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Signatures of hidden quantum criticality in the
high-temperature charge transport near the Mott
transition

Abstract

The Mott metal-insulator transition is one of the hallmarks of strong electronic
correlation and is one of the most active areas of condensed matter research today.
Both the experimental data and theory clearly show that the Mott transition is a
first order transition, featuring a coexistence region up to some critical temperature
T,. The vicinity of the critical point has been studied extensively and is shown to
display critical phenomena of the classical Ising universality class. Below T, the
first order transition separates a paramagnetic Mott insulator and a paramagnetic
metal. At lowest temperature, the two phases often develop long-range order -
antiferromagnetism or superconductivity. The Mott transition separates two distinct
phases all the way down to zero temperature, which makes it a quantum phase
transition.

The open questions regarding the Mott transition include: can Mott mechanism
in some cases produce a phenomenology drastically different from that of a first or-
der transition? Can T, be brought down to zero, i.e. can Mott transition be reduced
to a single quantum critical point? The theory suggests that these are quite possi-
ble, but a clear experimental verification of such prediction is still lacking. Can a
Mott transition be completely hidden by a superconducting ordering instability, and
can critical fluctuations of a Mott transition provide a boost to the Cooper pairing
mechanism? These questions are of utmost importance, but are notoriously hard to
answer. Is there a universal high-temperature behavior in connection with the Mott
transition, as is usually the case with other quantum phase transitions? Here we
investigate this possibility and show that the answer is positive. Furthermore, we
show that the linear temperature dependence of resistivity often found in the inco-
herent (bad metal) transport regime can be understood as the general consequence
of the Mott quantum criticality.

In this thesis we numerically solve the single-site dynamical mean field (DMFT)
equation for the Hubbard model, using the iterative perturbation theory (IPT) and

continuous time quantum Monte Carlo (CTQMC). We focus on the supercritical



(crossover) regime of the Mott transition, which is precisely where DMFT is expected
to work best - non-local effects have been thoroughly shown not to play a role
when temperature is high. We calculate resistivity with high resolution throughout
the phase diagram and perform a thorough analysis of the data. We first show
that there is an “instability trajectory” U*(T') in the crossover region of the phase
diagram, revealing a fundamental distinction between metallic-like and insulating-
like behavior, and providing a continuation of the first-order transition line to the
supercritical temperatures. Then, we perform a scaling analysis of the resistivity
data (as routinely employed in the context of purely quantum phase transitions),
to demonstrate the validity of a scaling law with temperature T in the scaling
argument, rather than the distance from the critical point |7" — T,|. The observed
scaling p = p(U*(T),T) F((U — U*(T))/T**") is found to be of high quality, and is
corroborated by very recent experimental results on organic Mott insulators.

In the second part of our work, we focus on the doping-driven Mott transition
and complete the 3D (u,U,T) phase diagram of single-site DMFT. We document
the quick reduction of T, as U is increased and extend our scaling analysis to the
case when 7. is very small. Here the chemical potential ;1 rather than on-site in-
teraction U enters the scaling law p = p(u*(T), T) F((u — p*(T))/T*"). We show
that the phenomenology of the Mott transition resembles that of a quantum crit-
ical point and associate the corresponding quantum critical region with the linear
resistivity bad metal regime. Starting from the scaling hypothesis, we derive a semi-
analytic formula able to reproduce both the linearity and slope of the resistivity
curves in the high-temperature part of the full DMFT result, which is found to be
in good qualitative agreement with the experiment on the famous cuprate compound
Lay_,Sr,CuQy.

Keywords: strong correlations, Mott metal-insulator transition, quantum criti-

cality, dynamical mean field theory
Scientific field: Physics
Research area: Condensed matter physics

UDC number: 538.9



Iloka3zaTespu CKpuBeHEe KBAHTHE KPUTUIHOCTH Y
BHCOKO-TE€MIIEPATyPHOM TPAHCIOPTY HaeJIeKTPHCAmha y
om3man MoToBor mpeasa

Caxerak

MotoB MeTas-u30/1aTOp Mpesias je jejiHa o HajBayKHUjUX MOCIeINIa jJaKIX eJIeK-
TPOHCKUX KOpeJsallija, 1 jeJHa 0/ HajaKTHUBHUJUX 00JIaCTH UCTParKuBama y Hu3nium
KOHJeH30BaHe MaTepuje. Il ekcnepuMeHT W TeopHja jacHO VKa3yjy na je Moro
npena3 (asHu mpesa3 OPBOT pejla W Ja UCIOJ/haBa KOET3HCTeHNHjy da3a 0 Heke
kputuune Temieparype 1. Tpancnoprhe u TepMOIUHAMUYKE OCOOHMHE Y OKOJIMHHU
KPUTUYHE TadKe Cy JeTa/bHO MpoydaBaHe W TOKA3aJd0 Ce Jla MOTY Ja ce OIMUITy
TEOPUjOM KJIAcHYHUX a3HuxX Ipesasza M3unrose kiace yuupepsasianoctu. Mcmon
T,., dba3uu npejia3 nIpBOT pejia pasjiBaja mapamaraseTnu MoToB n3o/1aTop U nmapamar-
Hernu MetaJi. Ha najumzkum remueparypama, ode dase 1ecto pa3Bujajy J1yroJ0MeTHO
ypeheme - aHTH(]EpOMArHeTH3aM WX CylepnpoBogHocT. MoToB mpenas pasaBaja
JiBe pazauunTe pase cBe J0 HYJITE TeMIepaType IITO ra YNHH KBAHTHUM (ha3HUM
PE/IaA30M.

Heka on Ba:KHWUX OTBOPEHUX MHUTama Be3aHO 3a MoTOB mpena3 YKJ/BYUIY]y: J1a
g MoToB MexaHu3aM MOXKe Yy HEKHM CJIydajeBHMa Jia Mpoussejie (peHOMEHOJIOIU]Y
JPACTHIHO Pa3IudIuTy o1 basHor mpesaasa npsor pega’ Ha sm T, moxKe ma ce
CIIYCTH Y HYJIY, Tj. MoxKe Ju ce MOTOB peJia3 CBECTH HA KBAHTHY KPUTUYHY TAUKY !
Teopwuja cyrepuiire ja je oBo moryhe, aqm TakBa IpejBuhama jolll YBEK UeKajy Ha
HEOCIIOPHY eKCIepuMeHTaJHy TOTBpAy. Moxke jim MoToB nipesas j1a 0y/1e KOMILJIETHO
CaKPUBEH CyLEPHPOBOJAHOM a30oM, U MOIy Jiu KpuruuHe (pJyKTyalyje Be3aHe 3a
Motos npenas na gponpunecy KynepoBoMm cnapupamwy? OBa mUTama Cy OJ1 BEJHKOT
3Havaja, aJiv je Ha IhUX joIr yBek Hemoryhe normnyno ojgrosoputu. llocroju jm yHu-
BEp3aJIHO TOHAIIAke Ha BUCOKO] TeMIeparypu, rnoBe3aHo ca MoTOBUM Ipeia3oM,
KAKBO Ce 9ecTo omaka y Kourekcry kBantuux (1 = 0) dasunx npesraza? Opie mc-
TPazKyjeMo TaKBY MOIYNHOCT M HaJIa3MMO IO3UTUBAH OJroBop. Takobhe, mokasyjemo
Jla ce JIMHeapHa TeMIlepaTypHa 3aBUCHOCT OTIOPHOCTH, YECTO OllayKeHa Yy HEeKOXep-
€HTHOM PEeKUMY TPAHCIIOPTA, MOXKE PazyMeT! Kao YHUBep3aHa mocaeautia MoTose
KBAaHTHE KPUTHYHOCTH.

Y 0BOj Te3W HyMEpHYKHU pelraBaMoO jeJHAYHHY TEOpHje JTUHAMUIKOT CPEeJIEHer



nosba 3a Xabapaos mogesa(DMFT), kopucrehu nreparusuu neprypbaruBiu MeTO/
(IPT) u kpauroun Monte Kapio meron y xorrunyaanom spemeny (CTQMC). Kon-
IEHTPUIIIEMO Ce Ha NpeJIa3Hi BUCOKOTEMIIEPATypPHH pPeKUM u3Mely mMeTaJia u n30-
JIaTOpa, MTO je yIpaBo PEXKUM IJie Cy HeJIOKaJIHe KopeJialuje 3aHeMap/buBe, 1a je u
AMOT ompasmana anpokcuManuja. PadyHaMo TPOBOIHOCT ¢a BUCOKOM Pe30JIyIIN-
jom mwmpom (as3Hor Amjarpama u JeTaJpbHO aHaIU3WpaMo pesysarare. [IpBo mokasy-
jemo ma nocroju “smuuja Hecrabuanoctn” U*(T) y HagkpuTHIHOM ey dasHor
JHjarpaMa, Koja OTKPHUBA CYIITUHCKY MOy u3Mely MeTaqudHor m m3071aTOPCKOT
NOHAIIAKkA, U ITPeICTaB/ha IPOJIyKeTaK JUHUje ha3HOT Ipesta3a MpBOr peja Ha Hal-
kpuTtnane Temreparype. OHaa, CIPOBOANMO aHAJN3Y CKAJTHPAbA Pe3yTara 3a OT-
MOpHOCT (KAKO ¢e TO MHA4Ye YMHU y CJIyYajy YMCTO KBAHTHUX (ba3HUX Mpesasa) ja
OUCMO YTBDIUIN BazKeHe 3aKOHUTOCTH Ca TeMIepaTypoM 1’y apryMeHTY YMeCTO
onasberoctn on Kpuruaue tadke [T — T.|. TIponaheno ckamupame p = p(U*(T),T)
F((U —U*(T))/T"#) je sucokor kpamrera, u norspheHo je y HejaBHOM eKClepu-
MeHTY Ha opranckuM MoTOBUM H301aTOPUMA.

Y apyrom geny pajia, KOHIEHTpHUiieMo ce Ha MoOTOB mpesa3 w3a3BaH J0NHpPa-
BeM U yIoTInymaBaMo Tpojumensuonantu (u, U, T) dasun gujarpam. TokymeHTy-
jeMo ybp3ano cmamuBame 1, Kako ce noBehasa naTepaknuja U u KOPUCTHMO HAITY
aHAIN3y CcKaJdupama y ciaydajy kama je 1. spao mamno. Cajga XeMHjCKH MOTEHITH-
jam p ymecro jaumne waTepakuuje U yrasu y 3akon ckamupama p = p(u*(T),T)
F((u— p*(T))/T"#). Tlokasyjemo ma je MoToB mpesa3 TOBE3aH Ca YHIBEP3ATHHM
BHCOKO-TEMIIEPATYPHUM TTOHAINAEM THIHYHUM 33 KBAaHTHE KPUTHYHE TadyKe, U Jla
ce OHO MOKJIala Ca PeXKMMOM JIOIer MeTajta ca Juneapuom ornopuomihy. Kpehyhu
OJ1 IPETIIOCTABKE O BazKEIby CKAJIUPAba, U3BOJAMMO MO/LY-aHAJTUTUYKY (POPMYJIy KOja
pPEenpoyKyje U JUHEAPDHOCT M Harub KPUBUX OTIIOPHOCTH Y BHUCOKO-TEMIIEPATYPHOM
naeay mynor DMFT pesyarara, koju je y 106poM KBaJIUTAaTUBHOM CJIaramby Ca eKCIep-

HMEHTOM Ha MO3HATOM jeumemy Dakap-okcuaa Las_,Sr,CuQOy.

Kipyune peun: jake Kopenaimuje, MOTOB MeTaI-m3071aTOP Mpesia3, KBAaHTHA KPUTHI-
HOCT, T€OPHUja JUHAMUYKOD CPEJIIHer MOJba
Hayuna obaact: Pusnuka

Ob6aact ucrpaxmuBama: Pusnka KOHJACH30BaHEe MaTepHje
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1. Introduction

The many-body problem is arguably the single most important problem, not only in
physics, but in biology/neuroscience, social science and finance. The phenomenon
of emergence is so universally present, that it is impossible to even try and envision
the possible gain from a better and possibly systematic understanding of complex
systems. In physics, however, one deals with elementary particles which are only few
in type, with well defined properties and amazingly simple interactions. This poses
an unprecedented opportunity to actually work out and test theories that predict
emergent behavior. The study of the many-body problem arising in condensed
matter systems is, indeed, not without success. It made clear that quantum nature
of the elementary constituents of matter becomes so dominant at low temperature,
that it is often easily observable even on the macroscopic scales. The quantum
uncertainty, entanglement and exchangeability of particles are identified as very
powerful mechanisms, able to give rise to phases of matter so exotic, that they
are unmatched by anything in our everyday experience of the world. A bosonic
superfluid creeps out of any container, and superconducting materials seemingly
violate the firmest notion that energy must always dissipate - it is a fundamental and
invaluable insight, that already pairwise correlation between electrons can produce
a drastic effect which is superconductivity. It is therefore of primary importance to
understand the seemingly endless variety of ways quantum particles can self-organize
into a collective state, and try to identify general mechanisms which lead to behavior
qualitatively different from that of an ensemble of mutually non-interacting particles.

The study of condensed matter theory has brought us some very useful rules of
thumb. For a system to have exotic properties, it is not sufficient that there are
interactions. Interactions are a built-in property of all particles, yet most of the
materials are just boring chunks of matter. Interactions get screened and most of
the systems can be described using an effective single-particle picture. The conven-

tional material is either a metal or an insulator, and this can be predicted with as



little information as is the occupancy of the valence band. What turns out to be
important is that there are competing energy scales - an ambiguity in what is the
energetically favorable state of the system. While the research of ordered phases
is an important part of condensed matter study, the most interesting phenomena
seem to go hand in hand with instability of the order. It is on the verge of a tran-
sition from an anti-ferromagnetic insulator to a paramagnetic metal that cuprate
compounds exhibit superconductivity at remarkably high temperatures [1, 2, B]. It
is now widely accepted that in the vicinity of a phase transition most interesting
stuff happens. At precisely the quantum critical point (QCP) systems are so inde-
cisive of what should be their ground state, that fluctuations appear at all time and
length scales. Quantum critical fluctuations may in some cases carry an effective
interaction between particles, such that it produces non-trivial correlations and an
emergent order of unpredicted macroscopic signature.

The most appealing aspect of quantum critical points is that they seem to dis-
play a high degree of universality [4, [5]. The finite temperature crossover region is
completely dominated by the presence of a T' = 0 quantum critical point, and this is
embodied in scaling laws, as documented in numerous experiments on various sys-
tems [0, [7, 8, @, L0, TT]. The study of phenomena associated with quantum critical
points is one of the most exciting fields in condensed matter theory today. QCP’s are
important from the view of possible technological application, but they also prove
to be a very useful playground for tackling the fundamental questions, not only in
condensed matter theory, but gravity and string theory as well. The physics pre-
cisely at the QCP can be described by a conformal field theory, and as such is ideal
for testing the AdS/CFT correspondence conjecture, which is an immense topic in
its own right. Recent studies [12} 13], 14], 15| showed that string theory contains the
necessary mathematical complexity to reproduce the strongly renormalized Fermi
liquid and strange metal phases in connection with a metal-insulator transition, and
is additional motivation to further study these phases from the condensed matter
theory side. A related, bad metal phase and the crossover region associated with
the Mott metal-insulator transition are at the focus of the work presented in this
thesis.

The Mott metal-insulator transition is one of the hallmark examples of strong
electronic correlation, and is well understood - the electrons in a solid tend to delo-
calize, but avoid to be found together on the same lattice site. If the excess Coulomb

energy paid when two electrons occupy the same orbital overcomes the gain from



uncorrelated delocalization, the electrons become particle-like, acting as localized
magnetic moments, and conduction is severely suppressed. However, the (paramag-
netic) Mott insulator ground state is not known, neither are its properties clear from
the experimental side of view. Unlike the superconducting condensate, electrons in
a Mott insulator do not form bound pairs, and the structure of their many-body
wave function is certainly more complex. Furthermore, in the vicinity of the Mott
transition, there are many ordering instabilities, often towards medium and even
high-T, superconductivity. The connection of the Mott localization and supercon-
ductivity in these systems is still not satisfactorily resolved [2]. Most importantly,
the Mott transition is by all means a quantum phase transition, but is strangely
not observed as a quantum critical point. It is a first order phase transition, and its
finite-temperature critical end-point is of the classical Ising type. This thesis s an
effort to reconcile these seemingly converse properties of the Mott transition.

The results presented here suggest that the first order transition and the second
order quantum critical point are just two limits of the same phenomenology, and
that the finite temperature critical end-point can be tuned to zero temperature,
thus reducing the entire phase coexistence region to a single QCP. Moreover, the
DC resistivity is found to fit to a quantum critical scaling law in a large portion of the
phase diagram, both in experiment and exact theory. At high enough temperatures,
the signatures of the Mott transition are that of a T' = 0 QCP. Most importantly,
the validity of a QC scaling function is shown to be in direct connection with the
T-linear resistivity at high temperatures, in agreement with experiments on cuprate
films, shedding new light on the 20 years old mystery of bad metal behavior beyond
the Mott-Ioffe-Regel limit.

However, a naive description of the first order Mott transition from perspective
of quantum criticality runs into a problem immediately - the critical value of the
parameter driving a first order transition is a function of temperature. One there-
fore needs to introduce a generalization of the QC scaling formula which in the
original form takes only a single critical value (a number rather than a function of
temperature) in its argument. One of the most important results of this work is
that such generalization is possible, well defined in terms of purely thermodynamic
quantities, and with solid physical justification. The extension of the “critical value”
to the super-critical temperatures where no actual transition takes place is the point
of maximal instability of the system. The quantum critical region therefore can be

viewed in more general terms as the region on the phase diagram where the system



is least decisive of its behavior. The concept of instability lines (or quantum Widom
lines) is very general and may prove useful in unrelated problems. From the techni-
cal point of view, we introduce a novel approach in numerical simulation - one may
not obtain information from only the final result, but also from the intermediate
results of a simulation. The dynamical mean field (DMFT) calculation employed in
this work is a solution of a self-consistent equation through an iterative procedure.
It turns out that it is possible to rigorously relate the stability of a state with the
convergence rate of the DMFT calculation which yields the given state. In other
words, one should not only look at the solution of an equation, but also at the way
the solution is approached in the numerical treatment.

The rest of the thesis is organized as follows. In chapter two I discuss the emer-
gence of quantum critical scaling at high temperatures, in the vicinity of a QCP.
Then, T overview the most important aspects of the Mott transition. In chapter
three I discuss theoretical methods used - the dynamical mean field theory and its
properties, the numerical algorithms used for the solution of the impurity problem
(or impurity solvers), and finally the analytical continuation of the imaginary axis
data to the real axis. In chapter four I present the results of DMFT, map out the
phase diagram of the Hubbard model, and analyze the high-temperature data in
view of possible quantum critical behavior. In chapter five I make a few conclud-
ing remarks, state the remaining open questions and propose directions for future

studies.



2. Quantum phase transitions

Quantum phase transitions (QPT’s) are second-order (continuous) phase transitions
that occur at zero temperature when an infinitesimal variation of a Hamiltonian
parameter significantly changes the properties of the ground state through level
crossing (Fig. [4]. The term “quantum” here makes a distinction from conven-
tional second-order phase transitions which occur at finite temperature. In some
cases, the classical transition corresponds to the thermal destruction of long-range
order, while in others there is a first-order transition between two phases ending in
a finite-temperature second-order critical end-point.

A complete theory of quantum phase transitions would have to tackle strong
correlations present in interacting many-body systems, which is an impossible task
in most cases. Fortunately, there is an analogy between quantum and classical sys-
tems which can be utilized to give some very general answers regarding the QPT
phenomenology [16] 5]. The physics of classical phase transitions has been studied
extensively over several decades, and a very complete theory of universal behavior
and critical scaling has been put forward to numerous experimental verifications.
It turns out that the concepts of universality classes and order parameters as de-
veloped in the study of classical models, can be successfully applied to the case of
QPT’s. Just as is the case in classical systems, the properties of condensed matter
in the vicinity of a (T" = 0) quantum critical point (QCP) are insensitive to micro-
scopic details that produce the phase transition in the first place, and are therefore

universal.

2.1 Quantum-classical correspondence

The analogy between the classical and quantum systems is most easily seen upon

inspection of the partition function in the quantum case

Z = Trexp GH (2.1)



2.1 QUANTUM-CLASSICAL CORRESPONDENCE

E 4 Excited state

Ground state

K. K

Figure 2.1: Level crossing causes T' = 0 (quantum) phase transitions. Upon variation
of a Hamiltonian parameter K through a critical value K., an excited state becomes
the ground state of the system.

The statistical operator is formally equivalent to the operator of quantum evolution
™ but in imaginary time 3 — 7 = it. This can be used to formulate the quantum
problem in terms of path-integrals which sum all possible trajectories that start (at
7 =0) and end (at 7 = ) in the same state. Then, the statistical operator formally
plays the role of the Boltzmann weight of a given trajectory, which can now be
considered a classical configuration of a d+1-dimensional system. Therefore, there
is a correspondence between d-dimensional quantum and d-+1-dimensional classical
systems, where the additional dimension is the imaginary time. The transition
driving parameter of the quantum Hamiltonian then enters the classical system
as (artificial) temperature, and the real temperature of the quantum system only
determines the compactification of the imaginary time coordinate (7 € (0, 3), where
B = 1/T) in the classical system, thus making it finite in one direction (unless, of
course, T'=0). Note also that the classical system is periodic in the 7 direction, i.e.
a quantum system with a 1D chain geometry corresponds to a classical system on
a cylinder of circumference f3.

A very famous example of the quantum-classical mapping is the case of Josephson
junction arrays [I7]. This 1D quantum model can be mapped to a classical 2D XY
model, which has a well known behavior [18, 19] (note that this mapping is not exact
but it rather preserves the universality class of the problem - all the critical exponents
are known ezactly, but far from the transition the solution of the classical model
does not yield exact answers regarding the quantum model). The quantum quantity
corresponding to the orientation of a classical XY rotor at the lattice site ¢ is the

phase 6; of the complex field v); describing the superconducting order parameter on a
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given grain. The temperature of the classical system corresponds to the ratio of the
two parameters from the quantum Hamiltonian, namely T ~ \/m where E¢ is
the capacitative charging energy, and F; is the Josephson coupling energy. In the
classical system, at low temperature, there are long-range correlations between the
rotors, and they are globally aligned. At a certain temperature 7, a phase transition
occurs to a disordered phase in which correlations between the rotors are only short-
ranged. In the quantum system, the voltage between the superconducting grains is
conjugate to the phase Vi ~ a%' Then, when the Josephson coupling constant F;
is sufficiently reduced, the temperature of the classical system goes through the
critical value T, the XY rotors become uncorrelated (<8%> is no longer zero) and
the quantum system goes from a superconducting to an insulating state where now
there is finite voltage between the grains - although the individual grains are still
superconducting, they are collectively incoherent and therefore insulating. Once
the correspondence between quantities in the two models has been established, the
conclusions regarding the classical model can be immediately applied to the quantum
model.

However, the properties of even the classical systems are not known in general.
Still, in the vicinity of a critical point, the physics does not depend on the microscopic
details of the system, but rather on the universality class, which can be determined
through considerations not necessarily including the full solution of the problem.
Often, the universality class depends on dimensionality and only the basic properties
of the model. Now, if universality class of a classical system is known, the behavior
of the corresponding quantum system in the 7" = 0 vicinity of a QCP is also known.

Remarkably, even when quantum classical-mapping is impossible (which is gen-
erally the case with fermionic systems such as the gapless Fermi liquid), or the
correspondent classical model is of an unknown universality class and impossible to
solve, there are general conclusions regarding the QCP phenomenology to be drawn

from the classical scaling theory, which seem to apply always.

2.2  Quantum critical (or finite size) scaling

The universality in behavior of both classical and quantum systems stems from the
scale invariance of most critical points. The classical scaling theory predicts for an

infinite system that precisely at the critical temperature, correlation length & will
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diverge as
E~|T-T,|7"

where the exponent v > 0 is determined by the universality class of the system
[4, 16]. Using the quantum-classical correspondence, the same can be said for a
quantum system at 7' = 0

E~ K — K™

where K is the parameter of the quantum Hamiltonian which corresponds to the
temperature of the classical model. Note also that the correlation length diverges in
all directions, including the imaginary time, although not necessarily with the same

exponent
gfr ~ 52 .

In general, 7 does not enter the classical model on the same footing as the other
spatial dimensions, and here we reserve &, for the correlation length in the imaginary
time direction. However, in many cases of interest, the dynamic exponent z does
indeed equal 1 (a notable exception is the Hertz-Millis field theory of magnetic Fermi
liquid instabilities, where z = 2 or 3, and the effective dimensionality is d.fr = d+z)
[5]. Note also that determining the critical exponents from a mean field theory is
usually good enough. However, in the nearest vicinity of the critical point (the
so called Ginzburg region) critical exponents acquire corrections which can not be
obtained from mean-field considerations.

Then, in the vicinity of the QCP, for an arbitrary observable measured at wave-
length k& and frequency w, the scaling theory predicts no explicit dependence on the

K parameter

O(k,w, K) ~ O(k&, wé;)

since the only characteristic scales are £ and &.. When K = K, £,& — oo, and
no scale other than the measured wave-length k and frequency w can determine

observables
Ok, w, K.) = k% O(k* Jw).

where do is the scaling dimension of the given observable. The physical meaning of
this is that precisely at the quantum critical point, quantum fluctuations are present
at all time and length scales.

At finite temperatures, however, additional considerations must be made. First,
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Figure 2.2: At the critical point correlation length diverges [16]. At finite temper-
ature of the quantum system, the size of the corresponding classical system in the
imaginary time direction becomes finite (L, = ). Close enough to the critical point,
the correlation lentgh &, outgrows the size L, thus making the system effectively
d-dimensional, and therefore classical.

the finite temperature of the quantum system makes the classical system finite in the
7 direction. Since at the critical point the correlation length diverges, close enough
to the critical point, the classical system will become effectively d-dimensional
(Fig. 2.2). In general, this will change the universality class of the classical system,
and in some cases, the new universality class does not feature a phase transition at
all. Otherwise, there will be a transition, but in the vicinity of it, the behavior of
the quantum system will be purely classical, as the extra imaginary time dimension
does not play a role here. So, the phenomena accompanying QPT’s at T" > 0 can be
divided in two groups (although not without exceptions). Finite temperature can
either destroy the phase transition altogether Fig. 2.3p, or the ordered phase can
survive up to a certain temperature 7%(K), at which a conventional second order
phase transition takes place (red line in Fig. ; if there is no order on either side of
transition, then Fig.[2.3k). The orange area around T*(K) can readily be described
by the classical scaling theory because at the longest length scales, the correspond-
ing classical system is always effectively d-dimensional, and therefore identical to
the quantum system. However, this phase transition is of different universality class
compared to the T'=0 QCP.

In all cases (Fig. [2.3)), however, there is an intermediate, crossover regime that
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Figure 2.3: Quantum phase transitions can be extended to finite temperatures in two
ways. (a) The long-range order persists to some finite temperature and is eventually
destroyed by thermal fluctuations through a classical second order transition. In the
orange region, classical scaling theory can be readily applied. (b) Even infinitesimal
temperature destroys the phase transition, and only a crossover is observed at finite
temperature. This type of phenomenology is usually observed when Mermin-Wagner
theorem applies - in d < 2 there can be no spontaneous breaking of a continuous
symmetry at finite temperature, and therefore the ordered phase is restricted to
T = 0. If the transition is not between an ordered and disordered phase, then the
generic phase diagram is given by (c). In all cases, an intermediate, quantum critical
region is present (green). In this regime, scaling specific to QPT’s is observed.

displays scaling behavior of different origin. Although strictly speaking the phase
transition of the d + 1 universality class is necessarily absent at finite temperatures
of the quantum system, it does not disappear completely, but rather gets rounded
due to finite-size effects in the classical model. Around K., but at some finite
temperature, the only characteristic scale in the system is no longer the correlation
length, but there is also L.. So the properties are determined by the ratio between
the correlation length and the size of the system in the imaginary time direction
& /L., where L, = 3. However, even at K = K, the temperature makes a difference

so for a general observable
O(k,w, K,T) = O(T) O(kLY? wL,, L, /&)

must hold. If the observable is measured at zero frequency and infinite wave-length,

we have

Ok =0,w=0,K,T) = O(K,T) = O[T) O(L,/¢,) = O(T) O(|K — K |**/T).
(2.2)

This behavior is known as the quantum critical scaling (or finite size scaling in

10
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classical systems) and is experimentally observed in many systems [6, [7, [8, 9, [10].
It is very important to note that the physical content of the above expression is
not actually present at 7" = 0. The width of the quantum critical region (QCR) in
which the above is expected to hold shrinks to a single point at 7' = 0, so all the
features of the QCR stem directly from the QCP. In practice, the true discontinuity
(jump) in the value of quantities possibly present at the QCP becomes a smooth
crossover at finite temperature, ever smoother with increasing temperature, yet in
a way precisely determined by the universality class of the T = 0 transition itself.
The quantum critical scaling is a “magnifying glass* looking at the QCP which
allows for the experimental inspection of the properties of a zero-temperature phase
transition otherwise not accessible. Note also that simplest considerations yield the

"hyperscaling® relation
O(T) = O, T /= (2.3)

but significant corrections to this law may be present, depending on the model.
Otherwise, the sign of the scaling dimension determines whether the observable will
go to infinity or zero at the QCP. When scaling dimension is zero, O.(T) is just a
constant. For example, for the resistivity in the context of non-interacting disorder
driven (Anderson) metal-insulator transition, d, = d — 2, which is also known as the
Wegner scaling. Here, the scaling dimension depends on the dimensionality of the
system. However, above the upper critical dimension for a transition, these simple
considerations fail due to "dangerously irrelevant variables“ (above the upper critical
dimension for a transition, the Gaussian field theory becomes exact, but one must
not immediately discard the quartic interaction term; more careful considerations
must be made in determining the critical exponents, and because of this, no general
result such as the hyperscaling can be obtained).

In the following, I present the hallmark examples of how quantum critical scaling

of quantities can demystify the existence and properties of a QCP.

2.2.1 QHE

The quantum Hall effect is the appearance of plateaus in the Hall resistivity, precisely
at multiples of the quantum of resistivity h/e? (when multiples are integer, then it
is known as the integer QHE, otherwise - the fractional QHE). A thin sheet of a
material is put in a perpendicular magnetic field, and connected to four terminals.

A current is induced along one axis, and voltage is measured along the other to

11
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Figure 2.4: Crossover between two plateaus in quantum Hall effect displays QC
scaling [10]. The maximal derivative of resistivity with respect to magnetic field
is a power law of temperature, consistent with the QC scenario. The width of the
crossover region AB increases with temperature, in the same fashion.

deduce the Hall resistivity p,,. As magnetic field is varied, different Landau levels
of cyclotron motion cross the Fermi level, which is observed as jumps in otherwise
constant Hall resistivity. The behavior of resistivity in the crossover between two
plateaus can be used to determine the properties of the zero-temperature transition.
At the critical value of the magnetic field, resistivity is independent of temperature.
Also, the jump in resistivity becomes smoother with increasing temperature, but
in a fashion such that g—g = T* precisely (Fig. [10, 16]. Furthermore, it
turns out that the scaling exponent zv is universal for all materials exhibiting QHE.
This means that the phase diagrams of such systems feature an array of QCP’s,
as presented in Fig. 2.5 and that they all fall into the same universality class.
The theory of QHE has been very successful in describing the position of plateaus
which also displays some universality, but it is remarkable how the scaling theory
captures the essential features of the crossover region without any regard to the

actual Hamiltonian of these systems.

12
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Figure 2.5: Phase diagram of the quantum Hall systems features an array of quan-
tum critical points. At T = 0, Hall resistivity py has discountinuities (or “jumps”)
at certain values of external magnetic field. With increasing temperature, the jumps
become more and more gradual. Fach QCP is associated with a quantum critical re-
gion (green) where resistivity displays a behavior consistent with a quantum critical
scaling law.

2.2.2 SIT in a-MoGe thin films

The a-MoGe thin films become superconducting at low temperature, but due to
high level of disorder in such samples, true zero resistivity is not observed [20)]
9). Rather, the system displays inverse activation, or the exponential growth of
resistivity with temperature. This behavior is due to dissipative motion of vortices,
which get depinned from structural defects by the applied current (the zero resistivity
is expected only at T = 0 when the vortices freeze in a glass-like state). As usual,
magnetic field can also destroy superconductivity in these systems, in which case
the electrons become weakly localized (the resistivity is a logarithmic function of
temperature at high magnetic fields). It has been shown that these systems also
display quantum critical scaling in the crossover region at high temperature. On
Fig.[2.6] it is shown how all the resistivity data can be collapsed onto two branches,

which is a standard procedure in determining whether QC scaling is observed, in

13
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Figure 2.6: Superconductor-insulator transition in thin a-MoGe films displays char-
acteristic quantum critical scaling of resistivity [9)].

direct connection with Eq. 2.2 (more details below).

2.2.3 MIT in 2D electron gas

At the interface of two semi-conductors with different gaps, it is possible to realize a
truly two-dimensional free electron gas [II]. The electrons here have to overcome a
gap of ~ 200K to delocalize in the z-direction, so when the experiment is performed
at 2K, they become confined within barely 100A along the z-axis. It has been long
believed that such systems would always be insulating, because it was expected that
in 2D, even infinitesimal disorder completely localizes the electrons. However, recent
developments have shown that such systems actually exhibit a plethora of interesting
phenomena. On Fig. we show a conceptual phase diagram of the 2D electron
gas realized in MOSFET systems, where the carrier concentration is controlled by
(electric) field effect, and the external magnetic field is applied perpendicularly to
the plane of electronic motion. We see that even at B = 0, there is a metal-insulator
transition (MIT) at some critical value of carrier concentration, and at high fields,
also fractional quantum Hall effect (FQHE) is observed. The experiments are always
performed at finite temperature, and both the MIT and the transition between the
Hall plateaus are observed as continuous crossovers, but the scaling of resistivity at
higher temperatures indicates that they correspond to true QPT’s at T" = 0. Here
we show the results of resistivity measurements in the vicinity of the B = 0 MIT in
Si-MOSFET’s.

In upper left panel of Fig. we show zero-bias resistivity as a function of

14
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Figure 2.7: The conceptual phase diagram of 2D electron gas in MOSFET systems
[11]. At zero magnetic field there is a metal-insulator transition at 7" = 0. At high
fields, also quantum Hall effect is present.

electron concentration n, at different temperatures. The feature strikingly similar
to the case of a-MoGe and QHE systems is that all the curves cross in a single point,
i.e. at a certain value of n = n, resistivity is basically independent of temperature.
Furthermore, from the upper right Fig it can be seen that when n > n,, the
resistivity monotonically decreases with decreasing temperature, and when n < ng,
it is the other way around. This behavior is immediately reminiscent of metallic
and insulating phases being separated by a single quantum critical point at 7' = 0.
However, if this is true, then it is expected that resistivity displays a characteristic

quantum critical form at high temperatures when n & n,

p(n, T) = f(T/(n—mns)™)

To check this, one can rescale the temperature for each p(T')|, curve by hand to
try and make them all collapse on two branches. This analysis is presented on the
lower left panel of Fig. [2.8] To be consistent with the quantum critical scenario, the
scaling parameter Ty(n) should be a power law of (n—n,), and as we see in the lower
right panel of Fig. To(n) fits perfectly to (n — ng)'%. However, this does not
automatically yield an estimate of the scaling parameter v, but only of the product of

v and the dynamical exponent z. To get an estimate of the two exponents separately,
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Figure 2.8: Quantum critical scaling in MOSFET systems [11]. Upper left panel: re-
sistivity as a function of electron concentration. All curves cross in a single point. At
this (critical) concentration n., no temperature dependence of resistivity is observed.
Upper right panel: resistivity as a function of temperature. At concentrations lower
than the critical value, resistivity drops exponentially with temperature, which is
typical insulating behavior. Above critical concentrations, it is the other way around,
and metallic behavior is observed. Lower left panel: all resistivity curves can be col-
lapsed by rescaling the temperature with appropriately chosen parameter 7. Lower
right panel: Tj fits well to a power law function of 9,, = n — n,., which is typical for
quantum critical scaling.

one can perform a study of non-linear response, where resistivity is measured as a

function of applied electric field, i.e. look at the I/V characteristic of the system
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Figure 2.9: I-V characteristic of MOSFET systems also exhibits quantum critical
scaling [IT]. This can be used to deduce the critical exponents z and v separately.

[21]. In this case, scaling theory predicts the following form of resistivity
p(n, E) = fo(E/(n —ng) =)

The scaling exponents zv and (z + 1)v define two equations with two unknowns,
which can be trivially solved. Upon analysis similar to Fig. as presented in
Fig. one obtains that z ~ 1 and v = 1.6. This can be interpreted as strong
evidence of the existence of a scale-invariant QCP in the 2D electron gas in Si-

MOSFET’s at zero magnetic field. However, the exact mechanism behind this tran-
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sition remains elusive, although there are mounting evidence that Coulomb repulsion
plays a crucial role in these systems. This is, however, easily understood as in such
dilute electron gases (n ~ 8 x 10" ¢m™2), average Coulomb energy dominates over
the Fermi energy by two orders of magnitude.

Note also, that although the scaling function f is in general not known, in 2D

electron gas, however, f is turns out to be an exponential function

¥ <;7> — exp 52 (2.4)

where én = n — ng. The above form can be obtained immediately by assuming that
the f-function (8 = dIng/dIn L, where g is conductivity and L is the effective size
of the system, in this context L ~ T~/%) is a function of only ¢ [22]. However, for
this to be true in the range of g as large as is observed in experiment (over 2 orders
of magnitude), f-function needs to have a very special form. This automatically
implies a very important property of the transition. Precisely at the transition,
there is a mirror symmetry between the two phases, and this is observed at high

temperatures as
flx) =1/f(=x) (2.5)

When two branches of the resistivity data are plotted on the log-scale, they should
appear symmetric [23]. This is precisely what is observed in experiments on the
MOSFET’s, but as we shall see, some recent experiments suggest that mirror sym-
metry may be a universal feature of metal-insulator transitions, and that it is not

restricted to this particular case.

2.3 Mott metal-insulator transition

One of the most blatant effects of strong electronic correlation is the Mott metal-
insulator transition [24], 25, 26]. It occurs upon an infinitesimal change of a control
parameter, usually pressure or doping (through capacitor effect or chemical substi-
tution), and is observed as a sudden change in resistivity which may cover even
several orders of magnitude. Usually, Mott systems are insulating at atmospheric
pressure, but become metallic if pressurized. Contrary to the case of conventional
band-insulators and semi-conductors which may be described in terms of effectively

single-particle physics, such approach to Mott systems fails - the electronic struc-
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ture calculations such as density functional theory (DFT) unanimously predict for
these materials to always be metallic, with a well defined Fermi surface deep within
the conduction band. There are also cases when a material exhibits pronounced
“Mottness” - it is metallic but with heavily renormalized electron mass. For these
systems as well, DF'T yields false predictions regarding bandwidth and unit cell size.

The main clue as to what is the physical mechanism behind the Mott transition
and the failure of both the Hartree-Fock (RPA) theory and DFT lies in the atomic
structure. The common feature of many Mott systems are the semi-occupied valence
orbitals of d or f type. Materials which fall in this group are based in 3d and 4d
transition metal elements, 4f rare earth elements, 5f actinides, and their oxides.
What makes d and f orbitals different from the s and p type is that they are
well localized. When two electrons occupy the same localized orbital, they interact
strongly, and this will cause true many-body correlation which may no longer be
neglected. Even more so, the electronic correlation turns out to be the sole driving
force of the Mott transition - the details of the atomic structure and possible lattice-
structural effects do not play an important role. It proves sufficient to consider simple
toy models and observe the Mott mechanism, but the solution of the problem must
be fully quantum mechanical. The Dynamical mean field theory (DMFT) of the
Hubbard model in infinite dimensions is one such solution, and it had great success
in elucidating the physics of Mott transition. DMFT is the main method employed
in this thesis and is discussed in detail in chapter [3]

As for the intuitive understanding of the Mott transition, it was discussed by
Sir Neville Mott long before the first solution of DMFT [27]. Generally speaking,
in solid state systems there is a competition between two energy scales. One is
the kinetic energy and the other is the repulsive Coulomb interaction energy. The
Coulomb interaction is usually well screened and in those cases the Fermi liquid
theory is a good starting point for the theoretical description. The low energy
excitations are then long lived wave-like states with renormalized mass. However, the
high-energy excitations always experience less screened interactions. When atomic
orbitals are localized, and there is little overlap between valence orbitals on adjacent
sites, the energy bands are narrow, and the kinetic energy becomes comparable to the
Coulomb repulsion. In those cases, the mass of the low energy states can become
highly renormalized, and the high-energy states become particle-like. The higher
the rate of the Coulomb to kinetic energy, the more electrons localize, and at ever

lower energies. When localization reaches the Fermi level, the system becomes a
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Mott insulator. Then, in experiment, when pressure is increased, the lattice spacing
becomes smaller, the overlap between adjacent orbitals increases thus boosting the
kinetic energy, and the system can become metallic again. As already pointed out,
the lattice degrees of freedom do not play a significant role in the Mott transition,
but the state of the electron gas does affect the lattice. The Mott transition is usually
accompanied with (sometimes even significant) change in the specific volume. The
delocalized electrons tend to be more involved in the cohesive energy of the lattice,
and Mott systems in the metallic state have usually a smaller unit cell.

However, the Mott transition is not a generic quantum phase transition. It was
immediately clear from experiments that it is a first order-transition, not much unlike
the liquid-gas transition observed in water or noble gases [28| 29, [30] 31} 32}, [33]. The
Mott transition usually displays hysteresis up to some critical temperature T, above
which the abrupt change in resistivity is no longer observed, but rather a smooth
crossover. On the other hand, two distinct phases often seem to persist all the way
down to zero temperature, which definitely puts this transition in a wider group of
quantum phase transitions. Furthermore, there is a clear connection of the Mott
transition and antiferromagnetic order as most Mott insulators are antiferromagnetic
at low temperature. This is easy to understand in terms of excess entropy. A
paramagnetic Mott insulator has a very large entropy because the ground state can
be realized in exponentially many ways. The excess entropy must be quenched
somehow as T' = 0 is approached. The huge degeneracy of the ground state is most
easily lifted by antiferromagnetic ordering. Otherwise, dimerization can also occur -
this way there is no long range order, but pairs of electrons on adjacent lattice sites
form correlated bound states. In the presence of frustration of antiferromagnetism,
a spin liquid phase with separation of charge and spin degrees of freedom is also a
possibility at low temperature. Whether a paramagnetic Mott insulator can truly
exist all the way down to zero temperature is actually an open question.

However, the most common scenario is the one of anti-ferromagnetic ordering.
But the ordering tendency can be strong enough to disrupt even the metallic phase
at low temperature. Even when the Coulomb interaction is not strong enough to
drive the system into a Mott insulating state, there is still a competition between
the suppression of double occupancy and virtual hopping processes which yields an
effective antiferromagnetic (AF) interaction between electrons on adjacent sites. If
AF interaction is strong enough to order otherwise delocalized electrons, the true

Mott transition is observed only at temperatures higher than the Neel temperature
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Figure 2.10: Phase diagram of the bulk 3D material V,03. Depending on the
level of doping or pressure, system can be either metallic or insulating. At lowest
temperatures, an antiferromagnetic state is observed. [29]
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Figure 2.11: Dynamical mean-field theory qualitatively reproduces the main features
of the phase diagram of V,03. As frustration of antiferromagnetic correlation is
increased, the Néel temperature for the AF order drops, revealing a first order Mott
transition line. [34]

of the anti-ferromagnetic order. This is the case in a very famous example of Mott
transition, which is the 3D bulk material vanadium-III-oxide V,03. The phase
diagram of this material is shown in Fig. 2.10] The antiferromagnetic insulator,
however, is not exotic. It’s properties are reproduced by the solution of an AF

Heisenberg model. In DMFT, if breaking of spin symmetry is allowed, the phase
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diagram also features only an antiferromagnetic insulator dome [34]. But as one

gradually turns on frustration in the model (by including, for example, next nearest

neighbor hoppings) the Néel temperature drops, and a first order Mott transition
emerges above the reduced AF dome (Fig. [2.11). In this regime, no other theory
can capture the properties of the DMFT solution.
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Figure 2.12: The phase diagram of x-(BEDT-TTF),Cu|N(CN)o|CL. A first order
Mott transition with a coexistence region is present. The insulating state becomes
anti-ferromagnetic at low temperature [30)].
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Figure 2.13: The resistivity exhibits hysteresis - in the coexistence region two dif-

ferent states are stable [30].

Another large class of materials, the x-organics, pose a good example of a pure

Mott transition. The lattice structure in these materials is very complicated, but
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Figure 2.14: The non-monotonic resistivity is a hallmark of strong correlations,
and is observed close to the Mott transition, on the metallic side. DMFT result
reproduces the position and height of the maxima in resistivity with high accuracy
(diamonds - DMFT, circles - experiment) [30)].

extensive DF'T calculations suggest that it is effectively a half-filled single-band
Hubbard model on a triangular lattice [35]. Due to geometrical frustration in these
materials, antiferromagnetism is usually suppressed, but in the vicinity of the tran-
sition, a high-T, superconducting dome emerges, which makes the Mott transition

even more intriguing. Examples of phase diagrams and transport in x-organics

are shown in Figs. [2.12[2.13]2.14] and [2.15] In cases when the triangular lattice is

anisotropic, the antiferromagnetism is not completely suppressed and at low tem-
peratures, the Mott insulator develops the AF order. Otherwise, a gapped spin
liquid characterization of the low temperature Mott insulator is possible. However,
in all cases, a first order transition and a coexistence region is observed up to some
temperature, and in the supercritical region, the system is neither a good metal
nor a good insulator, and its resistivity can be tuned continuously through several
orders of magnitude. This constitutes the crossover region of the Mott transition,
and will be in focus in section [A.1.7l

The most important question addressed in this thesis is whether quantum crit-
ical scaling (as introduced in the previous section) can be observed in Mott sys-
tems. The phenomenology of the Mott transition makes a significant departure
from the standard QCP scenario, because the phase transition is not restricted to

zero-temperature, but is rather extended by a first order-transition line to finite
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Figure 2.15: Phase diagram of k-(ET),Cuy(CN)3. Metallic state is superconducting
at lowest temperature. AF order is frustrated, and the Mott insulator remains
paramagnetic at low temperature [31].

temperatures. Note that this is different from the case in Fig. where the or-
dered phase survives up to 7*(K) - neither the metallic nor the insulating phase
break any symmetries and the transition is not of the order-disorder type. However,
a classical treatment of the second order critical-end point (CEP) is still possible
because it is at finite temperature. The behavior of the system in the vicinity of the
CEP is found to correspond to critical phenomena of the classical Ising universality
class with v = 1 [36]. Still, the T, is generally low and is not expected to be make
significant difference at high 7', where quantum critical scaling is expected to hold.
In this thesis we recognize the possibility of Mott T, going to zero [37, 38|, in which
case the Mott transition reduces to a single QCP (Fig. 2.16). In view of this, the
first order transition and the pure QCP are considered as two limits of the same
phenomenology, and it seems even less likely that the QCR is entirely absent from
the phase diagram of materials exhibiting the first-order Mott transition (Fig. .
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Figure 2.16: At least in theory, the T, for the first order Mott transition can be
brought to zero by varying Hamiltonian parameters [37, [38]. Left: the phase diagram
of the double Bethe lattice; the parameter to vary - interlattice hopping. Right: The
phase diagram of the Anderson lattice model; the Mott transition between the hole-
doped metal and the integer filled Mott insulator displays no coexistence, while the
transition between the integer filled Mott insulator and the electron doped metal
has a T, becoming smaller as U is decreased.

Quantum
T Critical Region

—>

X=?

Figure 2.17: The main focus of our work is the possibility of the phenomenology

illustrated above.
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3. Methods

In this chapter I review the methods used in this thesis. The main method employed
is the dynamical mean field theory (DMFT) which is used to solve the Hubbard
model. The solution of DMFT reduces to a solution of the Anderson impurity
problem, with a self-consistently determined hybridization bath. How the original
problem is mapped onto this self-consistent calculation is explained in sections |3.1
and [3.3] In section [3.I] I discuss the properties of the DMFT theory, and layout
a very general approach which can be used to derive it. In section I use a
more straight-forward approach to derive DMFT. There I show how in the limit of
infinite dimensionality, an explicit form of the DMFT equation (ready for numerical
treatment), can be obtained by performing a hybridization expansion around a single
site. The limit of infinite dimensions and its implications for the calculation of optical
conductivity (as performed throughout this thesis) is discussed in section [3.2] The
numerical solution of the impurity problem by stochastic summation of diagrams
and perturbation theory is explained in section Finally, in section [3.5]T describe
the method used to analytically continue the result of DMFT to the real axis. This
is a very important step in numerical solution of DMFT, because its result is in some
cases the imaginary time-dependent local Green’s function, yet for the calculation of

frequency dependent response functions we need the real frequency Green’s function.

3.1 Dynamical mean field theory

The dynamical mean field-theory (DMFT) in its simplest form provides a prescrip-
tion for the solution of the fermionic single-band Hubbard model, although it can
be easily generalized for various lattice models. It falls in a wider group of methods
which transform an interacting many-body problem into a simpler, representative
(or effective) model, which is supplemented with a self-consistency condition [26].
All these methods can be traced back to a very general formalism which relies on

the Legendre transformation of the grand potential. The procedure yields a closed
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3.1 DYNAMICAL MEAN FIELD THEORY

TABLE 2. Comparison of theories based on functionals of a local observable
| Theory | MFT | DFT | DMFT |
| Quantity | Local magnetization m; | Local density n(x) *| Local GF Gj(o) |

Equivalent Spin in Electrons in Quantum
system effective field effective potential | impurity model

Generalised Effective Kohn-Sham Effective

Weiss field local field potential hybridisation

Figure 3.1: Legendre transform approach can reproduce various theories. In each
case one chooses one quantity of interest, and defines a representative (effective, or
equivalent) local model coupled to an external, generalized Weiss field [26].

form self-consistent equation which is in itself exact. However, not all terms in the
equation may be known in general, and then for practical purposes some approxima-
tions must be made. On the other hand, even if the equation is completely known
and solved, the method guarantees only the knowledge of the quantity A which was
used in the Legendre transform. Other quantities may be possible to calculate, but
note that the physical meaning of the quantities in the representative model may
not coincide with that in the original model, and that correspondence between the
original and effective models may be unclear.

The Legendre transform formalism can be used to reproduce also the general
mean-field theory (for example the Weiss theory of classical Ising model, or WMFT)
and more importantly the density functional theory (DFT) (see table). In view of
this formalism, the difference between DFT and DMFT is in the choice of the quan-
tity in focus and also the representative model which needs to be solved (Fig. .
In DFT, the quantity in focus is the local single-particle density n(x), and the rep-
resentative model is a single-particle Schroedinger equation in an effective potential
Viks(z)[n] which is a functional of the density n(z). Hence the term density func-
tional theory. In DMFT, the quantity in focus is the local propagator G(7), and
the representative problem is that of a local impurity coupled to an effective bath ,
which is in turn defined by a functional of the local propagator, the hybridization
function A(7)[G]. The main difference between DFT and DMFT is that in DFT,
the representative model is non-interacting, while in DMFT it is a full many-body
problem, although with only a few degrees of freedom such that it can be solved
by means of numerical simulation. Furthermore, in DFT, the self-consistent equa-

tion is never known entirely. The problematic exchange-correlation potential term
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can be obtained from an empirical fit to a QMC result of some simple model, but
the applicability of such approximation may not be well understood. On the other
hand, in DMFT, the self-consistent equation is known entirely in one specific case
- the limit of infinite lattice dimensionality. As we shall see, the problematic term
here is the total kinetic-energy - while the general formula for kinetic energy is of
course known, it may not always be possible to express it in terms of only the local
propagator. The approximation that needs to be made here is to assume that the

self-energy is purely local

but this is exact in the limit of infinite dimensions. See section [3.2/for details. DMFT
is also exact in the non-interacting and atomic limits, but it is very important that
there is at least one non-trivial limit in which DMFT is exact because this ensures
that all the quantities will be physical (respecting causality etc.). Anyhow, the lo-
cality of self-energy turns out not to be far fetched, and therefore the approximation
made when DMFT is used to treat 2D or 3D systems is not crude at all. At high
energy, high temperatures, or in the presence of geometrical frustration, DMFT ap-
proximation is shown to be basically exact - the result coincides with experiments
on cold quantum gases in optical lattices as well as large scale quantum Monte Carlo
calculations, and the self-energy is proven to be only weakly dependent on the wave
vector k 39, 40, 41], 42, 26]. Most importantly, solution of the DMFT equation
has brought significant insight to the understanding of strong correlation and its
hallmark embodiment, namely the Mott transition. DMFT has been successfully
used to reproduce experimental phase diagrams and various response functions such
as optical conductivity (see section , spin and charge susceptibility and double
occupancy [43], 44l 26]. The local self-energy calculated in DMFT can be used to
reconstruct the spatially resolved spectral function, and successfully reproduce re-
sults of the angle-resolved photo emission spectroscopy experiments [45] 24]. Unlike
DFT where the single particle excitation spectrum can not be calculated rigorously
even within a given approximation of the self-consistent equation, energy resolution
is built-in in DMFT by construction. This proves to be a very important aspect of
the theory - electrons at different energies may behave drastically differently, and
this can be captured by DMFT. Namely, while the low energy electrons (around the
Fermi level) are wave-like, the high-to-intermediate-energy electrons may be experi-

encing strong interactions and localize. This information is contained in self-energy
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which, although local, has a very non-trivial energy dependence. There are also
extensions of DMFT (cellular DMFT and dynamic cluster approximation) which
reintroduce some of the k dependence in the self-energy by constructing the effec-
tive impurity problem in a way that it is not purely local. Although approximate,
these methods have shed light on sector selective Mott transition, which is very
important for the understanding of strongly correlated electrons in low dimensions.
However, most information can be obtained from the combination of both DFT and
DMFT (namely, the DET+DMFT approach), which is currently the cutting edge
tool for modeling complex materials [44].

In the following I overview the Legendre transform approach and then show how
it is applied to the Hubbard model.

3.1.1 Legendre transform approach

Let H be the lattice Hamiltonian of interest. Then we can split it in two parts, such

that one part is solvable, say H;
H=H, + H, (3.2)

Furthermore, we need to decide what quantity we want to calculate, say A. Now we

define an operator

I‘:ra[)\, CL] = ]:Il + O[HQ - Z )\Z(Al - CL,L‘) (33)

The index 7 counts lattice sites, and A; is a local observable. One can also switch
to the continuum limit where the sums are replaced by integrals over space. If the
quantity A is time dependent or non-Hermitian, one must switch to path integral
formalism, where the above operator has the meaning of an action. The operator
ﬁa[)\, a] a function of a single real number «, and a functional of real or complex
fields A = {\;} and a = {a;}. \;’s have the meaning of local Lagrange multipliers.
Now we immediately see that the observables do not depend on a because it enters
only as an irrelevant constant through Aa. Therefore, the statistical average of the

quantity in focus depends only on A and «

(A)alA] (3.4)
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3.1 DYNAMICAL MEAN FIELD THEORY

We are interested in calculating
(A)a=1[A = 0] =7 (3.5)

which corresponds to the statistical average in the original Hamiltonian. The grand

potential (or Free energy) now is given by
1 ~
Qu[A a] = 3 In Tr exp Hu [N, a] (3.6)

This form of the grand potential is known as the Legendre transform of the original

grand potential 2 = —% In Tr exp H. Immediately,

00, [N, a

S = o (Al (3.7)

Now for a given a, one can always find X such that (A;)o[\] = a;. Therefore, the

solution of
004\, a B

O\

with respect to A\ yields a Lagrange multiplier configuration implicitly dependent on

(3.8)

a and a which we denote \,[a] and

(Adalhala]] “ a; (3.9)

We now introduce a new potential, defined only in the stationary points of €2
Lula] = Qa[Nala], a (3.10)

Note that this functional has no explicit dependence on \. Taking the above defini-

tion, we have quite generally

T, [a]
8ai

= iald] (3.11)

so we have

I azia = (A)a=1[A = 0]
da;

which is easy to understand. When we request that the statistical average (A) is

-0 (3.12)

that of the original Hamiltonian, and a=1, no field X\ is actually needed to ensure
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3.1 DYNAMICAL MEAN FIELD THEORY

this. Also, it is clear that the solution of the original problem can be obtained
by minimizing I'n—;. This can not be done straightforwardly, but the following
considerations provide a very general way to circumvent the main difficulty lying in
the H, part of the Hamiltonian, and find the minimum of I',—; by only considering
the derivatives of I', with respect to o and a which may be easier to calculate.

We can always write

Jdl',[a]
Ox

[aila) = Tazola] + /01 da (3.13)

which is a very general statement, and is known as coupling constant integration.

We also know

Do = <H2>a[/\0c[a“ (3'14)

Now we introduce a notational shortcut a* = (A)4=1[\ = 0]. Plugging Eq. and
Eq. into Eq. we obtain

OTg—1[a*]  OTqla*] O /1 Ol o [a*]
= - 1
(9az- 8ai +8ai 0 da 8@ 0 (3 5)
and therefore
8 1
Nocola] = 7 / do(Hy) o ala]] (3.16)
a; 0

Now we have everything we need to work out the following general expression
a; = (Ai)a=o[Aa=oa’]] (3.17)

which can be read and understood in the following way - the true value af of (A;)
corresponding to the original Hamiltonian is the one corresponding to the Legendre
transformed Hamiltonian with o = 0, but with \ such that it brings (A;) to af. This
statement is invaluable in practical terms. The solution of the full Hamiltonian with
respect to some quantity A can be recast in terms of a different, simpler Hamiltonian,
assuming the knowledge of the statistical average of this quantity a = (A). The fact
that a! appears on both sides of Eq. makes it a self-consistent equation. When
solved for a}, it yields the ezact solution of the original problem. For this prescription
to have practical value, one needs to be able to solve the representative (or effective)
a = 0 model with a non-zero A (in case of WMFT, X is the effective Weiss field

acting on a single Ising spin; in case of DFT, X\ is the effective potential entering
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[o-1[a] = Qo=1[Aa=1[a], a]

=0 Ao=0[a*]

\x

Figure 3.2: Instead of solving the full &« = 1 problem, one can solve the simpler

o [(AdaolN]
Oa

a = 0 problem but with A such that = 0, and that way obtain a*.
the single-particle Schroedinger equation; in case of DMFT it is the hybridization
function in the single-site impurity problem). Also, one needs to be able to express

(H,) in terms of (4;), i.e. work out Eq. which when plugged into Eq. |3.17

yields a more explicit form

it = oo | {3 = - [ datiaraia) ] (318)

However, it is not always possible to evaluate <ﬁ2>a[)\a [a]]. If, for example, H,
is purely quartic, i.e. the two-particle interaction term of the original Hamiltonian,
then the average value is always possible to split in the disconnected (or mean-field)
and connected (correlation) parts. If the correlation part is just assumed zero, the
theory reduces to usual mean field theory. Any approximation of the correlation
part then introduces corrections beyond the mean-field level. As we shall see, in
DMFT, H, is not quartic and therefore (H,) can not be split in two, but the full
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statistical average is possible to express in terms of a when the lattice is of infinite
dimensionality.

Note also that even if all terms in the self-consistent equation are known, the self-
consistent equation may not have a solution at all. There is the fundamental issue
of representability - can one find a finite and physical A such that (A;),—o[\] = a*7
In other words, can one solve Eq. for any a? On Fig. the problem would
correspond to orange line A,—ola] having no intersection with the grey dotted a*
line. Still, in cases of interest this proves not to be the case.

A few more remarks are here in order, regarding the grand potential landscape
in the vicinity of a stationary point. Since the grand potential must be analytic, one
can always Taylor expand it in terms of derivatives with respect to A. Close enough
to A|a], a one may keep only the second order term

QuA ~ Mafa], a] = Qulhala], a] + (A = Aiala) (N = Ajala])  (3.19)

We can switch to matrix notation
Qu[X & Aofa], a] = Qu[alal, a] + XM X (3.20)

where M is the fluctuation matrix

0?Qu [N, d]
M, = v (3.21)
and
(6X); = \i — Nia[d] (3.22)

Then, the gradient of the grand potential is

a@cé[ii, al _ (M 5X), _ (Z - <5x> gm> = (@_ ( *>am)i (3.23)

(2 m
m

where m labels eigenvalues/eigenstates of the matrix M, <5X> is the m-th com-

ponent of §X in the eigenbasis of M. Note now that the above holds for any «
including o« = 0. This equation is very important, as it will later be used to con-
nect the convergence rate of the forward recursion loop leading to the solution of

the self-consistent equation, and the curvature of the Free energy functional in the
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vicinity of the stationary point a*, A\,—o[a*].
In the following, I sketch how the above formalism can be straightforwardly
applied to the case of the Hubbard model.

3.1.1.1 Application to the Hubbard model

We start from the general Hubbard Hamiltonian

H=— Z (tij clgcjo + h.c.> + Uznﬁnil — uan (3.24)

o

The first term is the total kinetic energy T and will play the role of H,. The second
term is the interaction energy U. Although this term is quartic in fermionic oper-
ators, a single site with interactions is not impossible to solve, and this oportunity
is used in DMFT. Together with chemical potential ,uN, U plays the role of the
solvable f[l, which in this case is purely local.

The quantity of interest in DMFT is the local single-particle propagator, or
Green’s function

Giio(T —7') = (Trein(T)cl (7)) (3.25)

The Legendre transformed grand potential can be written in the path-integral form

1
Q/A.G 0] = —3n / Dlct, JePSlet eiaGal (3.26)

where

B
Slet,e; A, G a] = /o dr (Z i (7) (655(0r — ) — atij) ¢jo(T) (3.27)

jo

+U Z e (T)ed (T)ei (T)Cn(T)>
B
_ /0 drdr’ Z Nio(T =) (Giio(T = ') = cio(T)ct (7))

Here, A plays the role of the Lagrange multiplier A and will have the physical

meaning of hybridization function in the representative, impurity model. G plays
_l’_

the role of a and ¢;,(7)c; (7') is A. Without loss of generality, in the following

I restrict to homogeneous paramagnetic solutions such that G;, = G (and also
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Ao = A. The representative model is obtained by letting o = 0. The fermionic
operators do not couple to G, and since hopping terms vanish with o = 0, our
representative model is a set of decoupled single impurity problems which all yield
a same solution for the same hybridization bath A, so it is sufficient to solve only

one.

B
Silet,e; A,a=0] = /0 dr <Z (1) (0 — 1) cio(T) + Uc;(T)cz(T)cil(T)c”(T)>

(e

B
— / drdr’ Z (1) A(T — 71)cip (T') (3.28)

0 o

Although the fields A and G are uniform, they are frequency dependent and need
to be evaluated at all Matsubara frequencies n. In the following, G(iw,) = G,,.

The self-consistent equation is then given immediately by

G =G, [A[G*, a=0],a= 0} (3.29)

n

where G, [A,a = 0] is the solution of the impurity problem stated in Eq. for

a given A. More explicitly, and omitting the asterisk in superscript

Gn = Gp HAn = a(a;n /01 da<T>[G,a]} = o} (3.30)

The above two equations correspond directly to equations Eq. and Eq.

in the general discussion. However, the kinetic energy is defined in terms of the

spatially resolved Green’s function
(1) = ex Gun (3.31)
k,n

and in general is not possible to express in terms of only the local propagator.
However, if the self-energy is assumed local and therefore equal to the local self-
energy of the impurity problem, the issue is easily resolved. If we have calculated
the self-energy in the impurity problem, then the spatially resolved propagator is

easily obtained through the general expression

1
Gxn = 3.32
k Wp + 1 — € — 2p ( )
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impurity problem

Gy=Gy[A,0=0]

A(io,)=t'G(io,)

self-consistency condition

Figure 3.3: Self-consistency in the DMFT equation is achieved by forward recursion.

Once again, in infinite dimensions this is not an approximation, and the self-consistent
equation can be worked out completely. In the case of the infinitely dimensional
Bethe lattice with only the nearest neighbor hopping ¢, it is even very simple - simi-
larly to the local density approximation in DF'T where the exchange-correlation po-
tential is no longer considered a functional but rather a function of n(z) (Vie(x)[n] —

Vie(n(z),z)), here A, becomes a function of G,
G, =G, [{A, =t*G,} ,a=0] (3.33)

This self-consistent equation can be solved most easily by forward recursion as de-
picted in Fig.

However, the prescription for the evaluation of the local propagator in the repre-
sentative o = 0 problem here is not yet specified, and although possible in principle,
is not easy. In the following I discuss the infinite dimensionality limit and later
use the obtained conclusions to straightforwardly prove the validity (exactness) of
DMFT in d = oco. It can be shown that hybridization expansion of the Hubbard
model around a single site leads to a completely explicit self-consistent equation
(Eq. [3.99] section of the above form. The practical value of Eq. is that
its right-hand side is ready for a numerical evaluation by stochastic summation of
diagrams, i.e. continuous time quantum Monte Carlo which is discussed in section
Furthermore, Eq. can be translated to path integral form and “unrolled”
to yield the a = 0 action which is the impurity model stated in Eq.[3.28] The meth-
ods used for achieving self-consistency of the DMFT equation are also discussed in

section [3.3.2.11
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3.2 LIMIT OF INFINITE DIMENSIONS

3.2 Limit of infinite dimensions

The prerequisite for the exact mapping of the Hubbard model onto a model of an
interacting single-site impurity coupled to a non-interacting bath is that the self-
energy (and the irreducible vertex function) are fully local. The physical meaning
of this is that intersite (non-local) correlations are negligible, even for nearest neigh-
bors. When the lattice is infinitely dimensional or at least the coordination number
(the number of neighbors of each lattice site) is infinite, this condition is satisfied.
However, for the Hubbard Hamiltonian to retain its physical meaningfulness in the
(unphysical) limit of infinite lattice dimensionality, it is necessary to rescale the hop-
ping amplitude with v/Z where Z is the coordination number [46, 24]. Otherwise,
terms other than the kinetic energy would be completely negligible, and the solution
would be trivial.

It is easily verified that for a tight-binding Hamiltonian with nearest neighbor
hopping of amplitude ¢, intersite Green’s function falls off with the power of Man-

hattan distance between the sites

(W)= (i ; B 2\ lidl
Giy(w) <<(w+m_£> j> t (3.34)

where ¢ is the hopping matrix, and I is the identity matrix. In the limit of infinite
coordination Z — oo, t — ﬁ, and therefore, G;;(w) goes to zero. However, this does
not mean that we can discard all the non-local Green’s functions immediately. The
k-dependence of the Green’s function is retained even in this limit, because although
a single G;;(w) is infinitesimal, a sum over infinitely many Green’s functions may
still be finite (and even infinite).

However, a similar conclusion does not hold for all quantities. Most importantly,
the self-energy is necessarily purely local in infinite dimensions. Consider a second

order skeleton diagram in the interaction expansion of the local propagator (Fig. .

G£3)<T> = U2 Gij(7/> G?R(T” - T/> G}q(T’ - 7'”) sz‘(T - TH) (335)

The summation over internal degrees of freedom (in this case times 7/, 7”7 and lattice
sites j and k) is implicit. Say we want to evaluate the above on a d = 0o hyper-cubic
lattice with only the nearest neighbor hopping ¢. The number of different sites at

a Manhattan distance R from the site 0 (located at ry = 0) is equal to the surface
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Figure 3.4: Example of the second order skeleton diagram. In infinite dimensions,
the only contribution comes from the j = k =i term.

area of a hypercube of size R, i.e. 2d R%~'. Then, the number of first neighbors 7 is
proportional to d. In the case i # j # k, if |i — j| and |j — k| are independent, |i — k|
can be anywhere from 1 to |i — j| + |j — k|. For a given configuration of times, the

order of the diagram is then at most

Z( 1 )i—j|+3lj—k+lk—i| Z ) 1\ Fit3Ra+1 1
_— < d (—) < — (3.36)
jk \/C_l R1,R22>1 \/E \/a

The situation is not different even on the infinitely dimensional Bethe lattice (a.k.a.
the Cayley tree). When each branch of the tree is the root of another d branches,

the number of neighbors at a distance R goes as d”. Nothing, however, changes

| fima sk g\
— < R+ (—) < — 3.37
Z(m) S 2 N ~va o 8

jk R1,R2>1

Although longer distance contributions are now less severely suppressed, they still
amount to zero. As long as there are at least 3 propagators connecting any two
internal vertices at sites j and k, the non-local (j # k) contribution of the diagram
will be zero. In such diagrams, one can readily replace all the propagators with their
local counterparts, simply ignoring the momentum conservation at all vertices. This
is the case for any proper self-energy skeleton diagram, except for the first order
(Hartree-Fock mean field) diagram, but this one is fully local in any case. In infinite

dimensions,

The same stands for the two-particle irreducible vertex function I' - when cal-
culating many-body Green’s functions in infinite dimensions, one needs to consider

only vertices with all four terminals at the same site, i.e. I' looses all the k, k', q
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dependence. This has important implications for the derivation of DMFT, as well
as calculation of two-particle correlation functions, most notably the frequency de-

pendent uniform optical conductivity o(q = 0, iv).

3.2.1 Implications of d = oo limit for optical conductivity

The quantity in primary focus of this thesis is the zero-frequency (DC) linear-
response resistivity. Although in general, evaluating this quantity requires a sum-
mation of an infinite series of diagrams, in infinite dimensions, the irreducible vertex
function T" (and therefore also the full vertex function F') is purely local making the
contribution of all the higher order (order larger than 2) terms cancel exactly. This
can be most easily proven in the case of the d = oo hypercubic lattice, but holds as
well in the case of the Bethe lattice [47, 48]. In this work, we solve the DMFT equa-
tions for the d = oo Bethe lattice, and therefore calculate resistivity using only the
first, bare bubble term which is not particularly hard to evaluate. In the following
I derive the equation used in this purpose.

Let O(q) be an operator of the form.

O(q) =Y Vot yCicrqo (3.39)
k,o

defined by the vertex factor vy,. Then, the corresponding linear response function

is given by
B .
i) = [ e (0@ o(-a.0) (3.40)
0
= Z ko Gy, Gf(“j;;“;karqg
w,k,o
YL e GG TR G Gilyh veae + -

iw,k,iw’ K 0,0’
where G is the full single-particle propagator given by

1
WA = ek, — D

W

ko —

(3.41)

See Fig. The compact notation with frequecies omitted or denoted in the su-

perscript will be used occasionally throughout this thesis, for the sake of clarity. In
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k+q,0+v K’+q, ®’+v
Fu),u)’,v q,V
kk’,q
Vk’+q
k) (,0’
k,0 ’
Figure 3.5: When the full vertex function is local, q = 0 and vy = —v_y, the

response function can be calculated from the bare bubble term only.

infinite dimensions, ¥x = ¥, and ['ywq = I'. If the system is invariant under coor-
dinate inversion x — —x (which is the case for most lattices), and spin-symmetry
is preserved at the level of the non-interacting Hamiltonian, ey, = ex = €_y, and
therefore, Gy = G_x. Then, if q = 0 and

> ko =0 (3.42)

k,o

all the vertex corrections get canceled, and one needs to evaluate only the bare
bubble term (it can not be canceled as vi_ is always positive). In the case of
current-current correlation along the x direction, vertex factor is nothing but the

group velocity

(‘%k
. = 3.43
Uk Ok ( )
which on the hypercubic lattice is spin independent and yields
0y < ke
o= 200 2im O ke oy (3.44)
Ok,, ’
SO
Vg = —V_k (345)

This expression satisfies Eq. and therefore, the uniform current-current correla-
tion function can be calculated from the knowledge of the single-particle properties
only
Aiv)=T > vp G, Gt (3.46)
iwk,o

The uniform optical conductivity is calculated from the uniform current-current
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correlation function

A(0) — A(iv)

v

(3.47)

o(iv) =

This expression can be analytically continued to the real frequency. First we note
that

, A
Gl = — / dw' —X— (3.48)

w —w
where AY = —%Im GY is the spectral function. This expression corresponds to the
analytical continuation from the real to the imaginary axis. Plugging this back in

the expression for the current-currect correlation function, we obtain

! 1" ]_
A(iv) =2 2 [ du'AY | du" A T 3.49
(i) Zk:Uk / © K / © %:(iw—w’)(iuJ%—iV—w”) (3:49)

where the prefactor 2 comes from the summation over spin. The Matsubara sum

can be now performed for each ' and w” to yield

. _ /AW " Aw' f(w,) B f(w”)
A(iv) = 2219 vE /dw Ap /dw Ay i (3.50)

F— W'+ iv
where f is the Fermi distribution
f(w) = (exp(fw) + 1)~ (3.51)

Now only the denominator depends on the matsubara frequency and one can perform
the analytical continuation by formally letting iv — v. However, the integrand now

has poles at w’ — w” + v = 0. The well known relation

lim — =P— —ind(x) (3.52)
yields for the imaginary part in our case
ImA(v) = ZWZ vE /dw'Aﬁ/ AL (F(W) = fW + 1)) (3.53)
Kk
We see immediately that in real frequency

ImA(r =0)=0 (3.54)
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end therefore the real part of the optical conductivity, obtained with % ==+ — %
and w =v
2 / / ! - !
Reo(w) = - ;/dw’ vp ImGy TmGyt () i(w ) (3.55)

On the Bethe lattice, translational symmetry is not satisfied, and k is not a good
quantum number. However, the same considerations apply and the group velocity

can be shown to depend on the energy of the non-interacting state as
v(e) = VW2 — g2 (3.56)

where W = 2t is the half-bandwidth. Omne can then switch to the integral over

energy

W+ w)

(3.57)

™ w

Reo(w) = 2 [[ded/ (e)pte) Gz ez L =11

where p is the non-interacting density of states (DOS) on the Bethe lattice, G¥,

~1. Note that up to a prefactor, v(¢) is the same as

is simply (w + p — & — X(w))
the non-interacting density of states on the Bethe lattice. The vertex factor can be
absorbed into DOS to yield the “transport density of states” which is only slightly
different than the original DOS. It has been shown earlier and confirmed in this work
as well, that excluding this vertex factor altogether (setting it to 1) does not change
the result noticably (only up to a multiplicative constant). The zero frequency limit
is

2 2

opc = Reo(w=0) = ——/dsdw' v (e)p(e) (ImG?/>

™

af
ow

(3.58)

w=0

which is the formula used throughout this thesis.

3.3 Explicit DMFT self-consistent equation

In this section I derive the DMF'T self-consistent equation by performing a hybridiza-
tion expansion of the local propagator around a single lattice site of the Hubbard
model [49]. The derivation is kept general in section where I discuss the hy-

bridization expansion in the context of a generalized impurity problem. Then in
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section I identify the impurity and bath Hamiltonians with a single lattice
site and the rest of the lattice. In the end, a detailed prescription for achieving
self-consistency of the DMFT equation is given in form of a simple algorithm. The

derivation is carried out for the d = oo Bethe and hypercubic lattices.

3.3.1 Hybridization expansion of a generalized impurity model

We start from a general (particle number conserving) Hamiltonian such that it can
be split in 3 parts
H= ﬁa+ﬁb+thb (359)

Hamiltonians a and b depend on disjunct sets of fermionic degrees of freedom d; and
¢; respectively, and the third part ]:Ihyb defines the hybridization between the two

subsystems, i.e. connects some of d;’s with some of ¢;’s. In general

Hyyp = > (V" dic, +hoc.) (3.60)

o,p

a enumerates the “flavor” (merged spin, band, site index etc.) of the states in
the a subsystem, and p of the states in the b subsystem. V** is the hybridization
amplitude between the states a and p and in general may be complex. The type of
Hamiltonian H corresponds to a general impurity problem.

To calculate the expectation value of an operator A one must evaluate the fol-

lowing expression
. 1 . 8 A
(A) = ETI [TTA<7'1, Ty ) € Jg dr A () (3.61)

where § = 1/T is the inverse temeprature, 7 is the imaginary time, 7 is the time-
order operator. If the Hamiltonian His interacting, then the trace is taken over
a many-body basis. We first analyze the partition function Z. After plugging our

Hamiltonian in the general expression for Z, we obtain
Z =Tu |T, e~ Jo dr(Hot Bt Hny) (3.62)

Here we assume that the Hamiltonian is only trivially dependent (not actually de-
pendent) on time, but in general, this may not be the case (e.g. phonon medi-

ated interactions are usually retarded; effects of screening may also be included as
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frequency dependence of on-site interaction). We can now Taylor-expand in the

hybridization part of the Hamiltonian so we get

7 =Tr

— [P dr(Ha+11y) (=1)F, 7
T, e do > ([ drHp) (3.63)
0

k!
k=0

Z — Tr [TT e foﬁ dT(FIa‘i’Hb)

o0 (_1)k‘ 6 B B R N ~
X Z X / dTl/ dTg.../ di thb(Tl)thb(T2>~-‘thb(7—k) (364)
k=0 : 0 0 0

Now we introduce notation
Hyy, = H) + Hy, (3.65)

where

Hy, =Y Ve cd, (3.66)

We also note that

/Oa /0 /0 Ay d...den f(21) f (@2)of () (3.67)
— NI /0//N drrdas...dzy f(z1) f(@2)... f(@n) (3.68)

so we have
o0 9 £ E o
7 = Z(—l)k/ dﬁ/ dTQ.../ dr, Tr [Tre*fo dr(Ho+Hy)
k=0 0 T1 Th—1

X (H](71) + Ha(r))-- (11} (m) + () | (3.69)

Because both Hamiltonians (H, and H,) conserve the number of particles, only the
terms with equal number of H ;rL and Hj, can give non-zero trace, so we're left with

only the even orders k and only a fraction of 2* terms for each k - for a given k we
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get (2k)!/(k")? terms with k H' and k H factors

Z/ dTl/ dTQ / dTgk
T2k—1

(2K)!/(K)? 2k

Tv |T, e Jo drtfotti) oo N~ TT A5 (r) (3.70)

where P goes over all possible choices {X;} such that exactly k out of 2k operators

are “daggered” (each X is either { or 1). Now let’s look at a concrete example, say
k = 2. We have

B B B B
/ dm dry drs dr, (3.71)

3.72

307

(3.72)
H (1) Hy(72) H}(73) Hn(74) + (3.73)
H) (1) Hy(72) Hy(73) H} (74) + (3.74)
Hy,(m1) H (m2) H} (75) Hn (74) + (3.75)
Hy (1) H (1) Hy, (15) H (14) + (3.76)
(3.77)

Now, we can conveniently rewrite the above expression by noting that each term can
be obtained from the first one by an appropriate exhchage of the indices, respectively
2« 3,2 4,1« 3,1 < 4 and both 2 «» 4,1 < 3. So instead of always having
T4 > T3 > To > 71 we can rearrange the integration limits to allow 71 > 73, 71 > 74,
Ty > T3, To > Ty, but keep 7 < 75 and 73 < 74 and this way account for all the terms
only once. Note that this is possible because all the terms will in the end be time
ordered, so nothing depends on the order of operators at this stage - only which

operator (H}TL or Hy) acts at what time is important. We have

Z/ dﬁ/ drs.. / drk/ dﬁ/ dr.. / dr}

Tr [T o — P dr(Ho+H,)

x H (1)) HI (r5)...H} (12.) ﬁh(T{)ﬁh(Té)I:[h(T,g)} (3.78)
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where we have two sets of k times - one associated with H:L and the other with Hj,.

Now let’s write the operators explicitly

e B B B B B B
Z/ dﬁ/ dTQ.../ di/ dT{/ dTé.../ dry,
0 Y0 ! Th—1 0 & Th-1

Tr r€ fo dr(Hut 1) Z Z Z Z Vzgolll* Vak*‘/polél ‘/po;k

at.. Oékozl oekpl Pkpl

Xdll(ﬁ)cpl(ﬁ)---dlk(Tk)cpk(m)c;l(ﬁ)dag(T{)---CL;(Té)da;(Té)} (3.79)

Since the Hamiltonian H, + H, does not mix « and p states, we can do the trace

independently with respect to d and ¢ operators

©. B ¢ B ¢ B B
Z/ dTl/ dTQ.../ di/ dT{/ dTé.../ dr,
=0 0 T Tk—1 0 G The1

> Z Z Try [TT e‘foﬁdTH”dLI(Tl)...de(Tk)dag(T{)...da;(Té)]

a1..op of..af

!
apk Qpk 061 o
XD D Vv
/

P1.--Pk pj...p

X, [T eI e, (71)...cp, (1), (T;)...c;k(f,;)] (3.80)

However, if both H, and H, are interacting, evaluating these traces is in general an
impossible task. It is only possible if both a and b systems are small (of the order or
10 states), but if they are non-interacting, the calculation is rather straight-forward
even for infinite systems. Note that both traces correspond to evaluating k-body

propagators. If partial Z, and Z, are known than we can rewrite

> B B B B B B
= ZaZbZ/ d7‘1/ dTQ.../ di/ dT{/ dTé.../ dry,
k=0 Y0 Tl Th—1 0 1 T 1

a / /
X E g Gazlma;wal“_’ak(Tl,...,Tk,Tl,...,Tk)

ay...0L a’l,,,a;C

/
CM 167
X E E Vo Vak*V LV
p1 Pl D,
pi-- plcp’l...p;c

XGZL 7pk7p1’ »p <T1"“’Tk77—],.""77—]2) (381)

where G* and G° are the many-body Green’s functions, evaluated with respect to a
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and b Hamiltonians. See Fig.

Tr,

bath
bath bath
2e ()

impurity Trd

Figure 3.6: The hybridization expansion series of partition function diagrams.
“Bath” and “impurity” correspond to b and a Hamiltonians respectively.

3.3.2 Hybridization expansion of the Hubbard model around
a single site

So far, the analysis has been completely general. We will now focus on concrete
example of the Hubbard model in infinite dimensions. Let H be the Hubbard Hamil-

tonian
H=—t Z (cjcj + h.c.) + UZnimil — uan (3.82)
(irj),0 i io

where the rescaling of the hopping apmlitude is assumed implicit ¢ = ¢/ Vd. s
the chemical potential and U is the on-site interaction amplitude. We now split this
Hamiltonian to resemble the impurity model. We single out one site and make it
subsystem a (the atomic part), the rest of the lattice is then the bath b, and the
hopping terms between a and b are the hybridization part of the Hamiltonian Hj,.

A

H, = —p Y nos, + Unojno, (3.83)

and

H=H" = ¢ Z (czcj + h.c.) + UZniTnu — Z Ni o (3.84)

<i7j>77"7j7£070- 2#0 Z';é0,0'

where H(© denotes the full hamiltonian with site 0 excluded, even from the hopping

terms, and therefore
ﬁhyb = —t Z (CI)C]' + hC) (385)

(0.5),0
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Here we make an indetification d' = cg, i.e. the atomic Hamiltonian has only 2

states (d; and d)), so « counts only spins and will be replaced by o. Note that there
is now a restriction on the order of appearance of the d operators because d%ﬂ =0,
so creation and annihilation operators of the same spin must appear in alternating

order. Hybridization amplitudes are now purely real and all the same —t.

Z = ZZbZ/ d7‘1/ drs.. / di/ dTl/ dry.. / dry,

XD D0 G (Tl T T )

01...0k 0'1 U,c

X Z Z 12k an, PR ’pk(Tl,...,Tk,T{,...,T,;) (3.86)

P1--Pk P

Note that p indices do not necessarily run over all states in the bath (though this
is true for the fully connected lattice), but only over the nearest neigbors of site 0.
Until now we haven’t specified the type of the lattice. Now we analyze the bath

propagator on two d = oo lattices of interest.

3.3.2.1 Bethe lattice

Between any two sites on the Bethe lattice, there is only one independent path.
When a site is taken out from this lattice, all its nearest neighbors become completely
disconnected. As p states go over the nearest neighbors of the site 0 which is the

one site missing in b, we immediately see that
b b
Gy = Oppy Gy (3.87)

Note also that p and p’ need to have the same spin because both H, and H; do not
mix spins. Furthermore, in the thermodynamic limit, nothing must change when

we cut one single branch off the Bethe lattice. Therefore,
Gb Ga+b+hyb — Gpp (388)
In a homogenous phase, also must hold

G,y = G, Vp (3.89)
pp
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So, in the first order £ = 1, we loose one sum, but we have d nearest neighbors to

cancel the rescaling of the hopping amplitude. We have
t? t? t? )
T2 G == Gp=—dG=tG (3.90)
pp’ P

where the rescaling factor of the hopping amplitude is written explicitly.
Now, let’s see what happens in the second order, where the summation is carried
over the two-particle propagators. Here we use ¢, j,k,[ to denote the p states for

clarity. The times 7..7) are assumed fixed.

t4
- Z ngkl (3.91)

ikl

In the non-interacting limit, many-particle propagators can be expressed in terms
of the single-particle propagator, using the Wick theorem. In our case, Hamiltonian
conserves the number of particles, so anomalous Green’s functions do not contribute.

We get two terms
Gijii = GijGr — GuGl; (3.92)

When there are interactions, however, this is not possible. Even if the full single-
particle propagator is known, all the possible arrangements of vertices still must
be included. These are summed in the full vertex function F. The Bethe-Salpeter

equation for the two-particle propagators reads (Fig.

Gijuw = GijGu — GyGy;
+Gi G Fyjuor GGy
_GZZ/Gkk/ Fl/]/k./l/ Gl/lGl/j (3-93)

where the summation over the internal site indices and intergration over internal
times are implicit. In our case, 7, j, k and [ are disconnected, so only the propagators
with all indices doubled are different from 0

Gb — G”G]J + G“/ijl Fi,j/i”j” Gi”iGj”j (394)

5]
and

el

ijig —

—G”G]j — G”/G]j/ E’j’i”j” G’i”iGj”j (395)
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| - _—
lllJIJll J ]

- F - F
ek Yk kI

Figure 3.7: The direct space Bethe-Salpeter equation.

where ¢/, 7" run over the sites in the ¢ branch, and j’, 7 over the sites in j branch.
As no interactions can occur between electrons on different (disconnected) branches,
unless ¢ = j, F here is strictly zero. Note that the single-particle propagators are
already dressed - the full vertex function only includes interactions between the two
incoming fermionic lines (which may be mediated by bubbles, but if the two lines

can not meet at the same site, no vertices can appear). We obtain

4 4
%Z G = % <Z Gl D Glgs+ D Gfm) (3.96)

gkl 1J,i#£] 1J,i#£]
However, the first term contains only one sum, so its contribution will be zero
¢ b t 1
2 Z Gl ~ 2 dn~ P (3.97)
i
So, even though the H, contains interactions, the two-body (and any many-body)
propagator in expression Eq. can be calculated in a Wick-like manner, i.e. the
bath is effectively non-interacting and can be expressed entirely in terms of the local

Green’s function of the whole lattice (a + b+ hyb). Using the notation from Eq/3.88]
and stating the times explicitly

t! ! ! ! !
ﬁ Z ngkl =t (G(Th TI)G(T27 7-2) - G(Th TQ)G(T27 7—1) ) (398)

ijkl
et ( G(r.m) G(TMé))
G

Note that the Hamiltonian preserves time translation symmetry, so nothing must
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£2G®

s

G—4¢—©
Figure 3.8: No two-body vertices can appear in the many-body Green’s function
through the bath, i.e. the bath is effectively non-interacting. Just as in the non-

interacting case, the many-bopdy propagator reduces to a sum of products of single-
particle propagators.

bath

= det A

2%

117

depend on the times but only on the difference between times.
A similar analysis can be carried out for the arbitrary order of diagram k to

obtain the mean-field self-consistent equation

. B B B B g B
G,(r'—71) = Z/ dﬁ/ dTQ.../ di/ dT{/ dTé.../ dry,
=0~ 0 T1 Th—1 0 m The1

_ B 7—Aa / o / /
X 303 T [T Wl (7)dy (7l (1), (7)o (7). (1)

01...0% 0.0},

xdet Ay (3.99)
where
Agio (11— 711) Dooy(m1—T73) - Aglaé(ﬁ —77)
A — Dooi (T2 = T1) Doy (T2 = 73) oo Dgyor (T2 — 73) (3.100)
Avot (T = T1) Dooy (T = 73) oo Doy (Th — 77)

and the ¢? has been absorbed into what will have the physical meaning of the hy-

bridization function in the effective impurity problem

Do (T) = 12 Goor (T) (3.101)
See Fig. and Fig. 3.9
As the Hamiltonian does not mix spins, we know Gg,» = 0,.Gy. However,

this is not a restriction - a DMFT treatment of Hamiltonians including spin-orbit
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does not contribute

bat bath
F

bath

whole system impurity @
R + O 4

bath
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impurity
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bath

o'c&.ooo 4 s
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>o
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+

impurity

CH) -
o]

bath

Figure 3.9: The hybridization expansion is the sum of all “crab jumping rope” dia-
grams.

interaction is possible, and in that case, the Green’s function is not spin diagonal.
Otherwise, furher simplification of the above expressions is possible. As A,, =
050'Ay, the matrix A can always be rearranged in the block diagonal form with two
blocks corresponding to spin up and down (the blocks need not be of the same size).

Then, the total determinant is
detA = detAjdetA| (3.102)

and one can deal with the two matrices separately. Also, on the Bethe lattice, the
antiferromagnetism is not frustrated, and one may even look for solutions where
G, # G5.

Note that the expression Eq. is formally identical to what one obtains by
performing the hybridization expansion of a single-site impurity model in which the
bath is non-interacting. In this case, the hybridization part of the Hamiltonian can
always be rewritten in terms of the eigenstates m of the Hamiltonian b, and the

hybridization function is just

A(T) =) |Vinl® Gn(7) (3.103)
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where the non-interacting Green’s function depends only on the energy of the state

m and can be obtained by Fourier transformation of the general expression

Gm(iw) = L (3.104)

W — &

Having this in mind, after switching to the path-integral formalism, the Taylor series

can be unrolled back up into the exponent. Due to the linked cluster theorem
1+ Z(all diagrams) = exp(z connected diagrams) (3.105)

all the higher order terms drop out as they are necessarily disconnected (no vertices

can appear). This yields a much more compact and elegant statement of DMFT
Given the local single-particle propagator of the entire lattice, the action of the

Hubbard model can be expressed as that of an interacting impurity coupled to a non-

interacting bath
S = Z/ dr d7’ do(T) (87.7/(07 — i) — Ag(T — 7)) do (7)) (3.106)

—i—U/dTJT (7)d,(T)d(T)ds(T) (3.107)

Solving this impurity problem for the local Green’s function self-consistently such
that Eq. is achieved s equivalent to solving the Hubbard model on a d = oo
Bethe lattice exactly.

The prescription for the solution of DMFT then goes as follows

1. start with an initial guess for the hybridization function A, (iw)

2. solve for the local impurity Green’s function G,(iw) in the problem of an

interacting single-site impurity coupled to a non-interacting bath determined
by A, (iw)

3. calculate a new hybridization function using A, (iw) = t*G,(iw)
4. repeat 2-3 until the calculation converges.

This method of solving self-consistent equations is known as the forward recursion.
There are, however, more sofisticated methods which yield the solution in fewer

iterations (Broyden root finding algorithm, Conjugate gradient method) and also in
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cases where forward recursion fails completely (phase space extension method can
converge a solution in the vicinity of a critical point and can even converge unstable
solutions). In the work presented in this thesis, forward recursion and sometimes
Broyden root finding are used.

Note that DMFET as an exact solution is not specific to the Bethe lattice, and
can be derived even for the general d = co translatory symmetric lattice, although
the derivation is a bit more involved, and the connection between the hybridization

function and the local Green’s function of the lattice is less simple.

3.3.2.2 General translatory symmetric d = oo lattice

On a general translatory symmetric lattice, taking out one lattice site does not
disconnect the rest of the lattice, so already in the first order diagrams, we need
to take into account both the local and the intersite Green’s functions, i.e. Gi-’j’s
may not be immediately discarded. However, intersite propagators still go to zero
in the d = oo limit, and we first need to evaluate the order of contribution of the
single-particle terms. On the cubic lattice, the Manhattan distance between the
nearest neighbors of site 0 through the bath is either 2 or 4, but note that for each
site 7, there is only one site j(i) such that |i — j| = 4 and that is the site which is
opposite of ¢ with respect to site 0. Note also, that there are ~ d nearest neighbors

to each site.

% Z G?j - g Z G?j + Z Gy + Z ng(i) (3.108)
g (i) i ;

tj, 17,5 (4
£ 1)? 1\*
~ —|d (—) +d+d(—) ~1

d ( Vd Vd
We see, that although not all intersite propagators contribute, most of them do so
we keep this expression as is, for now. Note also, that ij # G,;. The bath part
of the system is not even translationally symmetric because it is missing the site at
r = 0. However, the rotational symmetry in all planes around r = 0 is preserved,
so all the pairs ij such that |i — j| = 2 are equivalent, so there must be only one
distinct ij that contributes to the above expression.

We now turn to the second order terms. As before, the full two-particle propaga-

tor can be expressed with the Bethe-Sapleter equation. However, all the neighbors
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of site 0 belong now to the same sublattice, so the full vertex F' is never immedi-
ately zero. In infite dimensions, however, it is still always local. That means that
if 1 # 7 # k # [, we need to bring both particles to the same site before they can
interact. To place an interaction vertex in a diagram of the interaction expansion of
G?.4y» it would have to bring in at least a factor of (1/v/d)li=3IFE=i+1i=l ‘a5 can be
seen from Fig. and we know that | — j| > 2,Vi, j.

¢ ¢t

) Z G?jkl = - Z (G?jGZl - GglGZj + GYLGh Fl, G?jG?I + )

2 2
ikl i jFk#l ikl i#jF#k#l

< %<d4(%)4+d4(%)6>~1+$~1+0 (3.109)

As a counter example, G%.. needs to bring only (1/+/d)7!, but here we lose two

iiij

sums

v > GLGLFL GG 2 Lp(L) iy
2 T Sais i & \/E d

15,17]
It is clear now that even for the arbitrary translatory symmetric d = oo lattice,
vertices play no role, and that H, part of the Hubbard model is in Eq. effec-
tively non-interacting. The Taylor expansion can again be rolled back to obtain the

effective action of the Hubbard hubbard model, but now the effective Hybridization

function is given by

Ay (r) =1 Gl (1) (3.110)

and G%(T) is not yet known - we need to relate it to the local Green’s function of
the whole lattice for the method to be practical.

First we note that since the bath is effectively non interacting, the following
expansion is possible, for any i and j (Fig. [3.10))
whole system bath + bath whole system bath
] j oo Jj oo it0 07 J

Figure 3.10: On going from i to j sites, an electron can either avoid the site 0, or
go over it any number of times.
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3.3 EXPLICIT DMFT SELF-CONSISTENT EQUATION

Gy =G+ Gt Gyt GY, (3.111)

The summation over nearest neighbors of site 0 (i’, ') and integration over internal
times is implicit. The integration over times makes Eq. a coupled system of
equations, where each equation corresponds to a different time 7 on the lefthand
side. However, if Fourier transformed, energy conservation can be used to decouple
the equations for each Matsubara frequency. In the following, all quantities are
assumed to be at the same frequency. Note that there are no further terms with
t4,45 ... because going away from site 0 and comming back to it arbitrary number

of times is already included in Go9. We also know

Gio = G% t G (3.112)
and therefore G
1007
Gy =Gy — o z, (3.113)
00

We will now use this to relate Gy with Gi-’j. In a homogeneous solution, Goy = G.

The effective Hybridization function is given by

A:tQZG tQZ( - ZOGOJ) (3.114)

Now we take into account

= Z eik'(rz‘—rj)Gk

k

and obtain:

((r;—ro) z ((ro— r])/

ik-(r;—ro ) (ro—r;)
A= Z G ; tekri ; te kT _ Zk G Z te Ek/ Gx Z tek

(3.116)

Furthermore, we know the general expression for the electron dispersion

€k = E tij etk (rimy)
J
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3.3 EXPLICIT DMFT SELF-CONSISTENT EQUATION

In this expression, j goes over all sites of the lattice. However, in our Eq. |3.114
¢ and j go over only the nearest neighbors of site 0. Still, we can use the above
identity since in our model ¢, for all sites j except the nearest neighbors of site 0 is

0, and otherwise it is t. Furthermore ryo = 0. We obtain

2
A=Y"G - % (3.117)
k

We can now evaluate the k-sums:

£k ek —§+¢
aGr=S"- k =N TSI L e G = —14¢G
zk: Kk zk:zwn+u—€ﬁ—2(zw) zk: £ —eg zk: 8 0
(3.118)

Here we have introduced a notational shortcut £ = iw + p — X(iw) and we used the

locality of self-energy to pull £ out of the sum.

Z 812{Gk = Z €k(5k§__ gj_ 51{5 Z €k + f Z Eka (3119)
k k

The first term is explicitly 0 and the other term we have already evaluated:

D Gk =E(-1+£G) = £+ &G (3.120)
k

Plugging these back into the previous equation yields:

_ 2
A = —§+§2G—% (3.121)
14+ £2G? - 2¢G
= L+ EG-GT-EG+ %
and finally
A=iw+pu—% -G (3.122)

As we see, the relation between A and the local Green’s function of the whole
lattice now involves also the (local) self-energy of the whole lattice. To fix all three

quantities (G,X and A) in the self-consistent calculation, we need another equation
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3.3 EXPLICIT DMFT SELF-CONSISTENT EQUATION

- the one that connects the lattice Green’s function with the lattice self-energy

. p(e)
G = [d 3.123

(i) / 6iw—|—,u—5—2(iw) ( )
where p(€) is the non-interacting density of states of the whole lattice. Note that the
above expression and Eq. [3.122 are both completely general and can also be used
in the case of the Bethe lattice. The prescription for solution of DMFT by forward

recursion goes as follows
1. start with an initial guess for the hybridization function A, (iw)

2. solve for the local impurity Green’s function G, (iw) (and/or self-energy 3, (iw))
in the problem of an interacting single-site impurity coupled to a non-interacting
bath determined by A, (iw)

3. if only G, (iw) is known, calculate ¥, (iw) from ¥ = iw + p — A — G~1. Oth-

erwise, skip this step.

4. calculate the new lattice Green’s function from self-energy using G, (iw) =
[ deple) (iw+ p— e — B(iw))

-1

5. calculate a new hybridization function using A =iw+pu— % — G,

6. repeat 2-5 until the calculation converges.

Note that the Eq. can be derived with much less effort by relating the
hybridization function with the impurity Green’s function and self-energy. As we
shall see in the next section, the equation obtained is identical to Eq. and since
the self-consistency requires that both the local Green’s function and self-energy on
the impurity are the same as everywhere else on the lattice, we need not consider the
connection between the lattice Green’s function, lattice self-energy and hybridization
function on general grounds at all, and so the derivation from Eq.[3.111]to Eq.

is unnecessary.

3.3.3 Interaction expansion of the effective impurity model

Now that we have shown that the bath is effectively non-interacting, some further

considerations can be made. We first split the atomic part of the Hamiltonian into
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3.3 EXPLICIT DMFT SELF-CONSISTENT EQUATION

noninteracting and purely interacting parts

H=H°+ H + Hy,+ Hyy (3.124)

H) = —p ng, (3.125)

H = Ungyng, (3.126)

The Green’s function calculated at the impurity with respect to only f]g is then
simply

1
0= - (3.127)
W+ U

Because the bath is effectively non-interacting, the local single-particle propagator
Go calcualted at the impurity site with respect to ﬁg + Hy+ lflhyb can be expanded

in terms of ﬁhyb much more simply (Fig. [3.11])

Go = Gi+GitGLIGE+GitGYLtGitGY tGo+ ...
= Gi+GitGLt (GE+GitGh tGe+ ..)
= G+ G3i Gyt (3.128)

where summation over site indices is again implicit. Now we write it explicitly

G =G+ > Gy (3.129)
ij

where we immediately recognize A = ¢? " i GY; as the hybridization function of the

impurity model. We have

1
g(] = ((G8>71 — A)il = m (3130)

The propagator Gy has the physical meaning of the Weiss field in the effective im-

purity problem, because it contains all the processes except the on-site interaction.

Now, the full single-particle propagator (at the impurity site) of the impurity

problem can be obtained by interaction-expansion around the non-interacting part
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bath+n.i.imp. n.i.imp. + n.iimp. bath n.iimp.
Lo
+ n.i.imp. bath n.i.imp. bath n.iimp.

l

i J

n.i.imp. + n.i.imp. i : :bath+n.i.imp.

Figure 3.11: When the interaction on the impurity is turned off, the hybridization
expansion becomes very simple.

of the Hamiltonian so
G =Gy + Go2G (3.131)

where X is assumed to be proper (ireducible), and of course
Gol=G"1+x (3.132)

which is the well known Dyson equation. Plugging this back into Eq. |3.130] we
obtain an expression formally and physically equivalent to Eq. [3.122

A=iw+pu—%—-G! (3.133)
because the G and ¥ of the whole lattice must be the same as the ones on the
impurity.

Now, the DMFT self-consistent equation can be restated in terms of the Weiss
field. The explicit Taylor series in f]; yields (Fig. |3.12)

o B B
G,(tr—1) = (=" | dn... dr, (3.134)
DO e ]

xTr [TTe* f()ﬁ(ﬁngﬁ”Jthyb)dL(T’)dU(T)

x d (r1)d! (71)d (r1)dy (71)...d (73)d] () dy (i) dy (i)

The many-body Green’s function can be now expressed solely in terms of the local
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3.3 EXPLICIT DMFT SELF-CONSISTENT EQUATION

whole system — bath+n.i.imp. _ U + + -
G O
el
det I,
Figure 3.12: The interaction expansion series.
propagator Gy
o B B
G,(r—71) = Z(—U)k/ dﬁ.../ dry detT *! detT”® (3.135)
k=0 0 Th—1
where
Gog(0)  Gop(ma—71) o Goylm— 1)
Gog(r1 =) Gog(m2=7) o Gy, (0)

and the extra two operators are absorbed as an extra row and column in the matrix
I' of corresponding spin.

This equation is, however, not practical as even and odd orders k£ will have a
different sign, and a naive summation of this series would lead to a serious sign
problem. However, this can be resolved easily by performing a simple transforma-
tion of the d operators. Further discussion on how to do stochastic summation of
interaction expansion diagrams can be found elsewhere and is of no relevance for
the results presented in this thesis.

Note also, that the summation in Eq. includes all the diagrams, including
the disconected and reducible ones. One can ofcourse restrict to only connected and
proper self-energy diagrams, in which case the algorithm is called the diagrammatic

quantum monte-carlo.
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

3.4 Solution of the effective impurity model

Identifying the solution of the Hubbard model with the solution of an impurity
model with a self-consistently determined hybridization function is only the first
step. Solving the impurity model in itself is still not easy, and there is a variety of
numerical methods which aproach this problem in different ways. First, the starting
point of the approach can be either the hybridization expansion from Eq. or
the interaction expansion in Eq. Then, a number of approximations may
be utilized. Either the series of diagrams is cut off at some order (perturbation
theory) [50, 5I] or only some subclasses of diagrams are summed (OCA, NCA) to
all orders semi-analytically [52]. Otherwise, the bath can be approximated with a
finite set of states, and then the problem can be solved by exact diagonalization
of the effective Hamiltonian [53]. However, this scheme introduces the systematic
error of finite system size, and is also restricted to zero temperature. If instead of
exact diagonalization a renormalization group method is used (NRG, DMRG), a
larger system can be treated to lessen the finite size effects, but then the solution is
again not exact [54, 55]. Finally, one can use stochastic (Monte Carlo) summation
of all the diagrams. These methods necessarily introduce Gaussian numerical error
as calculation is always performed a finite amount of time. The simplest approach is
to decouple the interaction at the impurity using a Hubbard-Stratonowich transfor-
mation, and this way reduce the book-keeping task to going over all configurations
of a single 1D Ising-like field (the Hirsch-Fye method) [56]. However, this approach
suffers from an additional systematic error introduced by a finite discretization of
the imaginary time coordinate. The cutting edge methods overcome this by going
through all time configurations of the diagram explicitly and are therefore called
the continuous-time methods [57, 58|. However, the main limitations are common
to all stochastic methods - very low temperatures (of order 103 non-interacting
bandwidth and lower) are inaccessible and in some cases the fermionic sign problem
is prohibitive of getting meaningful results.

In the work presented in this thesis, only the hybridization-expansion continuous
time quantum monte carlo (HYB-CTQMC) and second order perturbative impurity
solvers are used. In the next two sections I review the numerical challenges arising

in these methods.
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

3.4.1 Hybridization expansion continuous-time quantum Monte
Carlo

Hybridization expansion continuous-time quantum Monte Carlo (HYB-CTQMC)
carries on from Eq. [49, 57, 58]. The problem to solve is threefold

1. how to obtain a reliable estimate of the infinite sum of diagrams?

2. how to evaluate the trace over the impurity degrees of freedom of a given

diagram?

3. how to efficiently calculate the hybridization determinant and measure Green’s

function?

Here I deal with the three issues separately.

3.4.1.1 Stochastic summation

In Eq. B.99] the sum over diagram orders k goes all the way to infinity, but it
turns out that the diagrams of order higher than some k,,,, contribute negligibly.
However, this k,,.. in practice is not small, and one needs a way to evaluate highly
dimensional integrals. For a diagram of order k, the variables of the integrand are
2k different times and the choices of 2k different o indices, altough Pauli exclusion
renders most of the possible choices of {o} irrelevant.

The cutting edge tool for calculation of highly dimensional integrals is the Monte
Carlo method. It relies on a stochastic, importance sampling of integration variables,
and in this context, the sampling will run over diagrams of different orders, and
different configurations of the internal degrees of freedom of the diagrams ({7} and
{o}).

We start with some general considerations. Say we want to calculate an integral

of the form

a= /A(a:)das (3.137)

and that the function A can be calculated as a product of two other functions
A(x) = B(x)p(x) (3.138)

so we have

a= /B(x)p(x)dx (3.139)
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

The variable x may be a vector of arbitrary dimension and in present context I will
refer to it as ’configuration’. Now it is enough to perform the random sampling
such that any configuration z is visited at a rate proportional to p(x) (i.e. perform

importance sampling with respect to p(x)), and then we have
a = (B(z))uc (3.140)

When we do the monte carlo average - we only sum the B quantity, and the weight
p(z) is automatically included.
In our problem, the cofiguration x corresponds to a vector (k, {7}, {c}) and the

function A is the Green’s function

(o ()} (7)) = 5T [T (') ) e 4710 (3.141)

It is immediately clear that if one was to calculate the Green’s function straightfor-
wardly, the integral would have to be performed many times, for each value of 7/ — 7,
and this is not very efficient. The way to perform the measurement of the Green’s
function is to pick two operators from the existing ones, and “cut” the hybridization
line that connects them - i.e. remove the corresponding row and column in A. The

measure of Green’s function at a given configuration is then

det A

Gy (2 7 — 7)) = Trg[T, e~ Jo 47H0] det A —
o (@ 7 — 7)) = Tra[Tr e ] de oA

Z(x) (3.142)

where A7) is the matrix A with row ¢ and column j removed, and Z(z) =
Tryl...] det A is the weight of partition function in the current configuration. This
means that one constructs only the bubble (partition function) diagrams Z(z), and
as the order of diagram is typically large, one can perform many measurements of
the Green’s function at various 7’s from each configuration z. If the importance
sampling is performed with respect to Z(z) (which we have already calculated by

the time configuration = has been accepted) we have

det A7)

Colm) = et a

)mc (3.143)

where i and j are chosen in each measurement such that o; = 0 = o and 7/ —7; = 7.

So, we only need to calculate the ratio between determinants, which we are able to
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

do rather efficiently (see section [3.4.1.3]for a detailed discussion on the measurement
of the Green’s function).

However, for this calculation to work, we need to ensure that any configuration
x will be visited at precisely the rate of Z(x). This can be done by employing an

algorithm of stochastic sampling of configurations such that two criteria are satisfied

e crgodicity - any configuration must be reachable from any other configuration

in a finite number of steps

e stationarity (or global balance) - the probability to go from any configuration

y to configuration x in one step is in total Z(x)

/ dy W, = 7(x) (3.144)

The array of configurations visited is referred to as the Markov chain. For the
Markov chain to satisfiy ergodicity, in our case it is enough to update the configu-

ration in each step by
e adding pairs of operators (d! and d,) at random times
e removing random pairs of operators (d and d,)
However, it is of practical value to sometimes also
e shift times of randomly chosen operators
e cxchange all the T and | operators

as these updates reduce the auto-correlation time.

As for the global balance - it can be satisfied in various ways. Because of relative
simplicity, in practice one satisfies the detailed balance criterion although it is a
stronger requirement than actually needed (i.e. stronger than global balance). The
detailed balance requires

Wey _ 2l2) (3.145)

Wya N p(y)

where z and y are different configurations, W, is the probability to go from z to v,

and p(z) is the weight of a given configuration (in our case p(x) = Try[...]detA =
Z(x)). Note also that
Wy = WEPW I (3.146)
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

i.e. the probability to go from x to y is probability to propose y while at x, times
the probability to accept y while at x (once y is proposed). The detailed balance
is satisfied when the acceptance of a configuration to the Markov chain is always
decided by the Metropolis algorithm. The proposed update is accepted if a random

number 7 € [0,1) is lower than the acceptance ratio

(.I') Wprop )

R,, = min [ (3.147)

Wy . .
prp " for all types of updates. For the time shift

update, we first choose one of the 2k times (i). Then we determine to operator of

Now we need to determine

what spin this time corresponds. Then, the maximal shift to both earlier and later
times is determined by the times of previous (7,,i,) and next (7,,q,) operators of the
same spin. Choose a random time 7 between 7,,;, and 7,4, and perform the shift
7; — 7 (while respecting the cyclic nature of the time coordinate). Total probability
WEP = ——1 ___ The probability to go from the new state back to the old

Zk(Tmaz *Tmin)

state is just the same as it was to go from the old to the new one. So, the time-shift
update is self-balancing, i.e. % =1.
Ty

RMI* = min {p new. 1} (3.148)
Dold
The same holds for the global update of exchanging all T and | operators.
For the addition of two operators, the situation is more complicated. When we
add two operators, we first choose the spin (probability 1/2), choose one random
time (1/3) and then another in range (Tnaz — Timin) (Which one of the two times will

correspond to the creation operator is determined by whether the next of the old
1

QB(Tmaa: _Tmin) ’

to the original state, we need to remove two operators. This we do by choosing

operators is creation or annihilation operator) in total But to return

spin o (probabaility 1/2), and then choosing one annihilation operator out of k,/2
operators, and then choosing the creation operator of the same spin that is either
the first after or the first before the chosen annihilation operator (k, is one larger

then k, of the original state, so the total probability is For the addition of

(ko +1))
two operators we have

Radd7o’ — min Prew ﬁ(Tmam - Tmin)’ 1 3.149
Y Pold 2(]60- + 1) ( )
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Analogous consideration leads to the acceptance ratio for removal of two operators
of spin o

pnew 2k0'

Doid ﬁ(Tmaac - Tmin)7

1 (3.150)

rmv,o __ .
R, = min

Now it is easy to see that as long as k, < (3, addition of two ¢ operators will most
likely be accepted. The same holds for the removal of two operators when k, > (.
That means that the typical order k of the diagram visited in the simulation will be
proportional to 3 - the larger the compactification radius of the imaginary time, the
more creation/annihilation events will typically appear in the time evolution. This
means that there is some preferred “density” of the d operators, or in other words,
there is a time scale of order 1 which sets the average time distance between two
operators. This scale, however, is determined by the amount of interaction on the
impurity sites - the higher the order of the diagram, the more fermions appear in
the time evolution thus experiencing more interaction. In practice, the histogram
of k in the CTQMC is sharply peaked around Nyiquors3Erin, Where Ej;, is the total

kinetic energy.

3.4.1.2 Ewvaluation of the trace

In the case of a single-site impurity (we can have more then one orbital as long as
they are orthogonal, i.e. there are no hoppings between the orbitals (flavors)), and
in the absence of off-diagonal interactions (such as Hund’s coupling), the atomic
Hamiltonian H, commutes with the density operators, and is diagonal in the Fock
basis. This allows for a silmple and direct estimation of the trace Try[...]. For
the sake of simplicity, we restrict here to the single-orbital case. We insert 2 unit

decompositions around each d operator and obtain

.
Tr, [TT eI ATl (71)..dl (1) (7])...doy (77)

= sp Y (n|e= (B2, (3.151)

n,M1,N2. Ny,

éf,f’“) a1 ) (g e~ 2= ey oy

X ...<n2]d((,)f1) ]nﬁ(nﬂe’nHl“

X <N4k‘d

n)

where we have applied the time order operator first, and then relabeled the times

(and the o indices) so that they appear in order. The sign sp comes from the
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Figure 3.13: When the local Hamiltonian is diagonal in the Fock basis (as is the case
in the single-site impurity problem), one can easily evaluate the contribution of a
given configuration. The illustration shows an example of a k = 3 configuration, and
the contribution of individual time segments. The larger the overlap (light blue),
the smaller the contribution of the configuration.

permutation of the operators needed to establish the time order. X, is either t or
1, depending on the choice of original 7;’s and 7/’s. The many-body states |n) run

over the Fock basis. Since the Hamiltonian H,. is diagonal in the Fock basis we

ATH,

have (n|e” Im) = Oy jmye 7P, where E,, is the energy of the many-body state

|n). This reduces the number of sums so we have

sp Z e~ (B=T2r) En <n|d((;§€2k)|n2k71>e*(72k772k71)En2k.“<n1|d((7)1(1)|n>e*7'1En

n,N1,N2...N2k—1

Also, we know that for each creation(annihilation) operator (n|d!|m) = Oy i jm)

must hold, there can be only one sequence of states |n;) that accomodates the given

order of d operators, i.e. all the sums vanish. Since H, = —u ) _n, +Unn,
Try..] = sp et2oLa=UO (3.152)

where L, is the total time the spin-state ¢ is occupied, and O is the total time both
T and | are occupied. See Fig. Note also that nothing must depend on the
particular times - the contribution of the diagram must remain unchanged if all the

operators are shifted the same amount of time. Because of this, one may keep one
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operator at a fixed time (say, 0) and not keep track of the sign sp at all. If we
shift all the operators so that the first one becomes the last one, we have performed
an odd number of permutations (because of the particle number conservation, the
number of operators of the same spin is always even, and so is the total number of
operators) and the overall trace changes sign. However, the same happens with all
the Hybridization lines connected to this operator, and therefore the change in sign

is cancelled by the change in sign of detA.

3.4.1.3 Quick update of det A

To evaluate the probability R for accepting an update of a configuration (which
must be done in each MC step, and the total number of steps in each solution of the
impurity problem is of the order of 10%), one must calculate the determinant of a
k x k matrix Ag. As k can be very large (of the order of 1000), and the calculation
of determinant is a O(k®) operation, it is extremely important to optimize this
procedure. Luckily, the matrix Ay does not change much when an update is made,
and one can make use of Shermann-Morisson formula to update the determinant in
O(k) steps.

Note that in the case there is not mixing of spins Ay, = d,0/A,, the matrix A

can always be rearranged in the block diagonal form such that
detA = detAdetA (3.153)

and one can deal with the two matrices separately. For the sake of completness, I
present here the derivation for the general case.
First, it is much more convenient to store (and manipulate) the matrix inverse
of A
M=A"! (3.154)

When two operators are added, A grows in size by one - i.e. one row and one column

are added. The new elements are

Ak+1,l == A0k+10'l, (T[/ - Tk+1)
Al,k-i-l = AO'ZO';C+1 (7—];4_1 - Tl)
Apiiptr = BDoyol, (Thpr — i) (3.155)
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where [ runs over the old internal degrees of freedom, and k£ + 1 are the added o’s
and 7’s.A,,/(7) is the hybridization function. We now define two vectors of size k+1
(L and R) and two scalars (p and ¢) that depend on the old (stored) M matrix, and
the added elements of A

oo~ ) X Mali, i<kl
Z -1, i=k+1
R = Yo Dk My, i <k+1
Z -1 i=k+1
¢ = Z AVERRY Y
I<k+1
po= (Auria =) (3.156)

Now, the new (enlarged) matrix M can be obtained by first expanding it with zeros

M. =

v

~ M, 1<k+1ANj<k+1
{ o P RTLIAT S B (3.157)

0, otherwise

and then applying the Sherman-Morrison formula directly yields
M =M+pL®R (3.158)
Otherwise, one can update the matrix element-wise

pLiRja Z,] <k+1
M’Zew = Mz] —+ —pRj7 1= k + 1, ] S If + 1 (3159)

When two operators are removed, the update procedure is far simpler. We first
rearange the matrix so that the row and column that need to be removed are last

(at position k). Then
M, My

Mrew — Mz .
" My,

(3.160)

where the new matrix has dimension k& — 1.
However, for the trial step we just need the ratio between the new and old

determinant, and the updates of M are performed only if the step is accepted. In
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the case of adding two operators, the ratio of determinants is given by

det A" 1
_— =- (3.161)
det Adld — p

When two operators are removed, it is even simpler - if we want to remove the row

n and column m

det Amew
det Aold

For the time shift update things are little different. We have two cases - one of

= M. (3.162)

the 7 has changed or one of the 7’ times has changed. That means that either a row
or a column needs to be updated (respectively). Let’s say a time 7, has changed.

We define two vectors of size k

Ui = (Sni
Vi = = ) B2 = 7) (3163

n n 7

where the second vector is the difference that needs to be applied to the row n of
A, i.e. we subtract what is currently in the row, and add what now should be in
the row. In the case 7/, has changed, it is the other way around

Ui = _AUmU;L (Ti — T;LOld) —+ Aoi,a;b (Ti — T/new)

n

Vi = 0p (3.164)

and the first vector is the change that needs to be applied to the column n. Now we

define as previously

L = MU
R = VM
q = VMU =V - L
1
R (3.165)
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

By the elements
k
L = Y MU
j=1

k
j=1

¢ = i VMU, = ij ViL; = Ekj RU, (3.166)
ij=1 j=1 i=1
Now the updated M can be obtained as
M =M-pL®R (3.167)
i.e.
M = M;; — pLiR; (3.168)

Same as before, in the trial step we only need the ratio of determinants, and

det A™v 1
_— = (3.169)
det Acld — p
which is also known as matrix determinant lemma. Note that either U or V will
have a single non-zero element, and it will be 1, so ¢ is just the n-th element of R or
L respectively. For the trial step, p can be obtained very cheaply, as we only have
to calculate a single element of R or L.
The formula Eq. [3.162| can be used to efficiently perform the measurement of the
Green’s function in a given configuration x. We have
. , JR—
GUiU; (l’, Tj - Ti) - M’L (3170)
We can go over all pairs ij and obtain an average, in each monte carlo step. Each

combination of operators will yield a measurement at a different value of 7. We have

6(r,7j—m), Ti—7>0 > (3.171)

Go‘o’ (.T, 7-) = Mij(sa(o"éoio ~
I 5(7’,5—}—7']’-—71»), T =7 <0

)
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

where the averaging is performed over all i and j, and § is the “approximate” Kro-
necker delta - one must discretize time and store measurements into bins. A simpler

way is to measure directly in imaginary frequency

v

1.
G i0y) = ; <€M<Tfn)Mij5050,50i0> | (3.172)

The % factor comes from the fact that we are integrating over one more variable
than is needed. Note also that the averaging must be performed at each step, and
then once more at the end of Monte Carlo procedure. If all the measurements were
summed, then the diagrams with large k£ would be overrepresented, as the number of
measurements available goes as k2. Also, the measurement of the Green’s function
at high frequences can not be performed with high accuracy. In practice one patches
the high-frequency “tail” by employing some analytic approximation. Namely the

Hubbard-I approximation, or the atomic limit approximation which I state here

L= (), (no)

G, (i 1) =
(iw>1) w+ @ w~+p—U

(3.173)
Note that the Green’s function is measured in each step, regardless of wheather
the configuration has been updated. To be more precise, the measurements are best

made each N, steps, to avoid autocorrelation. In the end we have

1

Goor(iwn) = (Goor (75 iwp)) e = Goor (T iwy) (3.174)

Nmeasurements

3.4.2 Perturbative solution (IPT)

A very succesful approximate scheme for solving DMFT is known as the Iterative
Perturbation Theory (IPT) [50, 5I]. This approach carries on from Eq. but
keeps only the lowest two orders in the interaction expansion. Then, one can calcu-
late self-energy directly, and restrict to only connected, proper self-energy diagrams.
The first order diagram includes only one interaction vertex (Fig. and corre-
sponds to the mean-field contribution as it is not time (frequency) dependent. In
second order, there are 5 possible diagrams of proper self-energy. However, three
of them are immediately forbidden because in the Hubbard model, electrons of the
same spin can not interact. The fifth diagram is not a skeleton diagram, and needs

not be considered as its contribution will be included during DMFT iterations.

73
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not skeleton
forbidden

N\

Figure 3.14: Upper row - irreducible, second order self-energy diagrams. Lower row
- IPT approximation of self energy.

The second order contribution to self-energy then is just

SO(r) = UG +(7)Go o (—T) (3.175)

g

Note that all propagators in imaginary time are always purely real. Gy,(0) = n, is
the average occupancy of a given spin, but with respect to the non-interacting part
of the Hamiltonian and in general does not correspond to the physical occupancy
of the Hubbard model. If we restrict to paramagnetic solutions and particle-hole

symmetry, this is, however, the case, and also

=G(0) = G(B) (3.176)
7) = =Go(—T7) (3.177)

Furthermore, in imaginary frequency all the the propagators are purely imaginary.

ReGo(iw) =0 (3.178)
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3.4 SOLUTION OF THE EFFECTIVE IMPURITY MODEL

The real part of self-energy is just a constant coming from the first-order diagram.
U
ReX(iw) = 5 (3.179)

The imaginary part of the self-energy can be obtained by Fourier transformation of

Y@ (7). Note that the particle-hole symmetry is enforced by setting
p="U/2 (3.180)

One of the biggest advantages of IPT, apart from its relative efficiency compared
to CTQMC, is that it can be formulated in real frequency so as to avoid the need
for doing the numerical continuation of the imaginary-axis data to the real axis.
Similarly as in the case of optical conductivity, the second order self-energy diagram
can be analytically continued to the real axis. Here, however, there is an additional
simplification - in self-energy diagrams all the propagators can be exchanged for
their local counterparts and there is no need for the summation over k. The resulting

expression for the imaginary part of self-energy is

Y@ (i) = —12 / do/ (A~ (w + &) P(W)) + AT (w +w)P(—w))  (3.181)

where
:l: 1
A¥(w) = —=ImGy(w)f(£w) (3.182)
T
and
Plw) = ﬂ/dw' AT (W +w)A™ (W) (3.183)
The real part can be obtained from the imaginary part using the Kramars-Kronig
relation o
1 Im¥%
ReX® (w) = — / d m—(‘“f) (3.184)
T Ww—w
and finally
U
Bw) =5 + 23 (w) (3.185)
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3.5 MAXIMUM ENTROPY METHOD

Furthermore, at p-h symmetry, all the real frequency propagators satisfy
G(w) = G*(—w) (3.186)

including the second-order contribution of self-energy.

Note that away from particle-hole symmetry, additional considerations and a
correction of the expression Eq. must be made to ensure the correctness of the
approximation in various limits. In this work, we used IPT only at half-filling.

The evaluation of the self-energy in this approximation boils down to calculating
a 2D integral. However, a careful treatment of divergences in the integrands is

essential for obtaining relieble results.

3.5 Maximum Entropy Method

The stochastic methods produce only the imaginary axis data. For example, the
result of DMFT on the Bethe lattice is fully contained in the local Green’s function
G(7) where T goes from 0 to 3, or G(iw), where iw are the Matsubara frequnces up
to some cutoff frequency. However, to compute frequency dependent observables, in
general one needs the real-axis spectral function. The relation between the Matsub-

ara frequency and real frequency Green’s functions is the following integral equation

1 I !
G(iw) = —/dw',mG—(wl) (3.187)
7 w—w
or equivalently, applying the Fourier transformation
G(r) = l/dw’ ImG(w’)TZ e !
s — w —w
= /dw’A(w’) KW' 1) (3.188)

where A(w) = —2ImG(w) and

e—wT

K(w,7) (3.189)

T 1te e

is the fermionic kernel function. Evaluating the integral on the right-hand side of this
equation is trivial and the continuation of the real-axis data to the imaginary-axis

is not problematic. However, it turns out that inverting this equation is an ill-posed
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3.5 MAXIMUM ENTROPY METHOD

task. Usually, the inversion of an integral equation is straightforwardly performed
by switching to matrix notation. Suppose we have G(7) in L time slices. Then we
can consider the imaginary time data an L-dimensional vector G. The same stands
for A(w), which is necessarily calculated in a finite number (say L) of descrete real

frequences. Then, the kernel function can be considered an L x L matrix. We have
G=KA — A=K'G (3.190)

However, the kernel function at high-frequences and finite 7 is exponentially small
and so is the determinant of K. Therefore, the inverse of K is ill-defined and this
approach is useless. The information contained in G(7) which is defined on a finite
range of 7 is spread out across (—oo,c0) on the real axis. Furthermore, the higher
the frequency w, the less G(7) is sensitive to the features in A(w). This means that
there are infinitely many different A(w) which correspond to any given G(7) within
an infinitesimal error-bar.

The other straight-forward approach to the continuation would be the weighted

least squares method. Here, one minimizes the disrepancy

G 2
G, Al = Z A(Tl)) (3.191)
=1
where G4(1) = [dw A(w) K(w,7) is the imaginary time Green’s function as ob-

tained from the proposed real—frequency spectrum A(w) and of = SN (Gi(1) —
G(1))?/(N(N — 1)) is the standard deviation of the statistically averaged G(m;) (i
goes over N measurements (MC steps) in the stochastic procedure, and G*(7;) is the
measure of the Green’s function in the given step 7). Unless one is looking for only
the rough features of A(w) and keeps the w discretization very sparse, this method
also fails and produces unphysical oscillations and noisy results.

When the DMFET result is well resolved and smooth, it is sometimes possible to
continue data by fitting the Pade approximant (which is a ratio of two high order
complex polynomials) to G(iw) and then formally replacing iw — w. This method
boils down to solving a system of L linear equations. For example, the G(iw) result
obtained from the imaginary axis IPT can be of very high quality, but even then, the
Pade method fails in some cases, producing unphysical features or appearantly noisy

results. However, the method is of virtually no use when the original imaginary-axis
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3.5 MAXIMUM ENTROPY METHOD

data is degraded by numerical noise, as is usually the case with stochastic methods.

The cutting-edge method for the numerical continuation of the imaginary-axis
data to the real-axis is the Maximum entropy method [59]. The main idea behind
this method is to use Bayesian statistical reasoning to choose among many different
A(w) that reproduce G(7) through Eq. equally well. The working hypothesis
of this approach is that the true A(w) will have only the features necessary to
reproduce G(7), but will otherwise be featureless. The amount of structure, or
correlation, in A(w) can be quantified by a generalized Shannon-Jaynes entropy,
which is a functional of both A(w) and the default model m(w)

S[A,m] = / dw (A(w) — m(w) — Aw)In M) (3.192)

m(w)
such that it goes to zero when A(w) = m(w). Otherwise, the result of this integral is
always negative, as the integrand can be only negative or zero. Say, A(w)/m(w) = .
Then the sign of the integrand is the sign of z —1 —x In x which can be only negative
or zero (when x = 1). Note that both A and m are positive definite and normalized

1

to 1. If m(w) is just a constant, say a box distribution (m(w) = 57— where

|w| < Winaz, Where wy,q, defines the range of frequences in which A is calculated),

then S will be a measure of deviation from a smooth featureless spectrum. Then,
one can look for a spectrum A(w) that not only minimizes the discrepancy x?, but

also maximizes S. The quantity to maximize is then
P(A,G,m,a) = eSAm-5*140] (3.193)

The relative importance of the two criteria is determined by the parameter a. Note,
that in the absence of data (¢« — oo) MEM yields the default model m. The choice
of a and m constitutes the variant of MEM.

The Classic MEM maximizes P with respect to both A and «. This is done by
nesting two optimization routines - the inner one searches for the optimal A given
the value of «, and the outer one searches for the optimal « such that the P,
resulting from the inner routine is maximized. However, the distribution of P, ()
can be very broad and skewed, such that mode does not correspond to the mean.

The Bryan variant goes over a range of the values of o and averages the result
for A

(A) = / docPpaq () A(a) (3.194)
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3.5 MAXIMUM ENTROPY METHOD

Furthermore, the default model can be chosen to incorporate the a priori knowl-
edge of A. In the annealing procedure, one starts by doing the continuation of the
results obtained at some high temperature, where the spectrum is expected to be
the smoothest and easiest to obtain. Then the result is used as the default model
for the lower temperature, and so on.

In the work presented in this thesis, we used the classic MEM, both in the
annealing scheme, and with a flat model. For further details of the procedure we
used, see section [1.2.4]
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4. Results: Quantum criticality of the Mott
metal-insulator transition

The generic phase diagram of materials exhibiting the Mott transition and the resis-
tivity in its vicinity are well reproduced by single-site DMFT. The main task in this
chapter is to perform a detailed study of the DC resistivity throughout the DMFT
phase diagram, identify different regimes, try to find evidence of quantum critical
behavior at high temperatures, and compare the results to experiments.

The work is divided in two parts. In the first part we consider the interaction-
driven phase transition at half-filling (section . On this example, we work out
the generalization of the QC scaling formula necessary in the presence of a first
order transition, by introducing the concept of quantum Widom lines (QWL, section
[£.1.5). We then test the validity of this generalized scaling law in the case of DC
resistivity, around the quantum Widom line. The results are then compared to the
recent experiments on k-organic systems.

In the second part we consider the doping-driven Mott transition at a large value
of on-site interaction U. Here we complete the 3D (U, u, T') phase diagram of the
single-site DMFT and show that T, for the first order transition reduces quickly as U

is increased (sections [4.2.1) and [4.2.2)). Then, we use the concepts introduced in the

half-filled case to show that QC scaling is observed in this case as well, but down to
much lower temperature, revealing a phenomenology much more similar to the pure
QCP case. Furthermore, we find that the QC region matches the linear resistivity
bad-metal region and find a surprising relation between the two phenomena (section
[£.2.6). The results are compared with the experiment on superconducting cuprate
films.

The work presented in this chapter is published in three papers [60} 61, 62].
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4.1 INTERACTION-DRIVEN MOTT MIT AT HALF-FILLING

4.1 Interaction-driven Mott MIT at half-filling

In single-site DMFT, at T' = 0, a true Mott insulator is only observed at strictly
half-filling. In the case of a Hubbard model on a particle-hole symmetric lattice,
the filling factor of n = 0.5 is enforced by setting p = U/2, i.e. the Hubbard model

reads . )
T — — iy Ay — =) [h — =
H= t(Z; cwcja-i-UZ (nﬁ 2) (nw 2) (4.1)
1,5),0 )

Then, the phase diagram is examined by varying the value of on-site interaction U
and temperature 7. In this work we use the semi-circular non-interacting density
of states, corresponding to the infinitely dimensional Bethe lattice or the fully-
connected lattice with random hoppings such that their overall mean is zero (also
known as the maximally frustrated Hubbard model). For the latter, only a fully
paramagnetic solution is possible, and this is the one we focus on. The unit of
energy is taken to be the half-bare-bandwidth D = 2t = 1 where ¢ is the (unscaled,
see section hopping amplitude.

4.1.1 Phase diagram

Bad metal

Temperature

Mott
insulator

Fermi liquid

Coexistence

Interaction

Figure 4.1: Paramagnetic single-site DMFT phase diagram.
The phase diagram in the U — T plane is shown in Fig. [£.1]. The DMFT solution

reproduces the three regimes usually found close to a metal-insulator transition
(MIT): Fermi liquid (FL), bad metal and Mott insulator, in qualitative agreement
with experiments on various Mott systems.|[24] We begin their characterization by

first analyzing the behavior of the resistivity in the relevant range of parameters.
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0.2
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Interaction U

Figure 4.2: Resistivity (in units of p,, ,,) calculated in the entire U — T plane.
The white stripes follow the lines of constant resistivity and separate the orders of
magnitude in the resistivity. Spinodals are denoted with black lines, and the first
order phase transition line is the (dashed) purple line.

Our IPT (see section [3.4.2)) results are plotted in Fig. 4.2] where the value of
resistivity is color-coded, with white stripes separating the orders of magnitude
between 1072 and 10'3. In this plot, the resistivity is given in the units of p,, ., the
maximal metallic resistivity in the semiclassical Boltzmann theory, defined as the
resistivity of the system when the scattering length is equal to one lattice spacing.[63]
64] At zero temperature, the resistivity in the FL phase vanishes, while the Mott
insulator has an infinite resistivity. With increasing temperature, the difference
between the two states becomes less and less pronounced. Between the spinodals,
both metallic and insulating solutions are possible, but in this plot only the metallic
resistivity is shown. In the intermediate interaction U < U, and high temperature
T > T, regime, the resistivity is comparable to or even larger than p,, ,,, but it still
(weakly) increasing with temperature, which is a characteristic of the "bad metal"
regime observed in several Mott systems.[63]

It is remarkable how this way of presenting the data immediately creates the
familiar "fan-shape" structure, generally expected for quantum criticality.[4] At high
temperatures all the white constant-resistivity stripes seem to converge almost to

the same point U ~ U,.. The perfect convergence, however, is interrupted by the
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emergence of the coexistence done at T' < T, but such behavior is exactly what one

expects for "avoided quantum criticality",[65].

0.2

0.15

0.1

0.05

Figure 4.3: The effective exponent of the temperature dependence of resistivity
(B = dlogp/dlogT) calculated in the entire U — T plane illustrates the different
transport regimes (see text).

Different regions of the phase diagram are also distinguished by the qualita-
tively different form for the temperature dependence of the resistivity. To make this
behavior even more apparent, we follow a commonly-used procedure to displaying
the data around QCP’s - we compute the logarithmic derivative of resistivity with

respect to the temperature, i.e. the "effective exponent" 66, [67]
B(T,U) = dlog p(U,T)/dlog T, (4.2)

which is color-coded in Fig. [1.3] On the metallic side, at the lowest temperatures,
one finds a typical metallic dependence of the form p ~ T2 and here we have
B = 2 (white). Far from the transition, this regime survives up to relatively high
temperatures, but eventually the temperature dependence of the resistivity gradually
slows down, displaying behavior sometimes described as "marginal Fermi-liquid"

transport (green, § ~ 1). Closer to the transition, this is preceded by an increase in
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Figure 4.4: Upper left: on the metallic side, close to the transition, resistivity is
non-monotonic. Upper right: on the insulating side, resistivity is exponentially
decreasing with temperature. This trend is slightly modified close to the transi-
tion. Lower panel: above the critical end-point, there is a clear inflection point in

log p(U)|z.

the effective exponent (red), which is a reflection of the existence of the critical end-
point in which 3 diverges (yellow). Very close to the transition, a maximum of the
resistivity is reached at some temperature (pink) (see also Fig. and the trend of
the resistivity increase is then reversed. On the other side of the phase diagram, deep
in the Mott insulator, one finds typical activation curves (see also Fig. which
exhibit the exponential drop in the resistivity with increasing temperature, due to
the gap in the excitation spectrum (black and purple). However, just above the
coexistence dome, one finds an intermediate regime, where the behavior is generally
insulating because the resistivity decreases with temperature, but the gap is not yet
fully open, and the temperature dependence deviates from exponential (blue). This

region is sometimes referred to as the "bad insulator.”
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Figure 4.5: Various definitions for the crossover lines between the Fermi liquid and
the bad metal. The meaning of each definition is illustrated on a smaller panel to
the right. The results are obtained with the CTQMC.

4.1.2 Crossover lines

In the previous section we have characterized the different regimes in the vicinity of
the Mott MIT: Fermi liquid, bad metal and Mott insulator. However, apart from
the spinodals, the properties of the system change continuously in the entire phase
diagram. The lines separating the different regimes are thus a matter of convention
and many definitions can be found in literature.

In Fig. [4.5] we present the lines corresponding to various definitions of a crossover
line between the Fermi liquid and the bad metal regimes. The definition of each line
is illustrated on a smaller panel on the right, where the corresponding feature in
the resistivity and other relevant quantities is marked with the dots of the same
color. All the results are obtained with CTQMC impurity solver (see section [3.4.1]).
The dark blue line (a) is defined by p = 0.1p,,.,, and it roughly corresponds to the
Fermi coherence temperature Try, (the temperature above which the temperature-
dependence of resistivity is no longer quadratic; this can also be seen in Fig. .
The corresponding small panel (a) shows the resistivity as a function of temperature,
plotted for three different values of U. The dotted horizontal line marks p = 0.1p,, ,,.

The arrow denotes the direction of increase of U. The light blue line (b) corresponds
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to the inflection point of the resistivity, d*p(w = 0)/dT? = 0 (see also Fig. , and
the green line (c¢) is determined as the inflection point of the spectral density at
the Fermi level with respect to the temperature, d>A(w = 0)/dT? = 0. These are
illustrated on smaller panels (b) and (c) where the DC resistivity and A(w = 0) are
plotted versus the temperature, for three different values of U. The inflection points
are marked with the dots of color corresponding to the (b) and (c¢) lines on the main
panel. The additional two dotted lines are: (d) the quasi-particle weight at zero

temperature defined by

Z = [1 — dimS(iw,) /dw,|, o]~

and (e) the zero temperature local spin susceptibility x(iv = 0) = %f drdr’ (S;(r) -
Si(7')). Both quantities are divided by 10 to fit in the temperature range of the
plot and to be more easily compared to the crossover lines. It is evident that
the coherence temperature is roughly proportional to the quasi-particle weight at
zero temperature, but with the prefactor 0.1, Tp(U) ~ 0.1 Z(U). As compared
with the doped Hubbard model,[45, 68| 7%y, is higher, but still distinct from the
temperature corresponding to p,, .., in agreement with the experiments on organic
materials.[64, [69] [70] The quasiparticle weight Z is weakly temperature dependent
and the Drude peak in the optical conductivity is still pronounced for p < p,,.,.-[71]

In contrast with these lines, one can also define the lines separating the bad
metal from the (bad) Mott insulator. In Fig. we present several criteria for
their definition. In analogy to the line (a) of Fig. [£.5] one can use the resistivity to
distinguish between the two regimes. The dark blue line (a) plotted here, connects
the points where the resistivity is equal to the one found precisely at the critical end-
point, which we estimate to be roughly 10p,,.,,. The light-blue line (b) marks the
inflection point of logarithmic resistivity as a function of U (8 log p(U,T)/0U? = 0).
It is well pronounced feature up to high temperatures, and it is a direct consequence
of the discontinuity along the spinodals at 7' < T,.. These two are illustrated on the
small panel to the right, where log p(U) is plotted at three different temperatures.
The dark blue dots are the intersections of these lines with the dotted, 10p,, ,, line.
The inflection points are marked with the light blue dots, and are found at slightly
lower values of U. Another natural definition for the crossover is the 5 = 0 line (c),
as it marks the place where the trend of resistivity growth is reversed. At its right-

hand side, the resistivity decreases with temperature, which is a sign of insulating
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Figure 4.6: Various definitions for the crossover lines between the bad metal and
the Mott insulator. The meaning of each definition is illustrated on a smaller panel
to the right. The results are obtained with the CTQMC.

behavior. This is illustrated on the corresponding small panel, where log p(T) is
plotted for 3 different values of U and the maxima are marked with the green dots.
The double occupancy ny has an obvious change in trend on crossing the line (d).
Here, the second derivative 9%ny/0U? has a sharp maximum, and separates the
two distinct regimes of ny4(U), both almost linear but with different slopes. This is
apparent on the small panel (d) where double occupancy is plotted as a function of
U at various temperatures.

It is striking that these lines almost coincide, in sharp contrast to what is seen in
Fig. [4.5] Although the opening of the gap is very gradual, it is possible to pin-point
the boundary between the two regimes and actually divide the supercritical part of

the phase diagram into metallic and insulating-like regions.

4.1.3 Generalization of the QC scaling formula

In the standard scenario for quantum criticality [4, [72], the system undergoes a zero-
temperature phase transition at a critical value of some control parameter g = g,

and within a “V-shaped" finite temperature region stemming from the QCP, physical
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quantities display scaling behavior of the form

A(g,T) = A(T) F (£’T;9> (4.3)

where A.(T) = A(g.,T). Mott MIT is a first order phase transition [73|, but the
corresponding coexistence region is confined to extremely low temperatures, and
at temperatures sufficiently above the classical critical end-point 7., the quantum
effects are expected to set in [4], and restore the QC behavior. However, to test the
QC scaling hypothesis in the case of a first-order transition, one must first identify
the appropriate g. which enters the argument of the scaling function (Fig. .
It is immediately clear that the critical value g. of the control (transition-driving)
parameter g must be replaced by a more general, temperature dependent quantity.
Below T, one may identify it with the line of the first order transition g.(7") along
which the two coexisting phases are equally favorable (purple dashed line in Fig. .
However, above T, no actual transition takes place, and the trajectory g.(T") can
only be a crossover line - therefore it is not uniquely defined. In this work we choose
to use the general concept of Widom lines and define g.(T" > T,) in a way that it is
a well defined and logical continuation of g.(7" < T.). In the next section we discuss
the concept of Widom lines and then devise a way to apply it in a completely general
case.

However, there is an additional problem in treating the first-order Mott transi-
tion in terms of quantum critical behavior. The Eq. assumes that there is no

phase transition away from zero temperature, so all the quantities must be analytic

T T
QCR QCR

gi(m)

. Ra.(M)
9 g g

QCP — > lorderPT

Figure 4.7: Standard QCP scenario is modified in the case of the Mott MIT. The
critical transition-driving parameter g. is replaced by a more general, temperature
dependent quantity. Below T, this is the line of first order transition g.(7) where
the two states are equally favorable. Above T, it is the line of "maximal instability"
of the ground state (see section [4.1.5]), or the quantum Widom line ¢*(7).
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functions of g and T. Only at precisely the QCP (¢ = g.,7 = 0), the argument
of the scaling function F' changes from —oo to oo thus allowing for a non-analytic
behavior of A. Then if we apply the Eq. to the case of resistivity in single-site
DMFT, we have

U—_WT)) (4.4)

p(0.7) = () F (L

and we run into a problem immediately, even if U.(T" > T.) is known - the first
derivative of resistivity is divergent at the critical point (U,, T.) (Fig.

dp

50 — 00 (4.5)

Ue, T

which certainly can not be described by Eq. 4.4, Furthermore, the vicinity of the
critical point has been described by a classical scaling theory in the work of Kotliar
and Rozenberg Ref. [36] with a great level of success, and revealed that the second
order transition here is of the classical Ising type with v = 1. Therefore, the quantum
critical behavior is necessarily spoiled by the presence of the finite temperature
critical point, but at temperatures sufficiently higher than T, it is still justified to

pursue an understanding of the system behavior in terms of quantum criticality.

4.1.4 Widom crossover lines

The notion of a crossover line is very general and different physical motivations
can be used for its precise definition. The concept of the Widom crossover line is,
however, more strict and relies on one fundamental principle - non-analytic features
at the critical point become smoothed out at super-critical temperatures, but remain
well defined.

The Widom line was originally defined in the context of liquid-gas phase transition, [74]
as the line connecting the maxima of the isobaric specific heat as a function of pres-
sure (0C,/0p = 0), above T, (Fig. [4.8). Tt was conceived as a logical continuation
of the first order phase transition line to supercritical temperatures. C), is divergent
at the critical end-point, which directly causes the maxima in C, present above the
critical temperature. This concept is easily generalized to include all the lines that
mark features directly caused by non-analyticities due to a phase transition.|75] As
such, a Widom line can be defined by any quantity that exhibits either a divergence

or a discontinuity because of a phase transition, and thus a maximum or an inflection
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point above T..

Very recently,[76] in the super-critical region of argon liquid-gas phase diagram,
an unexpected non-analyticity has been found in sound velocity dispersion curves,
precisely at the Widom line. The authors give a new depth and physical meaning to
the concept, by observing that there is no single super-critical fluid phase, and that
the Widom line actually separates two regimes of fluid-like and gas-like dynamical
behavior. This finding makes it clear that the Widom lines should not be exclusively
connected with thermodynamics of the system. The changes in transport that follow
certain features in thermodynamic quantities can also be used for making meaning-
ful and possibly even equivalent definition of the Widom line. The significance of
this concept was recognized once more[77, [78] in the context of hole-doped high-T.
superconductors, where the characteristic temperature 7™ of the pseudogap phase
is shown to correspond to the Widom line arising above a first-order transition at
critical doping.

In the above sense, we emphasize that the the concept of Widom lines can also
be easily connected with our model, possibly giving it new physical importance in
the context of quantum phase transitions. One can immediately recognize that the
log p(U)|r inflection-point line (Fig. qualifies as a generalized Widom line - it

emanates from the the critical end-point, separates regions of metallic and insulating

>

Widom line

(O]
= Cp(P)
©
()
3 o
P |Gas o
Liquid
Solid
notzero T

Pressure

Figure 4.8: Widom line is defined in the context of classical liquid-gas transitions.
The isobaric specific heat diverges at the critical point, and has clear maxima at
supercritical temperatures.
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behavior, and marks a feature that is directly caused by a non-analyticity (divergence
of g—g UC,TC) due to the phase transition. However, we also want to base the definition
of the Widom line in a purely thermodynamic quantity such that it is possible to
define it in an arbitrary model, and then compare it to the inflection point line
and other crossover lines separating the metallic-like and insulating-like behavior
shown in Fig. Furthermore, we want our Widom line to be well defined even
when T, for the first order transition goes to zero - if the Widom line is defined in
a quantity that diverges (goes to zero) at the critical point, then the existence or
non-existence of the first order transition below the critical point is irrelevant for
the supercritical behavior, and the Widom line should be possible to define even
in the case of a purely zero-temperature (quantum) phase transition, i.e. when the
critical point has been brought down to zero temperature. In the following, we find
a thermodynamic quantity that goes to zero at precisely the critical point, has a
clear minimum above T, and should be possible to calculate in any method based
in the Legendre formalism, as described in section [3.1.1]

4.1.5 Instability line as the quantum Widom line

One possible intuitive interpretation of the scale invariance of a critical point is that,
at this point, system is completely indecisive of its behavior - since the transition is
of the second order, thermodynamic quantities do not exhibit discontinuity, which
means that the two phases on different sides of the CP become the same at the
CP. At precisely the CP, there are excitations available at virtually no cost, and the
fluctuations are present at all time and length scales. Therefore, at a supercritical
temperature, the point analogous to the CP is the one at which low lying collective
excitations available are the least costly. This point of indecisiveness, or instability,
may be interpreted as the point at which the system is in equal proximity to the
two competing phases. In the usual Ginzburg-Landau field theory, the spectrum of
low-lying collective excitations is in principle given by the landscape of an appro-
priate Free energy functional, in the vicinity of its global minimum. As has been
shown in section DMFT procedure can be identified with minimizing one such
Free energy functional of the hybridization function. The curvature (we denote it
A) of this Free energy functional in its global minimum (or local, which is the case
in the phase coexistence region) is actually a very general quantity that describes

the response of the system to an infinitesimal external perturbation, which may
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be a time-dependent field of an arbitrary form. As such, A is very important in
describing a thermodynamic state close to the Mott MIT, since it has a fundamen-
tally dynamic nature. Indeed, A vanishes precisely at the critical end-point, as the
free-energy functional becomes flat around Gpppr. This is directly connected to
the critical slowing down of dynamics, which manifests as the vanishing of a char-
acteristic frequency scale. Above T., X is related to the local stability of a given
thermodynamic state and has a minimum precisely where the system is the least
stable. Therefore, we define the instability line as the line connecting the minima
of A vs. U. It emanates from the critical point where A = 0 and can therefore be
considered a generalized Widom line. Since it does not require the presence of a
finite 7" transition and can be defined even if T, = 0, we dub it quantum Widom
line.

A few more comments are in order - A(iw,) is an infinitely dimensional vector
in the corresponding Hilbert space, and the curvature of the Free energy at the

self-consistent A iw,) may be different in different directions. However, it

parrr
is the curvature along the direction along which the curvature is the least, that
matters. Luckily, this is the one that can be measured straight-forwardly in the
DMFT procedure.

Here we present in detail the considerations that connect the convergence rate
of the DMFT loop to the curvature of the Free energy functional, precisely at the
stationary point corresponding to a self-consistent DMFT solution. The discussion
presented here builds on the Taylor expansion presented in Eq. [3.19}Eq. and is

a concrete example how these general considerations become useful.

4.1.5.1 Connecting the Free energy curvature with the convergence rate

Immediately from Eq. the free energy functional Q[A, G, a = 0] is given by
124, 179, [36]

QA G a=0 = ~TrAG + FyylAl, (4.6)

where the first term may be interpreted as the energy cost of forming the generalized
Weiss field A around the singled-out Hubbard site at which the local Green’s function
is given by G, while the second term is the free energy of an electron at this site in
the presence of the Weiss field A. The first term comes from the non-local processes

and corresponds to the kinetic energy, while the second term corresponds to the
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potential energy, gained from the local, on-site interaction of electrons.
Close to a stationary point A = A[G, a = 0], we can Taylor expand Q[A, G, a =
0] in terms of deviation from this point A = A — A[G,a = 0]:

QA%A[G,azo],G,azo} - Q[A:A[G,azo],c;,azo]
+ > SN (iwn) M A (i) + . .

mn

where

) fm[A,G,a _ o]

an - . .
OA(iwy, ) OA (iwp,)
A=A[G,a=0]

(4.7)

is the fluctuation matrix. Note that M is not an implicit functional of G because
taking the second derivative with respect do A washes out the G dependence, and

Fmp 1s not a functional of G from the start. In matrix notation we write
Q[A ~ A[G,a=0),G,a = o} - Q[A — AlG,a=0,G,a= o} + SAMOA (4.8)

Taking the derivative of the above expression and taking into account Eq. [1.6] we

have immediately that in the vicinity of the stationary point

INA, G, a = 0]
OA(iwy,)

= G — GolA] (M(sz) (4.9)

Up until now the considerations closely followed Eq. [3.19Eq. Now we
consider our particular case - the DMFT solution in the case of the Bethe lattice
corresponds to the stationary point of {2 such that A(iw,) = #* G(iw,). This solution
can be obtained by following the forward recursion procedure, as described in section
In each new iteration i + 1, we take the result G of the impurity problem
in the previous iteration ¢, and construct the hybridization function for the next
iteration as AW = 2G{. Therefore, G4 = G,[AD]. Taking this into account
and subtracting the DMFT self-consistent solution from both sides of the Eq.
we obtain

i+1)

TCAMNS Tl V P re it (4.10)

where we have absorbed the ¢? factor into the fluctuation matrix. The above equation

can be understood in the following way: the gradient of the functional 2 with respect
to A in the point [{A, = t*G,},G,a = 0] is given by the difference between G
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and G[{A, = t*G,},a = 0], i.e. the Green’s function obtained as the result of
the impurity problem and the one used to construct the hybridization bath for the
impurity problem. The DMF'T self-consistent solution G* corresponds to the gradient
(M(S@*) being zero (because 5G" o by definition), which is observed when the
impurity problem yields the same Green’s function that has been used in constructing
the hybridization bath.

When we are sufficiently close to the self-consistent solution, equation Eq.
connects the Green’s functions in two consecutive iterations of the forward recursion
procedure. Then, we can use the recursive form of this equation to connect the

Green’s function in any iteration, with the initial guess

 TeM N Te L V) (52}“‘” —Méé“‘”)

= 66 oM (56 - (56 - e
— (1 MyieE ™ (4.11)

Furthermore, the eigenbasis {ém} and eigenvalues )\, of matrix M are defined
by

MGy, = AnGon. (4.12)
We can write 6G@ as
3G =3 "dDG,, (4.13)

where af) are the coefficients of 6G@ in the eigenvalue basis. Substituting into

Eq. 4.11] one obtains

0GY =3 " e PralG,, (4.14)
where
By = —In(1—\,) (4.15)

For large iteration index 7 the term with lowest B,, = B,,,, which corresponds

to the lowest eigenvalue A,,, = A, is dominant
0G0 = 7 Bmag O G, i > 1. (4.16)

Here a,,, is the coefficient corresponding to the eigenvector G, with the lowest

eigenvalue \,,. Now it is obvious that through iterations, the solution € approaches
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Figure 4.9: Convergence rate in the iterative solution of DMFT equations at
T/T. = 2.33 using IPT impurity solver, panel (a), and CTQMC impurity solver,
panel (b). The dashed lines in panel (b) are linear fits to the data. The insets are
the corresponding eigenvalues determined from the slopes shown in the main panels.

to the self consistent solution G exponentially, along a direction defined by the

DMFT
eigenvector of M corresponding to its minimal eigenvalue A. The coefficient B,,,
and the corresponding eigenvalue A are then obtained from the slope in the iterative

relation
In [G(iw,) " — G(iw,) ] = const — iBy,, (4.17)

which follows from Eq. (4.16)).

4.1.5.2 Determining the instability line

In practice, to obtain A (and thus the curvature of free energy), we monitor DMFT
loop convergence rate, G(iw,)+" — G(iw,)®, in as many iterations as possible and

then linearly fit In (G(iw,) ™ — G(iw,)¥) versus iteration index . Here w, = 7T
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Figure 4.10: Phase diagram obtained with IPT, panel (a), and CTQMC, panel
(b). Temperature and interaction are scaled by their values at the critical endpoint
(TIPT = 0.046, TOMC = 0.03 and UMFT = 2472, UMY = 2.3). Red dashed line is
the instability line U*(7T), full red line is the line of the first order MIT, and green
and blue dotted lines are left and right spinodals.

is the lowest Matsubara frequency. For small A\, B,,, = A\. It takes few iterations of
the DMF'T loop to enter into the linear regime given by Eq. . We then repeat
this procedure for different values of U at the same temperature T to determine
U*(T) in which A\(U)|r is minimal.

An example of our calculations is shown in Fig. [£.9, where the eigenvalues A
at several temperatures are plotted as a function of interaction U. The minima of
these curves define the instability trajectory U*(T') , which terminates at the critical
end-point (U,,T,), as shown on Fig.

With IPT impurity solver, we can use data from several tens of iterations to
determine the slope B,,,, Fig. {.9a. The solution with CTQMC impurity solver
has a statistical error and the number of iterations we can use is limited. When

the difference |G (iw,) ) — G (iw,)? | becomes comparable to the level of numerical
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Figure 4.11: Instability line lies among the other crossover lines. log p(U) is linear
in this crossover region, which is a manifestation of the mirror-symmetry of the

scaling function (see section [4.1.6.1)).

noise in CTQMC, the impurity Green’s function just fluctuates around the self-
consistent solution and no further convergence is observed. Nevertheless, we were
able to determine rather precisely the eigenvalue \,,, and the interaction U*(7T) for
which it becomes minimal, Fig. [£.9b. The "instability line" corresponding to the
minimum curvature of the free energy is shown in Fig. (IPT phase diagram),
and Fig. (CTQMC phase diagram). Error bars in Fig. are estimates of
the uncertainty in the position of the instability line.

In Fig.[4.1T]we compare the instability line with other possible crossover lines and
find that it clearly lies among them. The instability line truly represents a boundary
between a metallic and insulating transport and it lies in the region where

9?log p(U, T)
e (4.18)

This derivative is color-coded in the (U, T) plane in Fig.

The properties of the system in the crossover region are best illustrated in
Fig. The middle column shows the DOS along the instability line for three
different temperatures. While the DOS at the Fermi level is strongly suppressed,
the gap is not yet fully open. Left column shows the density of states in the metallic
phase following a trajectory parallel to the instability line: there is a clear quasipar-
ticle peak at low temperatures, which gradually disappears as the bad metal region
is reached by increasing the temperature. At larger U (right column) the system is

in the insulating phase with fully open Mott gap, featuring activated transport.
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Figure 4.12: Density of states (QMC results) along the instability line U*(T") (middle
column), and along the parallel trajectory for smaller (left column) and larger U
(right column).

4.1.5.3 Visualizing the Free energy landscape

We can visualize the shape of the infinitely dimensional free energy surface by cal-
culating F[G] = Q[A = t*G, G, a = 0] along a single direction going through the
self-consistent éDMFT. Below T, we do this along the direction connecting the two

solutions, constituting a parametric trajectory
G(l)=(1=1DGy —1Gy. (4.19)
Above T., where there is only one solution, we follow the eigenvector G with
G(l) = Gpyrr + G, (4.20)

The relative change of the free energy is calculated|37] as an integral

AF(l) = f[é(l)} - f[éM/DMFT] = T / e g[é(z')} (4.21)

0

where &is the unit vector of the followed direction (¢ = (Gar — Gy) /|G — G| below

T, and &= G, /|G| above T,). The gradient vector takes the form

g[é] - é[& - t2é} e (4.22)
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Figure 4.13: Free energy landscape (IPT results): (a) Along the instability/first
order transition line (6U = 0). At T' > T,, the curvature of the free energy increases
with temperature, and it is zero at T = T,. Below T, at the first order transition
line metallic and insulating solutions have the same free energy. (b) Along a line
parallel to the instability/first order transition line (6U = —0.05). At T" > T,, the
curvature of the free energy is greater than at the instability line. In the coexistence
region one of the minima is energetically favored. Note that the spacing between
AF curves for different temperatures is arbitrary.

where é[& = tQé} is the output of the impurity solver.

Panel (a) shows the free energy landscape around Gpp/pr, precisely at the in-
stability line. The curvature of the global minimum vanishes as one approaches T,
which is consistent with eigenvalue A being zero at this point. Below T, there are two
minima and the instability line is no longer well defined, but it is logically continued
to the line of the first order phase transition, where two possible solutions are of the
same energy. On panel (b), we move along a parallel trajectory, defined by 60U # 0.
It is immediately obvious that A never reaches zero and that in the coexistence re-
gion one of the solutions is energetically favoured. This physical picture is common
to various models. For example, it is seen in the Ising model in an external field,

where the analogy is between the strength of the magnetic field and éU in our case.

4.1.6 QC scaling tests

To reveal quantum critical scaling, we calculate the temperature dependence of
resistivity along a set of trajectories parallel to our instability trajectory (fixed 60U =
U — U*(T)). The resistivity results are shown in Fig. , where on panel (a)
IPT resistivity data for 0U = 0,+0.025, £0.05, +0.1, £0.15, £0.2 in the temperature
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Figure 4.14: (Color online) (a) DMFT resistivity curves as function of temperature
along different trajectories —0.2 < 60U < +0.2 with respect to the instability line
U = 0 (black dashed line, see the text). Data are obtained using IPT impurity
solver. (b) Resistivity scaling; essentially identical scaling functions are found from
CTQMC (open symbols) and from IPT (closed symbols)

range of T'~ 0.07 — 0.2 are presented (CTQMC data are not shown for the sake of
clarity of the figure). The resistivity is given in units of pjs., maximal resistivity
according to the Boltzmann quasi-classical theory of transport [63]. The family of
resistivity curves above (60U > 0) the “separatrix” p.(T") (dashed line, corresponding
to 0U = 0) has an insulating-like behavior, while metallic dependence is obtained
for 6U < 0.

According to the quantum critical scaling hypothesis (see section 2.2), our family

of curves should satisfy the following scaling relation:
p(T,0U) = pe(T) f(T/T5(0U)). (4.23)

We thus first divide each resistivity curve by the “separatrix” p.(7") = p(T,0U = 0)
and then rescale the temperature, for each curve, with an appropriately chosen
parameter To(6U) to collapse our data onto two branches, Fig. [£.14b. Note that
this unbiased analysis does not assume any specific form of T,(0U): it is determined
for each curve simply to obtain optimum collapse of the data [80]. This puts us
in a position to perform a stringent test of our scaling hypothesis: true quantum
criticality corresponds to T,(0U) which vanishes at 6U = 0 and displays power law
scaling with the same exponents for both scaling branches. As seen in Fig. Ty
falls sharply as U = U™* is approached, consistent with the QC scenario, but opposite
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Figure 4.15: (Color online) (a) Scaling parameter T(6U) as a function of control
parameter 60U = U — U*; the inset illustrates power-law dependence of scaling pa-
rameter Ty = c|0U|*; (b) Resistivity p.(T) of the “separatrix”. Excellent agreement
is found between IPT (closed symbols) and CTQMC (open symbols) results.

to what is expected in a “classical” phase transition. The inset of Fig. with
log-log scale shows clearly a power-law behavior of Ty = ¢|0U|*”, with the estimated
power (zu);io = 0.56 £ 0.01 for “metallic ” side, and (ZV)ZZO = 0.57 £ 0.01 for an
insulating branch.

We also find (Fig. [£.15p) a very unusual form of our critical resistivity p.(T'),
corresponding to the instability trajectory. Its values largely exceeds the Mott
limit, yet it displays metallic-like but non-Fermi liquid-like temperature dependence
pe(T) ~ T. Such puzzling behavior, while inconsistent with any conventional trans-
port mechanism, has been observed in several strongly correlated materials close to
the Mott transition [63] 8T]. Our results thus suggest that it represents a generic
feature of Mott quantum criticality.

To specify the scaling behavior even more precisely, we compute the correspond-
ing [-function [22] 5(g) = ;111:11%7 with g = p./p being the inverse resistivity scaling
function. Remarkably (Fig. , it displays a nearly linear dependence on In g, and

is continuous through U = 0 indicating precisely the same form of the scaling func-

tion on both sides of the transition - another feature exactly of the form expected for
genuine quantum criticality. This functional form is very natural for the insulating
transport, as it is obtained even for simple activated behavior p(T) ~ e /T, The
fact that the same functional form persists well into the metallic side is a surprise,
especially since it covers almost an order of magnitude for the resistivity ratio. Such
a behavior has been interpreted [22] to reflect the "strong coupling" nature of the

critical point, which presumably is governed by the same physical processes that
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Figure 4.16: (Color online) (a) f—function shows linear in In(p./p) behavior close
to the transition. Open symbols are for metallic branch (§U < 0) and closed ones
are for the insulating side (60U > 0) ; vertical dashed lines indicate the region where
mirror symmetry of curves is found. (b) Reflection symmetry of scaled curves close
to the transition.

dominate the insulator. This points to the fact that our QC behavior has a strong

coupling, i.e. non-perturbative character.
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Figure 4.17: DMFT phase diagram of the fully frustrated half-filled Hubbard model.
The thick dashed line, which extends at T' > T, shows the “instability trajectory”
U*(T), and the crossover temperature 7, delimits the QC region (dash-dotted lines).

The fact that the f—function assumes this logarithmic form on both sides of the
transition is mathematically equivalent [22] to stating that the two branches of the
corresponding scaling functions display "mirror symmetry" over the same resistivity
range. Indeed, we find that transport in this QC region exhibits a surprisingly

developed reflection symmetry (dash vertical lines of Fig. mark its boundaries).
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Such a symmetry is clearly seen in Fig. , where the resistivity p/p. (for 06U > 0)
and conductivity /0. = p./p (60U < 0) can be mapped onto each other by reflection
with @ = U(;—fU) [23]. Note that T'/T, = 1 sets the boundary of the quantum
critical region, OVéF which the reflection symmetry of scaled curves is observed. It
is depicted by dash-dotted crossover lines T; on phase diagram of Fig. [4.1.6]

These remarkable features of the F—function, and the associated reflection-
symmetry, have been observed earlier in experimental |82 23] and theoretical [22]
studies, which tentatively associated this with disorder-dominated MIT’s. Spec-
ulation that § ~ Ing reveals disorder as the fundamental driving force for MIT,
presumably reflects the fact that, historically, it has first been recognized for An-
derson transitions [83]. Our work, however, shows that such behavior can be found
even in absence of disorder - in interaction-driven MIT’s. This finding calls for

re-thinking of basic physical processes that can drive the MIT.

4.1.6.1 Scaling around the inflection points line

As stated in the previous section, the curvature A must be directly related to an
appropriate relaxation rate of a system perturbed away from the equilibrium, a
quantity that in principle should be possible to measure on any system. However,
it is currently very hard to make such measurements on the Mott systems and
precisely determine the instability line. Our calculations, however, show that it lies
just among the crossover lines that separate the bad metal and the Mott insulator, so
it might not be necessary to know its exact position to observe quantum criticality.
In the following, we present a scaling analysis that can be performed around the
resistivity inflection points line (or any of the other crossover lines) to test the
scaling hypothesis. As it turns out, the scaling is a robust feature, not particularly
sensitive to the choice of U.(T).

We first observe that the resistivity curves display almost a perfect mirror sym-
metry when plotted on the log-scale (Fig. . This puts a strong constraint on
the functional form of the scaling function f (as we show below) and also indicates
that the resistivity curve along the inflection points line, dlog p(U)/0U = 0, could

also serve as the separatrix. The mirror symmetry requires that

fly) =1/f(-y). (4.24)
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For the above to be satisfied, the function f must be of the form

fly) =", (4.25)

where h is an antisymmetric function of y. It is clear that f(0) = 1 and therefore
h(0) = 0. h must also be smooth, so it can be represented as a Taylor series with
only odd terms

h(y) = ay + by® + ... (4.26)

In our calculations, it turns out that only the linear term is significant, and here we
show how this can be tested. First we make a substitution of variables T7'/6U*" —
SUT~#" and then take the logarithm of both sides of the scaling formula to obtain

N ( p(U.(T) + 86U, T)
p(U(T), T)

If the mirror symmetry is satisfied, than

) = tostroUT =), (427)

1 ( p(U(T) + 6U,T)

_ —1/zv
(O(T).T) ) h(6UT ), (4.28)

which means that the precise form of h(y) can be deduced by plotting the left-hand
side of the above equation as a function of y = UT~/* and than making a fit of a
polynomial curve to the data. This is possible because in the region where the scaling
formula is valid, all the data points should collapse onto a single curve. To test
whether h(y) is truly antisymmetric, it is convenient to first split it into symmetric
and antisymmetric parts, k(y) = hs(y) + ha(y), where hy(y) = 5 (h(y) + h(—y)) and
ha(y) = 5 (h(y) — h(—y)). If the resistivity is mirror symmetric, hy should be 0 and
hq should be equal to h. In Fig. we plot these functions around the inflection
point line and find hs to be negligible. Also, it is easily seen that h(y) is purely
linear in the region where the data points perfectly collapse on a single curve.

Now it is clear that there are two conditions that U.(T') has to satisfy for the
scaling with mirror symmetry to be possible. First, if we take the partial derivative

over U at both sides of the equation, we get

dlog p(U,T)
U

3

= aT % + bSUT % + ..., (4.29)

If h(y) is a linear function, then only the first term in the above equation remains,
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Figure 4.18: The symmetric and asymmetric part of scaling function, hs; and h,
at various temperatures. The small value of h,(y) shows that the mirror symmetry
of resistivity curves is present. The h,(y) curves collapse around the inflection-
point line which shows that the exponent, zv = 0.953, is well evaluated. Fitting a
third order polynomial to h,(y) in the range where these curves collapse can reveal
the exact form of the scaling formula. In our calculations only the linear term is
significant.

which means that the logarithm of resistivity is a linear function of U in the entire
region in which the scaling formula holds. Even if there are higher terms in h(y),
the above has to be true at least close to U, (small 6U), where the linear term is
dominant in any case. This imposes a constraint on U.(T), such that it has to be
in a region where the second derivative of logarithmic resistivity is zero, or at least

small,
Plogp(UT) (4.30)

oU?
This derivative is color-coded in the (U, T) plane in Fig. so that yellow color
corresponds to a small absolute value. As it is readily verified, the above condition is
not fulfilled anywhere exactly (except precisely at the log p(U) inflection point line
by its definition), but all of the crossover lines lie in the region where this condition

is approximately satisfied.

There is an additional requirement for U.(T") which is not in any way implied by
definition of any of the crossover lines. Namely, the first derivative of the logarithmic

resistivity has to be decreasing along U.(T') as a power law of temperature. This
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Figure 4.19:  The derivative of resistivity with respect to U (9p(U,T)/0U|;. )
along the inflection-point line. Above roughly 27, it fits well to a power law curve of
exponent —0.95. This can be used to evaluate the value of scaling formula exponent.
At lower temperatures the decrease in resistivity is faster and the behavior deviates
from the power-law and the scaling formula fails at temperatures below 27..

can be shown by taking the limit U — 0 in Eq. (4.29)),

dlog p(U,T)

T . 4.31
507 o (4.31)

Ue

The above holds regardless of the value of the cubic (or any higher) term coefficient.
One can even use this to give a good assessment of the exponent zv, by fitting such
experimental (or theoretical) curve to a power law as shown in Fig. [£.19] As it is
seen here, the derivative Eq. [£.31] calculated along the inflection point line fits well to
a power law curve of exponent 0.95, but only above roughly 27,.. The same analysis
of the IPT results yields a slightly lower value zv = 0.63.

Finally, an estimate of how well the scaling works can be made by comparing
the value of resistivity obtained by the scaling formula and the one measured in
experiment or, as it is in our case, calculated from the DMFT solution. In Fig.
it is shown how the scaling formula works within the 5% error bar in a large region,
for the inflection point line. This result is qualitatively the same for the other
crossover lines. It is important to note that in the case of instability line (and all
the other crossover lines other than the inflection point line), one is able to improve
the quality of scaling by using different exponents zv depending on sign(6U), and
that way compensate for the lack of exact mirror symmetry. Also, when only the

linear term in h(y) is used, slightly lowering the value of zv obtained from the
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Figure 4.20: Relative error of the scaling formula color-coded in the U — T" plane.
The dotted lines are the boundary of the scaling region. Two green filaments below
2T, are where the scaling formula intersects with the actual DMFT result.

power-law fitting procedure typically broadens the region of validity of such scaling
formula.

In conclusion, the log p(U) inflection points line is easily observable in experiment
and our calculations show that it lies very close to the instability line. The analysis
presented here, indicates that the quantum critical scaling previously found to hold
around the instability line, should also be observable around the inflection point line.
We show that the scaling formula valid around this line displays almost a perfect
mirror symmetry of resistivity curves. In general, mirror symmetry, or “duality”,
should not be considered a necessary ingredient for a quantum critical scaling. In
fact, we find that the scaling is of better quality around the instability line, although
it is slightly less symmetric.

It is also very important to examine how the resistivity changes along the separa-
trix and our results are presented in Fig. In this crossover region, the resistivity
far exceeds the Mott limit and is only weakly dependent on temperature. We find
that along the instability line, the resistivity is roughly a linear, increasing function
of T'. Along the inflection points line and p(T') = max lines, the resistivity is slowly
decreasing. We note that these results, however, must be model specific. Above the
critical end-point, the resistivity is strongly dependent on U, and a small change in
the shape or position of these lines can cause a significant change in the temperature
dependences of resistivity presented in Fig.
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Figure 4.21: Resistivity (in units of p,, ) along the crossover lines is weakly de-
pendent on temperature and much larger than the Mott limit.

4.1.7 Comparison with experiments

Very recently, an extensive experimental investigation has been performed on several
k-organic systems, corroborating our results and illustrating the usefulness of our
approach. In this section we present the most important results of this work Ref.[84]

and compare it to our theoretical result.

%
FO S
KR

ET Pd(dmit),

%
Y

>
%

Figure 4.22: Tllustration of the lattice structure of k-organics. Two large molecules

form a dimer and share a single electron with the valence band, thus making it
effectively half-filled.

The samples used in this experiment are three types of quasi-two-dimensional
organic Mott insulators with anisotropic triangular lattices, k — (ET)Cug(CN)s3,
k — (ET)2Cu[N(CN),]Cl and EtMesSb[Pd(dmit),], (hereafter abbreviated to s —
Cuy(CN)3, k£ — Cl and EtMegSb — dmit, respectively), where ET and dmit rep-
resent bis(ethylenedithio)tetrathiafulvalene and 1,3-dithiole-2-thione-4,5-dithiolate,
respectively (see Fig. for a sketch of the lattice structure). In the Mott insulat-
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ing phases, kK — Cuy(CN)3 and EtMe3sSb — dmit host quantum spin liquids (QSL’s),
whereas k — Cl is an antiferromagnet (AFM). In the metallic phases,x — Cuz(CN)3
and k — Cl are superconducting (SC) at low temperatures, whereas EtMe3Sb — dmit
remains a paramagnetic metal (PM). Then, the three systems have different types
of Mott transition at 7' = 0 - QSL-SC, AFM-SC and QSL-PM transitions respec-
tively. Clear first-order Mott transitions are observed in £ — Cuy(CN)3 and k — Cl
up to Tc values of 20K and 38K, respectively, whereas there is no clear first-order
nature in the Mott transition in EtMesSb — dmit; its critical temperature, if any, is
well below 30 K. The critical temperatures of the three compounds are two or three
orders of magnitude lower than the values of W (bandwidth) and the estimate for
on-site interaction energy U, which are several thousand Kelvin or more.

inflection point of logarithmic resistivity
logl10({R{ohm))
Qoar

i :,-"
{ 'E / Ry~ 1[ohm]

/

: | ,f.;’ K-(ET);fCUQ{CN)'j Ty
3¢ ¢ | '_.r
- - i |
- / : oM
< wM ‘
."‘- I'.r || | .
o |
150
L0 e Ba0e
- m\ :

the 19-order transition line and the critical point
P(M Pa)from old work in Kanoda lab (K.Kobashi)

Figure 4.23: The shape of iso-resistive curves is strikingly similar to the theoretical

result (see Fig. [85].

The resistivity was measured throughout the phase diagram by varying pressure
and temperature (Fig. . In practice, temperature was held fixed, while the
controlled He-gas pressure P was varied continuously. The inflection point in log p
is clearly observed in all samples (Fig. and a wide range of temperature, so the
authors performed the analysis analogous to the one presented in section [£.1.6.1} In
Fig. (taken from Ref.|84]), an example of normalized resistivity p = p/p.(T)
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Figure 4.24: Curves of constant p(P,T) = p(P,T)/p.(T) spread out in an obviously
power-law fashion, which is immediately suggestive of quantum-critical behavior

[84].
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Figure 4.25: Inflection point in logarithmic resistivity is always observed in a wide
range of temperature and is used as the quantum Widom line in the scaling analysis

[84].
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is shown as a function of pressure at various temperatures. The collapsed data
points are shown in Fig. The quality of the scaling and prominence of mir-
ror symmetry in all three materials suggests there is a universal high-temperature
behavior in connection with the Mott transition which stems from the essentially
quantum nature of the transition, i.e. these materials obviously feature two distinct
ground states depending on the pressure, and these must be ultimately separated

by a purely quantum phase transition.
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Figure 4.26: In all three materials, resistivity data points collapse on two branches,
in agreement with the scaling hypothesis [84].
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4.2 Doping-driven Mott MIT

At half-filling, strong enough on-site interaction U opens a spectral gap at the Fermi
level and produces the Mott insulating state [24]. However, the Mott insulator can
be destroyed by adding electrons to the system, i.e raising the chemical potential .
When p reaches the upper Hubbard band, the system is once again conducting [86].
Similarly to the interaction-driven MIT, here the transition is of the first order up
to some T, and is a smooth crossover at T' > T..

In this section we consider a single-band Hubbard model defined by the Hamil-

H=—t Z (c;cja -+ h.c.> + Uznimil - /“LZ CZUCz‘m
< 3 8,0

i,7),0

tonian

and p denotes the chemical potential. We solve the DMFT equations using the
hybridization-expansion continuous time quantum Monte Carlo (CTQMC) algo-
rithm for the impurity solver [57, 58, 49] (see section [3.4.1). We fix U at some large
value U = 3.2,4.0, such that at half-filling system is a Mott insulator, and then
vary the chemical potential and temperature to scan the phase diagram. Note that
the Hubbard model on a particle-hole symmetric lattice (as is the Bethe lattice or
the fully connected lattice) is invariant under t — —t and o = p— U/2 — —[1.
Therefore, we only need consider the electron doped case, and all the conclusions
hold for the hole doped case as well. For the Green’s function this means ImGj(w) =
ImG_;(—w), or more precisely G (w) = —i(iG_i(—w))*, Galiw,) = —i(iG_z(iwy,))*

, while the optical conductivity o(w) remains the same regardless of the sign of fi.

4.2.1 Phase Diagram

At low-temperature the Mott transition is observed as the first order transition,
and features a pronounced jump in the value of resistivity and other quantities [87].
Around the first order transition line, a small coexistence region is present, where
both metallic and insulating phases are locally stable. Our calculations show that
the critical end-point temperature 7,(U) for the doping-driven transition rapidly
drops with increasing interaction, and at U = 4 it already is less than 10% of that
at half-filling. This is illustrated in Fig. [4.27h. At the critical end-point (red dots)
the two solutions merge, and above it no true distinction between the phases exists;

only a rapid crossover is observed upon variation of U or u. For a more detailed
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Figure 4.27: (a) Phase diagram of the maximally frustrated Hubbard model. The
quantum critical scaling is observed in the green region which extends to lower
temperatures as 7T, (red dots) is reduced. (b) Color plot of the resistivity in the
p — T plane for U = 4. The quantum Widom line (see text) passes through the
crossover region where the resistivity is around the MIR limit. The coexistence

region (gray) is barely visible on the scale of this plot.

discussion of the coexistence region and 7T,.(U) dependence see the next section.

In Fig. , we color-code the resistivity in the (u,T") plane, calculated for
U = 4. The resistivity is given in units of the Mott-Ioffe-Regel limit p,,,, which is
defined as the highest possible resistivity in a Boltzmann semi-classical metal, cor-
responding to the scattering length of one lattice spacing. Numerical value for p,,, .
is taken consistently with Ref. [45]. At u = U/2 the system is half-filled. At approx-
imately y = U — D = 3, the Fermi level enters the upper Hubbard band, and a first-
order doping-driven MIT is observed at temperatures below 7. = 0.003D. While
the chemical potential is within the gap, a clear activation behavior, p ~ /T,
is found at low temperatures. On the metallic side of the MIT, due to the strong
electron-electron scattering, the resistivity grows rapidly with temperature, and typ-

ical Fermi-liquid behavior is observed only below rather low coherence temperature
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Ty, (denoted with the gray dashed line).

4.2.2 T, and the coexistence region

The first order phase transition is most easily observed by looking at the occupation
number. At very low temperature, while the chemical potential is within the spec-
tral gap, filling is roughly a constant, i.e. n(u) ~ 0.5. When the chemical potential
reaches the upper Hubbard band, a quasi particle peak forms abruptly at its lower
edge causing an immediate transfer of spectral weight from the lower Hubbard band
to the vicinity of the Fermi level [24, [88]. This is observed as a jump in the occu-
pancy from nearly half-filling to around 2-3% doping. An insulating solution is not
possible when p is in the upper Hubbard band, hence its bottom edge determines
the insulating (right) spinodal. However, a metallic solution is possible even when
p is in the gap. This type of state features an in-gap quasi-particle peak [89] and
is observed in the coexistence region. The lowest value of the chemical potential at
which the quasi particle peak can survive constitutes the metallic (left) spinodal,
and this one is strongly temperature dependent. The disappearance of the QP peak
at the metallic spinodal is also abrupt, and occurs at finite doping. Therefore, there
is a range of doping that is not achievable locally at any value of the chemical po-
tential, but only globally through phase separation. With increasing temperature,
the forbidden doping range shrinks and disappear together with the hysteresis loop,
precisely at T, |87, 90]. Note also, that the range of forbidden doping vanishes at
T = 0 as well, where a metallic solution is possible even at infinitesimal doping [24],
although in this case particle-hole symmetry is broken and p # U/2. In Fig. [£.28p,b
we show the hysteresis curves of the occupancy for two values of interaction U. The
position of spinodals and the width of the coexistence region are easily determined
from the jumps in n(u). We considered the lowest temperature at which no coexis-
tence is observed to be the critical temperature. Note also that due to the numerical
error of the CTQMC, some unphysical doping is observed in the insulating state at
the lowest temperatures. We were not able to obtain physically meaningful results
below T ~ 0.0015 and this is the lowest temperature at which we have found the
method to be reliable. The numerical error from the CTQMC becomes significant
at low temperature and a precise assessment of 7,.’s lower than ~ 0.002 proves very
difficult. The coexistence regions at the two values of U are shown in Supplementary
Figure [4.28 and d. The T' = 0 position of the left spinodal is taken from the ED
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Figure 4.28: Coexistence region of the first-order doping-driven Mott metal-
insulator transition can be determined in different ways. (a),(b),(c),(d) The position
of spinodals can be determined from the jumps in the occupation number. In the co-
existence region, two types of solution are possible, depending on the initial guess in
the DMFT procedure. This is observed as a hysteresis loop in the occupation num-
ber and other quantities. (e),(f) Precisely at the critical point, physical quantities
often have extremal values (zero or infinity). By extrapolating such quantities from
higher temperatures, one can estimate the critical temperature. (e) The maxima
of the inverse charge compressibility with respect to the chemical potential can be
extrapolated to obtain a good estimate for T,. (f) The values of A along the instabil-
ity line p*(7T') become scattered and overestimated close to the critical point, due to
numerical error from the CTQMC. This makes it unpractical to to use extrapolation
of \* for estimation of T,.

115



4.2 DOPING-DRIVEN MOTT MIT

T=0

Mott ins. =
12 n=0.5
n=0 Fermi liquid
band ins.
atomic limit t/U

Figure 4.29: Critical temperature must go to zero as U is increased because there is
no coexistence in the atomic limit.

calculation found in [89] and seems to fit well our finite temperature results.

A better understanding of why T, is decreasing with U can be obtained by
plotting the 7" = 0 phase diagram in a fashion more commonly utilized in the context
of the bosonic Hubbard model. On Fig. we illustrate the phase diagram with
t/U and pu/U on the axes. Here, 1/U = 1/2 corresponds to half-filling, and ¢t/U = 0
corresponds to the atomic limit. It is clear that there can be no coexistence in the
atomic limit where the transition is trivial and corresponds to the band transition
between the half-filled Mott and full (empty) band insulators (chemical potential is

either below or above | T|) state).

4.2.2.1 T, from the charge compressibility

The alternative way of determining 7. is by looking at the uniform charge suscep-

tibility y = g_Z' Precisely at the critical point, x is divergent and above T., there

is a line of maxima in x(u)|;. Furthermore, it can be shown [91] that close to the

T-T.
atb(T—T.)"

Xk (T) to lower temperatures and see where it goes to zero. However, such method

critical point y~! ~ This is useful as one can extrapolate the values of

is of inferior accuracy compared to the direct observation of the coexistence, and we

use it only for cross-checking of our results. In Fig. 4.28¢ we show such calculation
in the case of U = 3.2.
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4.2.2.2 T, from the )\ analysis

In Figure we plot the values of A along the instability line (see the next Sec-
tion). Close to the the critical point, it is very difficult to make a precise estimate of
the DMFT convergence rate, as high convergence is not achievable at all. The low
temperature values are therefore much more scattered and systematically overesti-
mated. Although in principle one could estimate T, from higher temperatures by
extrapolating \*(T') = AM(u*(T"), T'), the numerical noise makes such a method very
impractical. Further difficulty lies in the possibility of A*(7T") changing trend before

going to zero, which introduces additional systematic error to the estimate of T..

4.2.3 M-analysis and the instability line

In section we have discussed a possible generalization of the Widom line
(originally defined in the context of classical liquid-gas transitions [76]), to strictly
zero-temperature (quantum) phase transitions. The most natural way of defining
such a quantum Widom line is by looking at the free-energy landscape around the
ground state of the system, as it is well defined in all physical models. Regardless of
the specifics of the phase transition, precisely at the critical point, the free energy
minimum is flat, i.e. its curvature A is zero. At higher temperatures, this leads to
a line of minima in A with respect to the parameter that is driving the transition
(at half-filling we had %‘T =

most pronounced - the system is “equally close” to the two competing phases and

0). It is at those minima that the fluctuations are

thus the least stable. Now we utilize this concept in the case of doping-driven Mott
transition, and at each temperature search for the minimum value of A\ with respect
to the chemical potential.

In practice, we calculate A by monitoring the convergence rate of the itera-
tive DMFT procedure. Given the model parameters, the free energy functional
FurulGliw,)] yields a smooth manifold in the Hilbert space of the Green’s func-
tions. Being Taylor expandable, the local environment of any free-energy minimum
has to be parabolic. Thus, in the advanced stage of the DMFT procedure, i.e. close
to the self-consistent solution, a steady, exponential convergence should be observed.
The curvature A is then directly related to the exponent of the functional depen-
dence of the difference between the consecutive solutions versus the iteration index.
When determining the convergence rate, however, it is not always sufficient to look

at the Green’s function in only the lowest Matsubara frequency, and one must use
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the generalized Raileigh-Ritz (RR) formula [92]

i+l i || il
e e (132
- n n

where ¢ stands for the iteration index, and ideally, A = lim; .., A\;. However, the
highest achievable level of convergence is determined by the amount of statistical
noise in the CTQMC result, and when it is reached, G(iw,) just fluctuates around
the self-consistent solution, and no further convergence is observed. Especially near
the critical point, CTQMC error becomes substantial and a high convergence can
not be reached at all. Here, typically only a few iterations are available for the
estimation of A\ as most of the parabolic region is below the level of numerical noise,
and one must look carefully for the range of iterations in which a steady exponential
convergence is observed.

The result presented with gray dots in Fig. is obtained by employing the
RR formula from equation at each iteration 7, and then taking the average
over the set of 5 consecutive iterations that shows the least variance, i.e. the one
corresponding to the period of the steadiest exponential convergence.

Away from half-filling, however, there are additional difficulties. Namely, G (iw,,)
is complex, which means that it has additional degrees of freedom as compared to
its purely imaginary analogue at particle-hole symmetry. Thus, the fluctuations
encountered in the convergence rate of G(iw,) are more severe, and the \-analysis
is harder to perform compared to the half-filled case. This is why the data points
presented with gray dots in Fig. exhibit considerable scattering, but the overall
trend is still rather obvious. In all of the calculations regarding the quantum critical
(QC) scaling analysis, we use the smooth fit (orange dashed line) as the instability
line and denote it with p*(7). Note that no other smoothing has been performed
on the data, and all the minima are estimated automatically from the raw A results.
Although there are considerable error bars on each p*(7T") value, the high resolution
in temperature increases the certainty of the result.

It is interesting that p*(7") is very close to the line of maxima of the second
&%n
o |
This is the place where n(u) changes trend, and as expected, the instability line

derivative of the occupation number versus the chemical potential, = max.

separates the metallic-like and insulating-like behavior on the phase diagram. Also

note that p*(7") roughly follows an iso-resistive curve and so the resistivity does
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not change considerably along the instability line. At T > 0.08 p* is found to be
constant and equal to the Mott-Ioffe-Regel (MIR) limit. Above T' = 0.14, A-analysis
can not give reliable results as the minimum in A(u)|r becomes very shallow, i.e.
of depth comparable to the level of numerical noise. Throughout the paper we
extrapolate the instability line to high temperatures 7' > 0.14 by imposing the
criterion p* = pyyr. Also note that at very low temperature, the actual form of
p(p*(T),T) depends strongly on the precise values of p*(7") because, in this region,
the resistivity changes rapidly with the chemical potential.

4.2.4 Analytical continuation and calculation of resistivity

The straightforward application of the maximum entropy method (MEM) [59] 93] for
analytical continuation of the Green’s function can in some cases lead to unphysical
results. In the metallic phase, this method tends to overestimate the height of the
quasi-particle (QP) peak in the single-particle energy spectrum given by —%ImG (w+
i0™). Sometimes in those cases, the imaginary part of the self-energy falsely goes to
zero at several frequencies (usually two or four), yielding an unphysical vanishing
DC resistivity. Given the analytically continued Green’s function on the real axis,

the self-energy is obtained from the DMFT self-consistency condition

Y(w) =w+p— G Hw) - ?G(w), (4.33)
and the imaginary part of the above equation reads

ImY(w) = ImG(w)(|G(w)] 7 — 7). (4.34)

It is immediately obvious that |G(w)| = 1/t yields Im¥(w) = 0, at any frequency.
When there is an unphysical excess of QP weight, precisely this is seen, usually at
the edges of the QP peak. This makes the conductivity integral divergent and the
DC resistivity exactly zero.

We find that much better results are obtained by performing MEM on the spec-

tral function

1

Ale,iwy,) = .
(5, ion) iwy + e — e — X(iwy,)

(4.35)
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Figure 4.30: The instability line p*(7) (orange dashed) corresponds to the minima in
A(p)|r, which is related to the convergence rate of the DMFT loop. (a) The precision
of X\ results is limited by the statistical noise in CTQMC. However, the minima
in A(u)|r are still clearly present, and p*(7") can be determined with satisfactory
accuracy. At high temperature, QWL is found to coincide with the iso-resistive
curve of the MIR limit (black dashed), which is then used to extrapolate the QWL
to temperatures above 7' = 0.14, where A-analysis is no longer reliable. (b) The
QWL is also very close to the point where occupancy n(u)|r changes trend, i.e. has
a maximum of the second derivative. The line of maxima in d?n/du?|r can also
be considered a crossover line between metallic and insulating behavior (light blue
dotted line on panel (a)).
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Figure 4.31: Evolution of the density of states with increasing temperature. At
low temperature there is a clear quasiparticle peak in the density of states. The
quasiparticle peak gradually disappears in the bad metal regime which is centered
around the QWL. The orange line is the density of states at the QWL. The data
are shown for the fixed chemical potential ;1 = 3.5 and U = 4, which corresponds to
roughly 15 % doping.

The self-energy is then easily extracted from the real-axis result

YEew)=wtpu—c— A e w). (4.36)

—~

This procedure should in principle yield the same self-energy for any value of ¢, but
in practice this is not found to be the case. However, a good estimate of ¥(w) is

obtained by averaging the results of each continuation, i.e.

N(w) = % S S(esw). (4.37)

=1

Similarly, one could first calculate the Green’s function

G(w) = / depo(2) Ale, w) (4.38)

and then get the self-energy from the DMFT self-consistency. In practice, we have
used 40 values of ¢, equally spaced within the energy range of the non-interacting
band, and found that the systematic and numerical error of MEM gets canceled by
the averaging. We have found that in this approach, physically meaningful solutions
are always obtained, results are more consistent and have less numerical noise, but

at the expense of performing a much larger number of analytical continuations.
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Figure 4.32: (a) Family of resistivity curves calculated along lines parallel to the
QWL (orange). (b) Upon rescaling the temperature with adequately chosen param-
eter Tp, the resistivity curves collapse and reveal mirror symmetry of metallic-like
and insulating-like behavior around the QWL. Ty depends on the distance from the
QWL as T,(du) ~ du®, with zv ~ 1.35.

Where available, we cross-checked our results with the findings in Ref. [45] where
the analytical continuation is performed via Pade approximant on the high-precision

CTQMC data, and found very good agreement.

4.2.5 QC scaling tests

We carried out a careful A-analysis for the doped Mott insulator (see section ,
and we display the resulting QWL trajectory p*(7) as an orange line in all plots
(throughout the following, an asterisk in the superscript indicates physical quantities
evaluated along the QWL; e.g. p*(T) is resistivity calculated at temperature T at
p=p*(T)). The QWL, separating the metallic-like and the insulating-like behavior,
marks the center of the corresponding QC region, where the resistivity curves are

expected to display the scaling behavior of the form

p(p, T) = p*(T)F(T/To(dp)). (4.39)

Here the parameter Ty should assume power law dependence on the deviation from
the QWL: T,(dp) ~ dp?, with dp = p — p*(7T).

To check validity of the scaling hypothesis Eq. (4.39)), we calculate the resistivity
along the lines parallel to the QWL, as shown in Fig. [£.32h. We find that the
resistivity shows very weak temperature dependence along the QWL. In particular,

above T' = 0.08 it follows the line of constant resistivity which coincides with the
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MIR limit, p*(T" > 0.08) = p,,, (in contrast to the behavior previously established at
half-filling where p > p, .. along the QWL). In fact, all curves converge precisely to
the MIR limit at high temperatures, suggesting its fundamental role in characterizing
the metal-insulator crossover for doped Mott insulators. The curves also display the
characteristic "bifurcation" upon reducing temperature, and a clear change in trend
upon crossing the QWL. The scaling analysis confirms that all the curves indeed
display fundamentally the same functional dependence on temperature, and that
they all can be collapsed onto two distinct branches of the corresponding scaling
function (Fig. [.32p). The scaling exponent has been estimated to be zv ~ 1.35 +
0.1 for both branches of the scaling function, which display mirror-symmetry [22]
over almost two decades in T'/Tj, and the scaling covers more than three orders of
magnitude in resistivity. The QC region (green in Fig. [£.27h) spreads above the
critical end-point (red points and dotted line) and extends to lower temperatures as

T, is reduced.

4.2.5.1 Boundaries of the QC scaling region

The explicit form of the scaling function can be obtained by considering the following

(equivalent) form of the scaling equation

* n dlLL
ol T) = (D) (1) (1.40)
with the advantage of F(m) being a smooth analytical function in x. Then, the

scaling function ﬁ(m) can be obtained by plotting the DMF'T resistivity data versus

dp

717-> and performing a numerical fit. This is shown in Figure

the argument =z =
1.33h. F (x) is approximately linear on the logarithmic scale which implies that
F(z) =~ 10%*, where B ~ —0.33. This analytical form is consistent with the mirror
symmetry of the scaling formula near the QWL, F(z) = 1/F(—z). We can see that
the scaling region goes beyond the mirror symmetry of the scaled resistivity curves,
especially on the metallic side of the QC region.

The scaling region can be estimated from the color plot of the relative error
r = |ppayrr — 105%|/pparer, which is shown in Figure , analogously to the
Fig. [4.20l The boundaries of the QC scaling region defined by r < 10% are shown
with gray dashed lines and correspond to the values xy;, = —1.0 and x. = 1.5.

Note that they coincide with the = 3.0 line (red dashed; it corresponds to chemical
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Figure 4.33: The extent of the scaling region.(a) The DMFT data are plotted as a
function of the scaling argument z to obtain a fit for the scaling function. The range
of x where DMFT data points fall on a single, well defined curve can be used as
an estimate of the scaling region. (b) Between x = —1.0 and x = 1.5 (gray dashed
lines), the relative error of the scaling formula is below 10%. The boundaries of the
scaling region coincide with the p = 3.0 line (dashed red) and the knee-like feature
in resistivity p(7')|s which marks the boundary of the linear resistivity bad metal
region (blue line). (¢) The mirror symmetry is found where the two branches of
|log F'(y)| coincide. (d) The scaling region in the p — 7" plane; the scaling is valid
for T' 2 4T..

124



4.2 DOPING-DRIVEN MOTT MIT

potential being at the lower edge of the upper Hubbard band), and the knee-like
feature in p(T')|s curves (blue dashed; it corresponds to the boundary of the linear
resistivity bad metal region). It is obvious from this plot that the QC scaling region
completely matches the region of typically bad metallic temperature dependence of
the resistivity (see next section).

The boundaries of the QC scaling region can alternatively be estimated simply
by looking at Fig. and observing the maximum and minimum values of x for
which the DMFT results fall on a single well defined curve. This yields z,;, = —1.0
and . = 1.5. These lines are also shown in Fig. (gray dashed) and are in
good agreement with the independent estimate based on relative error r.

Finally, the region of mirror-symmetry can be estimated by plotting the DMFT

resistivity data |logp% as a function of y = T/du* (shown in Fig. 4.33¢) and
observing the lowest y at which the two branches of data are found to coincide.

This analysis yields Ymin = 1 = [Zmin/max| ', in agreement with other approaches.

4.2.6 Connection with bad metal behavior

We demonstrated the emergence of clearly defined quantum critical behavior thor-
ough an analysis of the (u,T) phase diagram, with du = p — p* as the scaling
parameter. From the experimental point of view it is, however, crucial to identify
the corresponding QC region in the (J,7") plane and understand its implications for
the form of the resistivity curves for fixed level of doping p(T')|s. By performing a
careful calculation of the 6(y, T') dependence (see Fig. [4.34)), it is straightforward to
re-plot our phase diagram and resistivity curves in the (J,7") plane. Remarkably, we
find that the quantum critical scaling region covers a broad range of temperatures
and dopings, and almost perfectly matches the region of the well-known bad metal
transport [94] 45], characterized by the absence of long-lived quasiparticles and lin-
ear p(T)|s curves. We first analyze the (0,7) phase diagram in detail, and then
establish a connection between the slope of p(T")|s curves in the bad metal regime
and the QC scaling exponent vz.

In Fig. we show the phase diagram of the doped Mott insulator. At T = 0,
the Mott insulator phase is found exclusively at zero doping. At low enough tem-
perature and finite doping, characteristic Fermi liquid behavior is always observed.
Here, the resistivity is quadratic in temperature, while a clear Drude peak is ob-

served at low frequencies in optical conductivity and density of states (see Fig. [4.31]).
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Figure 4.34: Lines of constant doping intersect with the QWL (orange), along which
the resistivity is equal to the MIR limit p,,, .. As temperature is increased at a fixed
level of doping, one moves from the metallic to the insulating side of the transition.

The coherence temperature Ty, is found to be proportional to the amount of doping
J, however with a small prefactor of about 0.1, in agreement with Refs. [86] 45]. In
a certain temperature range above Tgr,, a Drude peak is still present as well as the
quasiparticle resonance in the single-particle density of states, but the resistivity no
longer follows the FL 72 dependence. This corresponds to the “Resilient Quasipar-
ticle” (RQP) transport regime, which was carefully examined in Ref. [45]. At even
higher temperatures, the temperature-dependent resistivity at fixed doping p(7')|s
enters a prolonged linear regime (see Fig. [4.35b) [95], which is accompanied by the
eventual disappearance of the Drude peak around the MIR limit. This behavior is
usually referred to as the Bad Metal regime [45]. The resistivity is comparable to
the MIR limit throughout the BM region, and the QWL (as determined from our
thermodynamic analysis) passes through its middle.

The region of linear p(T)|s dependence is found to be completely encompassed by
the QC scaling region between the dashed lines on Fig. (see previous section).
We therefore expect that the emergence of the linear-T dependence of the resistivity,
as well as the doping dependence of its slope, should be directly related to the precise
form of the corresponding scaling function. Indeed, at high temperature and close
to the QWL, the argument of the scaling function 2 = du/T"/* is always small (due
to the T/#” factor in the denominator), and the scaling function can be linearized,
viz.

Flz) =1+ Az +--- (4.41)

126



4.2 DOPING-DRIVEN MOTT MIT

a o5
04l Quantum critical
- r bad metal
° .
E 0.3F P
s | &
g 0.2 §/
= N O’
01k Resilient
: _ quasiparticles
N i L L
0 005 01 015 02 025 03
Doping &
b 1.8 - =2
16F s GCREES
14F S =

Sy _— . g
12F / i &0 \’6‘/ |
, = o

0.6

Resistivity p [pyr]
o
®
T T
L] ° ° ‘.,
\\\ ‘.
N
s N
3
L)

041

02F ¢

L
0 0.1 0.2 0.3 0.4 0.5
Temperature T

Figure 4.35: (a) DMFT phase diagram of the doped Mott insulator on a frustrated
lattice. The bad metal (green) region matches perfectly the region of quantum
critical scaling. (b) The bad metal regime features linear temperature dependence
of resistivity with the slope roughly proportional to an inverse power law of doping
which we find to be a consequence of underlying quantum criticality.

We find that the coefficient A has the numerical value A ~ —0.74. The functional
form for p(7T)|s close to the QWL is then directly determined by the behavior of the

scaling parameter z(7T')|s
p(T)ls = p*(8)(1 + Ax(T)]5) (4:42)

On Fig. we show the dependence z(T" — T7(9))|s for various dopings. When
10% < 6 < 25%, x(T) is found to be linear in a wide range of temperature around
T*(6). Therefore,

ox

p(T)ls = p*(9) <1 +A 55

(T — T*(é))) . (4.43)

8§, T=T"(9)

The slope of 2(T')|s at T = T*(§) can be estimated numerically, but in the following
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we perform a semi-analytical derivation as it provides additional insight

22|
9T |5,7=T"(5)’
to the phenomenology of our model.

First we can rewrite x(7T)|s as
2(T)s = (6, T)(T = T7(9))

so that the quantity ¢(d,T) corresponds to the slope of z:(T")|s precisely at the QWL,

1.e.

ox
c(6,7%(9)) = =— )
or §,T=T*(5)
On the other hand we know 5
_ ou
r= T1/2v

and we can use this to calculate ¢(d,7"). We have

(6, T) — p(T)

N ORE

Setting here T'= T*(0) immediately would yield a 0/0 expression on the right-hand

side of the equation so we make one additional step. We first multiply the right-hand

side of the equation by % to obtain

u(,T) = p*(T) § — 5*(T)

—1/z2v
S—o (1) T-T(6)

c(0,T) =

Now we are ready to take the limit 7" — T*(9) of the two rationals that appear in
this expression. Both numerator and denominator go to zero as as I' approaches
T*(6), which is by definition the (partial) derivative of the quantity in the numerator

with respect to the quantity in the denominator. For the second rational we have

6 —6(T) AT\ "'
qu%r*l(a) T —T+(5) T ( do ) = —1/K©) (4.44)

where K(§) is the slope of the QWL 7%(§), at a given value of doping. The minus
sign comes from the fact that when 7' > T%(§), § < 6*(T") and vice versa. For the
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Figure 4.36: The information needed to switch between p and ¢ dependence of
quantities is contained in the charge compressibility.

first rational we have

lim

u(6.T) = (1) (

T-1+8) 0 —0*(T)

@ —1
o

x*(6)

which is the reciprocal value of charge compressibility precisely at the QWL i.e.
X (0) = x(8,T*(0)). The above equation is illustrated in Fig. Now we can
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Figure 4.37: Color plot of the charge compressibility has the "fan-like" form, as
generally expected for quantum criticality. The compressibility is approximately

constant along the QWL.
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estimate the limit of the entire expression for ¢(d,T)

1

c(6, T(6)) = — -
) X*(0) K(6) T*(0)=

(4.46)

Now we notice that in the doping range 10% < § < 25%, T*(9) is basically linear,
which means K (0) ~ K. Performing a linear fit to 7%(9) we obtain 7%(9) ~ Ko+ K9,
with K ~ 2 and K, small. Furthermore, we note that the charge compressibility
is constant along the QWL, as shown in Fig. This may be interpreted as
another manifestation of the quantum critical behavior we identified. We have

X*(6) = x* = 0.33. Finally we obtain

1

c(6, T%(0)) ~ — -

(4.47)

Neglecting Ky and noting that for § > 5%, p*(0) = pyum, We have that in close

vicinity of the QWL, resistivity is approximated by a linear function of the form
Pacs (D5 X s (14+C577(T = K0)) . (4.48)

which is the central result of this section.

In the quantum critical bad metal regime, the resistivity has a linear temperature
dependence with the slope decreasing as a power —1/zv of doping. This demon-
strates a direct connection of the universal high temperature behavior in the Bad
Metal regime with the (zero-temperature) quantum phase transition. The MIR limit
of the resistivity is reached at temperature roughly proportional to the amount of
doping, T*(0) o 9, since the doping level sets the main energy scale in the prob-
lem. The result of this simplified scaling formula is color-plotted in Fig. (with
C' =0.69, K =1.97 and zv = 1.35) and shown to capture the features of the full
DMEFT solution at high temperatures.

On Fig. we plot the relative error of this approximation (3, 7') = |ppmer(0, T')—
pocem (0, T)|/pomrr(6,T). At low doping, the linear regime around 77%(§) is short
because here the linear approximation for z(7T')|s is not justified in a wide range
of temperature around the QWL. At dopings between 8 and 20%, =(T)|s is linear
in a much wider range of temperature, producing a longer linear regime in p(7)]s.
At § > 20%, the curvature of z(T)|s cancels the curvature of F(x), and p(T)|s is

found to be linear even at large x, where linear approximation of 15(13) is no longer
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Figure 4.38: The linear approximation for p(T")|s works well in a large portion of
the phase diagram. (a) The scaling argument temperature dependence x(7T)|s can
be approximated with a linear function in a wide range of temperature around
the QWL T™*(4), but only for mid-range dopings. (b) The linear approximation
for p(T')|5 works well even where F(x) can no longer be approximated by a linear
function (gray dashed lines denote |z| = 0.5). This is due to cancellation of the
curvatures of F'(z) and z(T)|s.

4.2.7 Comparison with experiments

Sufficiently systematic experimental studies of doped Mott insulators, covering an
appreciable range of doping and temperature, remain relatively scarce. Still, ap-
proximately linear temperature dependence of the resistivity at high temperatures
with the slope that decreases with doping has been observed, most notably in the

seminal work of Takagi et al. [97] on Lay_,Sr,CuQOy4. To compare with our theory,
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Figure 4.39: Left panel: The DMFT result resembles the high-temperature regime
of the cuprates. The fully quantitative explanation of the low temperature part of
the phase diagram is still elusive, but it is tempting to make three statements: 1)
The Mott transition happens in stages - first stage is the sector selective transition
between the full antiferromagnetic insulator and the pseudo-gap phase with Fermi
pockets; the second stage reconstructs the Fermi surface completely leading to a
doped Fermi liquid phase [96, 2, 26]; 2) In the vicinity of the second, PG-FL QCP,
the quantum fluctuations boost the pairing mechanism producing the maximal 7T,
[1, B]; 3) The hidden local Mott transition produces the QCUBM regime observed
at high temperatures, in the same way in single-site DMFT the QCP hidden by
the first order transition produces the QC region at T' > T,.. Right panel: linear
resistivity regime in cuprates from Ref. [97]. The red line (added) is the estimate
for the MIR limit in this material.

in Fig. we color code the reported experimental data; here the temperature

is shown in the units of T at 20% doping (note that the highest temperature

MIR
shown in experiment is around only 0.1 of the estimated Fermi energy, while the
estimated interaction strength is comparable to U = 4), and the resistivity is given
in units of p,,,, which in this material is estimated as 1.7 mQcm. The experimen-
tal results presented in Fig. cover the temperature range of 150 — 1000 K at
5 —30% doping. Here one observes a striking similarity between DMFT theory and
the experiment, as already noted in early studies [95] 04, [08]. We established this
result by focusing on an exactly solvable model, where all ordering tendencies are
suppressed, and single-site DMFET becomes exact. Real materials, of course, exist in
finite (low) dimensions where systematic corrections to DMFT need to be included

[99, 44] [78, 100]. In many cases |25, 101} 102], these nonlocal corrections prove
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Figure 4.40: Resistivity given by (a) the semi-analytical formula obtained from the
scaling hypothesis, (b) DMFT result, and (c) the experimental result on cuprate
Lag_,Sr,CuOy, samples from Ref. [97].

significant only at sufficiently low temperatures. This indicates that our conclusion
should remain valid and accurate in the high-temperature incoherent regime, estab-
lishing a conceptual link of the universal aspects of Bad Metal behavior and the

quantum criticality associated with the Mott metal-insulator transition.

133



5. Conclusions and prospects

We have successfully established, on theoretical and experimental grounds, that the
high-temperature signatures of the Mott transition coincide with those of a quan-
tum critical point, despite the presence of the finite temperature critical end-point
and the associated coexistence region. In a large portion of the phase diagram, the
DC resistivity has been found to follow a generalized quantum critical scaling law
(generalized only in the sense that the role of the critical value of the control param-
eter is taken by a temperature-dependent quantity). Furthermore, we associated
the linear resistivity around and beyond the Mott-Ioffe-Regel limit with the validity
of this quantum critical (QC) scaling law, which provides new insight in the long
standing problem of bad metal behavior.

To show the above we have performed large scale numerical computation, in
excess of 500000 CPU hours, spanning 2 years in total. The bottleneck of the
calculation was the solution of the impurity problem arising in single-site DMFT,
and we used codes which are currently cutting edge in the field, both optimization-
wise and method-wise [58]. Single-site DMFT was already known to qualitatively
describe the phenomena associated with the Mott transition in many materials, but
we were able to obtain the results with unprecedented level of detail, as necessary
for the scaling analyses we subsequently performed.

Apart from the numerical simulation, we introduced, discussed and tested in
practice the notion of the instability line, and connected it to the previously devel-
oped concept of the Widom lines. The use of a temperature dependent crossover line
in the QC scaling formula is an original contribution to the sum of known QC phe-
nomena and provides a novel approach to finite T, first-order transitions in general.
While previous efforts usually focused on the near vicinity of the finite temperature
critical-end point of the Mott transition, we showed that scaling behavior can be
observed in a much bigger portion of the phase diagram, at T" > T.. The usefulness

of our theory has been verified in an extensive experimental effort by Tetsuya et.
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al. [84] who documented the proposed universality in high-temperature behavior in
3 different organic materials. On the other hand, our theory of the origin of linear
resistivity in the bad metal regime is far from being the only one (|14}, 13]), and
there are even other scaling scenarios proposed as the description of this regime
[103]. However, our theory of quantum critical scaling brings further evidence to
the intuition that the strange properties of the normal state in cuprates have much
to do with the vicinity of a quantum critical point. Moreover, our approach, unlike
any other, provides a unified framework for dealing with the two largest classes of
unconventional superconductors (k-organics and cuprates) in a similar way a recent
study connected the phase diagram of pnictide superconductors with that of the
cuprates [104].

There are however a number of standing issues with our theory and several
immediate generalizations which should be tested in future work. Firstly, we have
observed that the critical exponents depend on the method used (IPT vs. CTQMC),
and also on the parameter used in the scaling formula (U vs. p). The open question
now is to what extent is the critical exponent universal, and whether one can truly
observe different universality classes of Mott insulators, in experiment. Also in
theory, one needs to address various models and investigate the dependence of critical
exponents on the choice of scaling parameter and specifics of the model in more
detail.

One model of particular interest is the Anderson lattice model which features
two Mott transitions - between the integer filled Mott insulator and the hole-doped
or electron-doped metal [38]. The hole-doped transition does not seem to feature a
coexistence region and here T, = 0. Testing the scaling hypothesis in this case and
comparing the extent of the scaling region between the zero 7T, and finite T, cases
should be an important line of future work.

Another important model that should be revisited in the view of our results is the
double-Bethe lattice in which the T, has been shown to go to exactly zero by tuning
the inter-lattice hopping amplitude [37]. This provides an excellent opportunity to
track the evolution of the QC phenomena as the first-order transition continuously
transforms into a pure QCP. Furthermore, in the intermediate regime when both
the inter-lattice hopping and 7, are different from zero, the transition remains of
the first order even at 7' = 0, unlike what is the case in single-site DMFT. Tt would
be important to see whether the presence of the actual second order critical point at

T = 0 in our model has any importance for the observed high-temperature behavior.
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Also, an important question is whether our conclusions are restricted to models
with only the local correlations. Especially concerning the cuprates which are low-
dimensional and at low temperature exhibit a phenomenology drastically different
from what is seen in single-site DMF'T - one should test whether our results hold in
the presence of non-local correlations. These become essential at low temperature,
but may have non-trivial effects even in the bad metal regime. The effect of non-
locality can be systematically included in DMFT by considering a site cluster instead
of a single-site impurity, and such calculation should provide an important test of our
approach. Furthermore, the effects of particle-hole asymmetry can also be tested,
although the comparison with k-organic systems which are triangular lattices is
already very favorable.

Most importantly, given the excellent agreement of DMFT with the x-organic
materials, one should be able to predict their pressure-temperature phase diagram
even away from half-filling. In a recent measurement on doped k-organics, linear
resistivity was reported, in agreement with our theory [I05]. Furthermore, the Mott
insulating state is not present in the doped systems (in agreement with DMFT),
but only a crossover between the weakly and strongly-correlated metallic states is
observed as pressure is varied. An important aspect for the characterization of
these regimes is the average double occupancy, which can be calculated in DMFT
with high accuracy. A study of double occupancy and dynamic (local) two particle-
correlations, at a fixed level of doping and varied on-site interaction energy U, could
be of high importance in the view of future experiments.

Having this in mind, we believe the results presented in this thesis put the funda-
mentally important phenomenon of the Mott transition in a wider perspective, and
open a clear direction for future studies possibly leading to a deeper understanding

of the many-body correlation in condensed matter systems.
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