Naslov (eng)

Density functional theory for studying electronic states of aqua- and oxo- first row transiton metal complexes: doctoral dissertation

Autor

Vlahović, Filip Ž., 1989-, 58973705

Doprinosi

Gruden-Pavlović, Maja, 1970-, 12800615
Swart, Marcel, 1971-, 59792137
Zlatar, Matija, 1979-, 27795047
Milčić, Miloš, 1973-, 12861799
Otten, Edwin, 1980-, 59796745

Opis (srp)

У оквиру ове докторске тезе проучавана је компликована електронска структура аква- и оксо- комплекса прве серије прелазних метала. Теоријским методама, заснованим на DFT, израчунате су енергије основних и побуђених електронских стања комплекса прелазних метала. Испитано је понашање различитих DFA у циљу проналажења недвосмисленог начина за одређивање основног спинског стања оксо- и хидроксо- комплекса гвожђа, што је захтевaн задатак, и са теоријског и са експерименталног становишта. Резултати нас усмеравају на коришћење S12g за оптимизацију, као и за одређивање основног спинског стања. За рачунање побуђених стања употребљене су две различите методе (TD-DFT и LF-DFT) а резултати рационализовани и упоређени са експериментално добијеним. Резултати указују на знатно боље понашање LF-DFT методе за рачунање побуђених стања и репродукцију експерименталних спектара. У склопу ове дисертације изведено је и EDA изучавање серије оксо- и хидроксо- модел комплекса гвожђа. Енергија везивања разложена је на хемијски смислене доприносе. Резултати показују да је најбитнији фактор, одговоран за енергетску диференцијацију енергија побуђивања, неопходна да се метални јон из изолованог електронског стања доведе у електронско стање које поседује у комплексном једињењу. Следећи допринос по важности је орбитална стабилизација услед успостављања метал-лиганд хемијске везе. Примарни изазов је представљало успостављање одговарајућег нивоа теорије, објашњење међусобних односа између структурних особина и металног окружења са електронском структуром, као и рационализација добијених резултата и експерименталних података. Научни садржај ове дисертације предлаже рачунарске кораке којима чине DFT поузданом у објашњавању, тумачењу и предвђању карактеристика и својства комплекса прве серије прелазних метала. Рационалном применом предложених методологија, имамо прилику да разјаснимо експерименталне недоумице и искористимо основна начела како бисмо разумели хемијске сложености.

Opis (eng)

In the scope of present doctoral thesis, the complicated electronic structure of aqua- and oxo- complexes of the first row transition metals is studied. Energies of the ground and excited electronic states of transition metal complexes are calculated using DFT-based theoretical methods. The performance of different DFAs was investigated in order to find an unambiguous way to determine the ground spin state of oxo- and hydroxo-iron complexes, which is one of the most demanding tasks, both from theoretical and experimental point of view. The results direct us to use S12g for optimization as well as for the determination of the ground spin state.For calculation of excited states, two different methods (TD-DFT and LF-DFT) are utilized, whereas the results are rationalized and compared with those obtained experimentally. The results indicate a significantly better performance of LF-DFT method for calculation of excited states and reproduction of experimental spectra. In addition, EDA study of a series of oxo- and hydroxo- iron model complexes was performed. The binding energy is decomposed into chemically meaningful contributions. Obtained results show that the most important factor, responsible for the energy differentiation, is the destabilizing preparation energy based on excitation energy requirements and oxidation state of the metal. And the other is the stabilizing orbital interaction energy established when chemical bonds are created. The primary challenge was to establish an appropriate level of theory able to explain the relationships between structural features and electronic structure, and in turn rationalize the experimentally obtained results. The scientific content of this dissertation proposes computational steps which make DFT reliable for explaining, interpreting and predicting the characteristics and properties of first row transition metal complexes. By rationally applying the proposed methodologies, we have an exclusive opportunity to clarify the experimental blindspots and apply the basic principles in order to understand the chemical complexities.

Opis (eng)

Chemistry - Inorganic chemistry / Хемија - Неорганска хемија Datum odbrane: 17.08.2020. null

Jezik

engleski

Datum

2020

Licenca

Creative Commons licenca
Ovo delo je licencirano pod uslovima licence
Creative Commons CC BY-NC-ND 2.0 AT - Creative Commons Autorstvo - Nekomercijalno - Bez prerada 2.0 Austria License.

http://creativecommons.org/licenses/by-nc-nd/2.0/at/legalcode