetry can be estimated by plotting the DMFT

resistivity data | log ρ
ρ∗
| as a function of y = T/dµzν (shown in Fig. 4.33c) and

observing the lowest y at which the two branches of data are found to coincide.

This analysis yields ymin = 1 = |xmin/max|−1, in agreement with other approaches.

4.2.6 Connection with bad metal behavior

We demonstrated the emergence of clearly de�ned quantum critical behavior thor-

ough an analysis of the (µ, T ) phase diagram, with dµ = µ − µ∗ as the scaling

parameter. From the experimental point of view it is, however, crucial to identify

the corresponding QC region in the (δ, T ) plane and understand its implications for

the form of the resistivity curves for �xed level of doping ρ(T )|δ. By performing a

careful calculation of the δ(µ, T ) dependence (see Fig. 4.34), it is straightforward to

re-plot our phase diagram and resistivity curves in the (δ, T ) plane. Remarkably, we

�nd that the quantum critical scaling region covers a broad range of temperatures

and dopings, and almost perfectly matches the region of the well-known bad metal

transport [94, 45], characterized by the absence of long-lived quasiparticles and lin-

ear ρ(T )|δ curves. We �rst analyze the (δ, T ) phase diagram in detail, and then

establish a connection between the slope of ρ(T )|δ curves in the bad metal regime

and the QC scaling exponent νz.

In Fig. 4.35a we show the phase diagram of the doped Mott insulator. At T = 0,

the Mott insulator phase is found exclusively at zero doping. At low enough tem-

perature and �nite doping, characteristic Fermi liquid behavior is always observed.

Here, the resistivity is quadratic in temperature, while a clear Drude peak is ob-

served at low frequencies in optical conductivity and density of states (see Fig. 4.31).
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level of doping, one moves from the metallic to the insulating side of the transition.

The coherence temperature TFL is found to be proportional to the amount of doping

δ, however with a small prefactor of about 0.1, in agreement with Refs. [86, 45]. In

a certain temperature range above TFL, a Drude peak is still present as well as the

quasiparticle resonance in the single-particle density of states, but the resistivity no

longer follows the FL T 2 dependence. This corresponds to the �Resilient Quasipar-

ticle� (RQP) transport regime, which was carefully examined in Ref. [45]. At even

higher temperatures, the temperature-dependent resistivity at �xed doping ρ(T )|δ
enters a prolonged linear regime (see Fig. 4.35b) [95], which is accompanied by the

eventual disappearance of the Drude peak around the MIR limit. This behavior is

usually referred to as the Bad Metal regime [45]. The resistivity is comparable to

the MIR limit throughout the BM region, and the QWL (as determined from our

thermodynamic analysis) passes through its middle.

The region of linear ρ(T )|δ dependence is found to be completely encompassed by

the QC scaling region between the dashed lines on Fig. 4.35a (see previous section).

We therefore expect that the emergence of the linear-T dependence of the resistivity,

as well as the doping dependence of its slope, should be directly related to the precise

form of the corresponding scaling function. Indeed, at high temperature and close

to the QWL, the argument of the scaling function x = dµ/T 1/zν is always small (due

to the T 1/zν factor in the denominator), and the scaling function can be linearized,

viz.

F̃ (x) ≈ 1 + Ax+ · · · (4.41)
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Figure 4.35: (a) DMFT phase diagram of the doped Mott insulator on a frustrated
lattice. The bad metal (green) region matches perfectly the region of quantum
critical scaling. (b) The bad metal regime features linear temperature dependence
of resistivity with the slope roughly proportional to an inverse power law of doping
which we �nd to be a consequence of underlying quantum criticality.

We �nd that the coe�cient A has the numerical value A ≈ −0.74. The functional

form for ρ(T )|δ close to the QWL is then directly determined by the behavior of the

scaling parameter x(T )|δ

ρ(T )|δ ≈ ρ∗(δ)(1 + Ax(T )|δ) (4.42)

On Fig. 4.38 we show the dependence x(T − T ∗(δ))|δ for various dopings. When

10% < δ < 25%, x(T ) is found to be linear in a wide range of temperature around

T ∗(δ). Therefore,

ρ(T )|δ ≈ ρ∗(δ)

(
1 + A

∂x

∂T

∣∣∣∣
δ,T=T ∗(δ)

(T − T ∗(δ))

)
. (4.43)

The slope of x(T )|δ at T = T ∗(δ) can be estimated numerically, but in the following
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we perform a semi-analytical derivation ∂x
∂T

∣∣
δ,T=T ∗(δ)

, as it provides additional insight

to the phenomenology of our model.

First we can rewrite x(T )|δ as

x(T )|δ = c(δ, T )(T − T ∗(δ))

so that the quantity c(δ, T ) corresponds to the slope of x(T )|δ precisely at the QWL,

i.e.

c(δ, T ∗(δ)) =
∂x

∂T

∣∣∣∣
δ,T=T ∗(δ)

.

On the other hand we know

x =
δµ

T 1/zν

and we can use this to calculate c(δ, T ). We have

c(δ, T ) =
µ(δ, T )− µ∗(T )

(T − T ∗(δ))T 1/zν

Setting here T = T ∗(δ) immediately would yield a 0/0 expression on the right-hand

side of the equation so we make one additional step. We �rst multiply the right-hand

side of the equation by δ−δ∗(T )
δ−δ∗(T )

to obtain

c(δ, T ) =
µ(δ, T )− µ∗(T )

δ − δ∗(T )

δ − δ∗(T )

T − T ∗(δ)
T−1/zν .

Now we are ready to take the limit T → T ∗(δ) of the two rationals that appear in

this expression. Both numerator and denominator go to zero as as T approaches

T ∗(δ), which is by de�nition the (partial) derivative of the quantity in the numerator

with respect to the quantity in the denominator. For the second rational we have

lim
T→T ∗(δ)

δ − δ∗(T )

T − T ∗(δ)
= −

(
dT ∗

dδ

)−1

= −1/K(δ) (4.44)

where K(δ) is the slope of the QWL T ∗(δ), at a given value of doping. The minus

sign comes from the fact that when T > T ∗(δ), δ < δ∗(T ) and vice versa. For the
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Figure 4.36: The information needed to switch between µ and δ dependence of
quantities is contained in the charge compressibility.

�rst rational we have

lim
T→T ∗(δ)

µ(δ, T )− µ∗(T )

δ − δ∗(T )
=

(
∂n

∂µ

)−1
∣∣∣∣∣
µ=µ(δ,T ∗(δ)), T=T ∗(δ)

=
1

χ∗(δ)
(4.45)

which is the reciprocal value of charge compressibility precisely at the QWL, i.e.

χ∗(δ) = χ(δ, T ∗(δ)). The above equation is illustrated in Fig. 4.36 Now we can

Figure 4.37: Color plot of the charge compressibility has the "fan-like" form, as
generally expected for quantum criticality. The compressibility is approximately
constant along the QWL.
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estimate the limit of the entire expression for c(δ, T )

c(δ, T ∗(δ)) = − 1

χ∗(δ) K(δ) T ∗(δ)
1
zν

(4.46)

Now we notice that in the doping range 10% < δ < 25%, T ∗(δ) is basically linear,

which meansK(δ) ≈ K. Performing a linear �t to T ∗(δ) we obtain T ∗(δ) ≈ K0+Kδ,

with K ≈ 2 and K0 small. Furthermore, we note that the charge compressibility

is constant along the QWL, as shown in Fig. 4.37. This may be interpreted as

another manifestation of the quantum critical behavior we identi�ed. We have

χ∗(δ) ≈ χ∗ = 0.33. Finally we obtain

c(δ, T ∗(δ)) ≈ − 1

χ∗ K (K0 +Kδ)
1
zν

(4.47)

Neglecting K0 and noting that for δ > 5%, ρ∗(δ) = ρ
MIR

, we have that in close

vicinity of the QWL, resistivity is approximated by a linear function of the form

ρ
QCBM

(T )|δ ≈ ρ
MIR

(
1 + C δ−1/zν(T −Kδ)

)
. (4.48)

which is the central result of this section.

In the quantum critical bad metal regime, the resistivity has a linear temperature

dependence with the slope decreasing as a power −1/zν of doping. This demon-

strates a direct connection of the universal high temperature behavior in the Bad

Metal regime with the (zero-temperature) quantum phase transition. The MIR limit

of the resistivity is reached at temperature roughly proportional to the amount of

doping, T ∗(δ) ∝ δ, since the doping level sets the main energy scale in the prob-

lem. The result of this simpli�ed scaling formula is color-plotted in Fig. 4.40a (with

C = 0.69, K = 1.97 and zν = 1.35) and shown to capture the features of the full

DMFT solution at high temperatures.

On Fig. 4.38b we plot the relative error of this approximation r(δ, T ) = |ρDMFT(δ, T )−
ρQCBM(δ, T )|/ρDMFT(δ, T ). At low doping, the linear regime around T ∗(δ) is short

because here the linear approximation for x(T )|δ is not justi�ed in a wide range

of temperature around the QWL. At dopings between 8 and 20%, x(T )|δ is linear
in a much wider range of temperature, producing a longer linear regime in ρ(T )|δ.
At δ > 20%, the curvature of x(T )|δ cancels the curvature of F̃ (x), and ρ(T )|δ is
found to be linear even at large x, where linear approximation of F̃ (x) is no longer
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justi�ed.
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Figure 4.38: The linear approximation for ρ(T )|δ works well in a large portion of
the phase diagram. (a) The scaling argument temperature dependence x(T )|δ can
be approximated with a linear function in a wide range of temperature around
the QWL T ∗(δ), but only for mid-range dopings. (b) The linear approximation
for ρ(T )|δ works well even where F̃ (x) can no longer be approximated by a linear
function (gray dashed lines denote |x| = 0.5). This is due to cancellation of the
curvatures of F̃ (x) and x(T )|δ.

4.2.7 Comparison with experiments

Su�ciently systematic experimental studies of doped Mott insulators, covering an

appreciable range of doping and temperature, remain relatively scarce. Still, ap-

proximately linear temperature dependence of the resistivity at high temperatures

with the slope that decreases with doping has been observed, most notably in the

seminal work of Takagi et al. [97] on La2−xSrxCuO4. To compare with our theory,
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Figure 4.39: Left panel: The DMFT result resembles the high-temperature regime
of the cuprates. The fully quantitative explanation of the low temperature part of
the phase diagram is still elusive, but it is tempting to make three statements: 1)
The Mott transition happens in stages - �rst stage is the sector selective transition
between the full antiferromagnetic insulator and the pseudo-gap phase with Fermi
pockets; the second stage reconstructs the Fermi surface completely leading to a
doped Fermi liquid phase [96, 2, 26]; 2) In the vicinity of the second, PG-FL QCP,
the quantum �uctuations boost the pairing mechanism producing the maximal Tc
[1, 3]; 3) The hidden local Mott transition produces the QCBM regime observed
at high temperatures, in the same way in single-site DMFT the QCP hidden by
the �rst order transition produces the QC region at T � Tc. Right panel: linear
resistivity regime in cuprates from Ref. [97]. The red line (added) is the estimate
for the MIR limit in this material.

in Fig. 4.40 we color code the reported experimental data; here the temperature

is shown in the units of T
MIR

at 20% doping (note that the highest temperature

shown in experiment is around only 0.1 of the estimated Fermi energy, while the

estimated interaction strength is comparable to U = 4), and the resistivity is given

in units of ρ
MIR

, which in this material is estimated as 1.7 mΩcm. The experimen-

tal results presented in Fig. 4.40c cover the temperature range of 150 − 1000 K at

5− 30% doping. Here one observes a striking similarity between DMFT theory and

the experiment, as already noted in early studies [95, 94, 98]. We established this

result by focusing on an exactly solvable model, where all ordering tendencies are

suppressed, and single-site DMFT becomes exact. Real materials, of course, exist in

�nite (low) dimensions where systematic corrections to DMFT need to be included

[99, 44, 78, 100]. In many cases [25, 101, 102], these nonlocal corrections prove
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Figure 4.40: Resistivity given by (a) the semi-analytical formula obtained from the
scaling hypothesis, (b) DMFT result, and (c) the experimental result on cuprate
La2−xSrxCuO4 samples from Ref. [97].

signi�cant only at su�ciently low temperatures. This indicates that our conclusion

should remain valid and accurate in the high-temperature incoherent regime, estab-

lishing a conceptual link of the universal aspects of Bad Metal behavior and the

quantum criticality associated with the Mott metal-insulator transition.
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5. Conclusions and prospects

We have successfully established, on theoretical and experimental grounds, that the

high-temperature signatures of the Mott transition coincide with those of a quan-

tum critical point, despite the presence of the �nite temperature critical end-point

and the associated coexistence region. In a large portion of the phase diagram, the

DC resistivity has been found to follow a generalized quantum critical scaling law

(generalized only in the sense that the role of the critical value of the control param-

eter is taken by a temperature-dependent quantity). Furthermore, we associated

the linear resistivity around and beyond the Mott-Io�e-Regel limit with the validity

of this quantum critical (QC) scaling law, which provides new insight in the long

standing problem of bad metal behavior.

To show the above we have performed large scale numerical computation, in

excess of 500000 CPU hours, spanning 2 years in total. The bottleneck of the

calculation was the solution of the impurity problem arising in single-site DMFT,

and we used codes which are currently cutting edge in the �eld, both optimization-

wise and method-wise [58]. Single-site DMFT was already known to qualitatively

describe the phenomena associated with the Mott transition in many materials, but

we were able to obtain the results with unprecedented level of detail, as necessary

for the scaling analyses we subsequently performed.

Apart from the numerical simulation, we introduced, discussed and tested in

practice the notion of the instability line, and connected it to the previously devel-

oped concept of the Widom lines. The use of a temperature dependent crossover line

in the QC scaling formula is an original contribution to the sum of known QC phe-

nomena and provides a novel approach to �nite Tc �rst-order transitions in general.

While previous e�orts usually focused on the near vicinity of the �nite temperature

critical-end point of the Mott transition, we showed that scaling behavior can be

observed in a much bigger portion of the phase diagram, at T > Tc. The usefulness

of our theory has been veri�ed in an extensive experimental e�ort by Tetsuya et.
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al. [84] who documented the proposed universality in high-temperature behavior in

3 di�erent organic materials. On the other hand, our theory of the origin of linear

resistivity in the bad metal regime is far from being the only one ([14, 13]), and

there are even other scaling scenarios proposed as the description of this regime

[103]. However, our theory of quantum critical scaling brings further evidence to

the intuition that the strange properties of the normal state in cuprates have much

to do with the vicinity of a quantum critical point. Moreover, our approach, unlike

any other, provides a uni�ed framework for dealing with the two largest classes of

unconventional superconductors (κ-organics and cuprates) in a similar way a recent

study connected the phase diagram of pnictide superconductors with that of the

cuprates [104].

There are however a number of standing issues with our theory and several

immediate generalizations which should be tested in future work. Firstly, we have

observed that the critical exponents depend on the method used (IPT vs. CTQMC),

and also on the parameter used in the scaling formula (U vs. µ). The open question

now is to what extent is the critical exponent universal, and whether one can truly

observe di�erent universality classes of Mott insulators, in experiment. Also in

theory, one needs to address various models and investigate the dependence of critical

exponents on the choice of scaling parameter and speci�cs of the model in more

detail.

One model of particular interest is the Anderson lattice model which features

two Mott transitions - between the integer �lled Mott insulator and the hole-doped

or electron-doped metal [38]. The hole-doped transition does not seem to feature a

coexistence region and here Tc = 0. Testing the scaling hypothesis in this case and

comparing the extent of the scaling region between the zero Tc and �nite Tc cases

should be an important line of future work.

Another important model that should be revisited in the view of our results is the

double-Bethe lattice in which the Tc has been shown to go to exactly zero by tuning

the inter-lattice hopping amplitude [37]. This provides an excellent opportunity to

track the evolution of the QC phenomena as the �rst-order transition continuously

transforms into a pure QCP. Furthermore, in the intermediate regime when both

the inter-lattice hopping and Tc are di�erent from zero, the transition remains of

the �rst order even at T = 0, unlike what is the case in single-site DMFT. It would

be important to see whether the presence of the actual second order critical point at

T = 0 in our model has any importance for the observed high-temperature behavior.
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Also, an important question is whether our conclusions are restricted to models

with only the local correlations. Especially concerning the cuprates which are low-

dimensional and at low temperature exhibit a phenomenology drastically di�erent

from what is seen in single-site DMFT - one should test whether our results hold in

the presence of non-local correlations. These become essential at low temperature,

but may have non-trivial e�ects even in the bad metal regime. The e�ect of non-

locality can be systematically included in DMFT by considering a site cluster instead

of a single-site impurity, and such calculation should provide an important test of our

approach. Furthermore, the e�ects of particle-hole asymmetry can also be tested,

although the comparison with κ-organic systems which are triangular lattices is

already very favorable.

Most importantly, given the excellent agreement of DMFT with the κ-organic

materials, one should be able to predict their pressure-temperature phase diagram

even away from half-�lling. In a recent measurement on doped κ-organics, linear

resistivity was reported, in agreement with our theory [105]. Furthermore, the Mott

insulating state is not present in the doped systems (in agreement with DMFT),

but only a crossover between the weakly and strongly-correlated metallic states is

observed as pressure is varied. An important aspect for the characterization of

these regimes is the average double occupancy, which can be calculated in DMFT

with high accuracy. A study of double occupancy and dynamic (local) two particle-

correlations, at a �xed level of doping and varied on-site interaction energy U , could

be of high importance in the view of future experiments.

Having this in mind, we believe the results presented in this thesis put the funda-

mentally important phenomenon of the Mott transition in a wider perspective, and

open a clear direction for future studies possibly leading to a deeper understanding

of the many-body correlation in condensed matter systems.
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Quantum critical phenomena associated with the Mott metal-insulator transition

The Mott transition as observed in the dynamical mean field theory (DMFT) solution of the Hubbard model 
in infinite dimensions is of the first order up to some critical temperature, and features a coexistence region 
where both metalic and insulating states are locally stable. However, at sufficiently high temperature, a 
typical quantum critical behavior is recovered.  All the linear response DC resistivity data can be collapsed 
onto two distinct branches when plotted against an argument of the form indicative of quantum critical 
scaling. The results obtained at half filling show excellent agreement with experiments on various Kappa 
organic materials. 

In the case of doping-driven Mott transition at a fixed (large) value of on-site interaction, the critical 
temperature for the first order transition is found to be much lower than at half-filling. The quantum critical 
region here extends to lower temperatures and at high temperature covers most of the phase diagram. 
Furthermore, it matches the region of bad metal behavior, where resistivity is linear in temperature and of the 
order of Mott-Ioffe-Regel (MIR) limit and higher. This behavior can be explained in terms of quantum 
critical behavior – both the linearity and slope of resistivity around the MIR limit are  consistent with the 
validity of a scaling function of a single argument. It turns out that the bad metal regime holds information 
about the hidden zero temperature Mott transition, and that critical exponents can be extracted from the 
doping dependence of the slope of resistivity around MIR limit. A physical picture qualitatively similar to the 
DMFT result is found in cuprate films in the temperature range 200-1000 K, between 10 and 30% hole 
doping.



Cluster DMFT on a triangular lattice (work in progress)

Whether the QC phenomena observed in single-site DMFT are specific to the local approximation is an open 
question. The Mott transition and the crossover region are systematically examined as non-local correlations 
are introduced by considering 3,4 and 6-site clusters in DMFT.

Hybridization expansion CTQMC (work in progress)

The main limitation of the hybridization expansion continuous-time quantum Monte Carlo impurity solver is 
the cluster size. As compared to the interaction-expansion algorithm which allows for  treatment of as many 
as 16 lattice sites in the impurity problem, hybridization expansion relies on  exact calculation of the trace 
over impurity degrees of freedom which is practical only when cluster size is less than or equal 5. Already for 
7 orbital clusters, a truncation of the basis set is required for the calculation to become feasible, but this is an 
uncontrolled approximation and should be avoided. A systematic solution to this problem is proposed by 
means of supplementing the hybridization expansion (HE)  algorithm with a world line Monte Carlo. In each 
MC step of the HE-CTQMC, the impurity trace can be calculated by a world line algorithm, but even better 
performance is expected if both MC procedures are performed in a single, joint Markov chain. The severity 
of the sign problem is expected to be the same as in the original algorithm.

Competition between Anderson and Mott localiztion (work in progress)

Disorder in the Hubbard model can be modeled by considering an ensemble of impurities with various orbital 
energies, and closing the DMFT loop by the averaged result of impurity problems - when the geometrical 
average of the densities of states is used, the DMFT procedure is called the typical medium theory. Using this 
approach, one can analyze the interplay of disorder and interaction. It turns out that disorder protects the 
system from Mott localization, and vice versa  - the system is found to be most metallic when the amount of 
disorder (width of the orbital energy distribution) is comparable to the strength of the interaction. With 
increasing disorder, the critical temperature for the first order Mott transition drops quickly, and the 
coexistence region transforms into two quantum critical lines, separating three distinct phases – the pure Mott 
insulator, the mixed Anderson-Mott insulator, and the Fermi liquid.

Unstable fixed point of DMFT (work in progress)

Close to the critical point of the first-order Mott transition, the correlation length diverges, and thus the 
domain walls separating the Fermi liquid and the Mott insulator become very thick. This can be explicitly 
shown by performing  the inhomogeneous (real space) DMFT. The intermediate phase appearing at the 
middle of the domain wall is neither the Fermi liquid, nor the Mott insulator, and is expected to dominate the 
overall behavior of the system. It is found that this state corresponds to the unstable fixed point of the DMFT, 
which can be converged in the coexistence region by means of a root-finding-algorithm assisted DMFT loop, 
or using the phase-space extension technique. The properties of this unstable solution are analyzed and it is 
found that it is fairly metallic, with resistivity increasing linearly with temperature (when calculated along the 
trajectory of the first order transition where metallic and insulating solution are of the same energy).

d-wave superconductivity in honeycomb bilayer

The low-energy properties of a pair of Bernal stacked honeycomb lattices can be described by an effective 
single layer honeycomb lattice with additional third neighbor hopping amplitude. The interaction effects are 
expected to play a role in these systems and are modeled in a tJ-like manner, and solved by means of mean-
field theory. A 5 parameter minimization of free energy reveals an instability towards superconducting order 
of various symmetries. The superconductivity is particularly favored when the Fermi level is around the van-



Hove singularity in the non-interacting density of states. At the van-Hove singularity and closer to half-
filling, at low values of attractive interaction, a d+id time-reversal symmetry breaking superconductivity is 
found. 

Burkov-Macdonald model of QHE bilayer (work in progress)

Quantum Hall bilayer at filling factor one can be described by an effective Heisenberg model with 
anisotropic couplings. The long range Coulomb interaction of the original (continuous space) model enters 
the Heisenberg model also through next nearest neighbor couplings. Using the Schwinger boson 
representation of the Hesienberg model, a mean field theory can be formulated in terms of 
(anti)ferromagnetic bond operators. The solutions found feature lowest lying excitations at some finite 
momentum, in agreement with exact diagonalization of the QHE bilayer in torus geometry. A possible 
interpretation of the ground state as a Z2 pseudospin liquid is pursued.
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