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Abstract

Pin-loaded attachment lugs are the most responsible for wing-to-fuselage load transfer during the flight
and, therefore, their structural integrity is crucial for overall aircraft safety. The potential failure of the
wing-fuselage attachment lug would almost certainly result in wing loss and, subsequently, loss of life.
As a result, special attention must be devoted to the fatigue design of these parts. Since lugs are the most
heavily loaded components, their load-bearing capacity must be checked in accordance with
recommendations defined by aviation regulations. During the service, the highest stresses are expected
to occur in the region around the attachment lug’s hole; thus, potential fatigue damage could occur and
spread in this area. To prevent this, materials used in the wing-fuselage attachment manufacturing are
expensive high strength fatigue-resistant alloyed steels and according to Federal Aviation Administration
(FAA) regulations these attachments are not the subject of experimental verifications since they are
designed as safe-life components.

However, some recent events in commercial aviation indicate that damages in the wing-fuselage
attachment might occur quite unexpectedly. Cracks were found on the pickle forks (parts of the wing-
fuselage attachment of Boeing 737NG jets) with less time in service than meets the threshold for
mandatory inspections. The cracking issue has led many airlines to check their airplanes and it’s reported
that approximately 50 jets have been grounded worldwide in a search of a solution for this problem.
Thus, numerical investigation of this kind of attachment is absolutely justified since the evaluation of
aircraft safety is of the highest importance.

The research presented in this thesis was based on three main steps: i) analytical evaluation of loads
acting on the wing of the light aerobatic aircraft during the flight, ii) experimental analysis of real
aerobatic aircraft wing under presumed loads, and iii) numerical evaluation — based on the use of the
extended finite element method (XFEM) and finite element method (FEM) — of stress intensity factors
(SIFs) in the case of fatigue crack occurrence in the wing-fuselage attachment lug (SIF values are the
most important for fatigue life estimation). All three steps are connected since the results of one step are
used in others with the ultimate goal: to achieve the best design of lugs which will significantly increase
the fatigue life of damaged lug and prevent catastrophic consequences.

Experimental analysis of full-scale wing was carried out for the purpose of numerical model verification.
Comparisons of deformations measured and deformations calculated in FE simulations of aircraft wing
deflection under load showed very good agreement, also confirming that loads acting on the wing-
fuselage attachment lug were accurately evaluated in the analytical step. The detailed analysis has shown
that the total maximum axial force transferred to lug by pin would be Paxmax = 208,830.7 N, whereas the
maximum transverse force would be Pt max = 20,177.3 N.

Then, to demonstrate how dangerous the crack appearance could be and to estimate the residual strength
and fatigue life of the cracked component, a finite element model of the actual attachment lug was made,
and analyses were carried out using the maximum forces. It was assumed that due to very high stress
both the corner crack and through crack may appear in the lug, i.e. that there is a possibility of damage
presence which does not spread throughout the whole thickness of the lug and a possibility of the
appearance of damage through the whole thickness. The idea was to compare the growth of the corner
crack with the growth of the through crack, both located at the same position, and then to assess the risk
of losing the integrity of wing-fuselage attachment once the crack has occurred. The calculated number
of cycles to complete failure (obtained with the help of Paris law and using XFEM in Abaqus) was — as
expected — low, confirming the fact that the actual attachment lugs must be redesigned using a fail-safe
approach.

The assessment of obtained values of a number of cycles in XFEM analysis might be a problem since
the experimental data are missing; thus, classical FEM was used to evaluate the number of cycles

\



obtained by XFEM. The same geometry was imported into Ansys Workbench and the simulation based
on the use of Unstructured Mesh Method (UMM) and Separating Morphing and Adaptive Remeshing
Technology (SMART) was carried out, achieving very similar results. Differences in calculated mean
values of SIFs are not significant (XFEM results are somewhat higher), while the evaluated number of
cycles in Ansys is close to the number obtained using XFEM. It is important to point out that — unlike
the XFEM where the same mesh is used through the whole simulation — mesh around the crack front in
Ansys changes and adapts with every growth step for the purpose of better capturing the field values
around the crack front nodes.

Finally, after completing the above-mentioned three steps, in the final phase of work alternative designs
of the wing-fuselage attachment were analyzed with the goal of achieving longer fatigue life of the
damaged lug (fail-safe approach). Several geometrical parameters have been changed during the redesign
process with a predefined target: increase of the number of cycles until complete failure. The new
proposed design of lug brings increased mass (but not a significant increase when compared to the mass
of whole attachment), but significantly improved fatigue life which reduces the possibility of lug failure
before the crack is observed in regular maintenance inspections.

Key words: XFEM, Fatigue crack growth, Wing-fuselage attachment lug, Light aerobatic aircraft
Scientific field: Mechanical Engineering

Scientific subfield: Aerospace Engineering
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Caxkerak

VYiike okoBa ca HocehoM OCOBHHHUIIOM HAjOJTOBOPHH]E Cy 3a MPEHOC onTepehema ca Kpuia Ha TpyIl
TOKOM JIeTa, Ta jeé FHHXOB CTPYKTYPHH HMHTETPUTET KJby4aH 3a YKYIHY O0€30€qHOCT JIeTENuIe.
[ToTeH1jamHK JIOM YIIIKH OKOBa BE3€ KPHUJIO-TPYI CKOPO CHTYPHO OW pe3yaTHpao ryOMTKOM Kpuia |,
MOCJIEMYHO, TYOMTKOM KMBOTA IIyTHUKA. 300T Tora ce nocedHa nakiba Mopa IoCBETUTH IIPOJEKTOBAbY
OBHX €JIeMeHaTa ca acrekra JiomMa ycies 3amopa. C 003upoMm jaa cy yuike HajontepeheHuju nenoBu
OKOBa, MHUXOBa HOCHBOCT CE€ MOpa IMpPOBEPUTH Y CKIAAy ca mpernopykama aepuHucaHuM
Ba3/lyXOIJIOBHUM nponucuma. Ouekyje ce 1a he TokoM pagHOr Beka JohH 10 10jaBe BEIMKUX Halpe3amba
y 00J1aCTH OKO OTBOpA YIIKH; CTOTa O C€ y OBOM ITOJIPYYjy MOTJIE IT0jaBUTH U TIPOITUPUTH MPCIHHE KA0
pe3yaTar 3amopa Marepujaia. [la 6u ce To cripeuniio, MaTepujail KOju ce KOPUCTE y IPOU3BOIBU OKOBA
Be3e KPHJIO-TPYI jecy JITUPaHW YENHIM BHCOKE YBpCcTOhEe OTIIOPHU HAa 3aMOp M MpeMa MPOIMCHMa
denepanne ynpase 3a Ba3yXomioBcTBO (PAA) OKOBU HHUCY MPEAMET KCIIEPUMEHTAIHUX [IPOBEPA jep
ce IpojeKTyjy Kao 13B. safe-life kommoneHTe Ha KOjuMa TOKOM BeKa HHje J03BOJbCHA M0jaBa OMIIO0 KAaKBOT
omrehema.

MelyTtum, Heku HelaBHU Jjoral)aju y KoOMeplHjaJHOM Ba3lyXOIUIOBCTBY yKa3y]y Ha To Aa Ou omrehema
Ha BE€3U KPHWJIO-TPYI MOIJIa HACTaTH CACBUM HeouekuBaHO. OTKpPHUBEHE Cy NpPCIMHE Ha T3B. HocehuM
BUJBbYIIIKaMa (JIeJI0BUMa Be3e Kpuilo-Tpyn Tpyna aBuoHa Boeing 737NG) npe Bpemena npeiBuljeHor 3a
o0aBe3HHU mperyien oBor ckiomna. [IpoGieM yodeHHX NpCiMHA HABEO je MHOTE€ aBMO KOMIIaHHUje Ja
MpOBEpe CBOje aBHOHE M OKO 50 MITa3HUX JIETENUIA IPU3EMIBEHO j€ IIMPOM CBETA Y IMTOTPa3H 3a PEIICHEM
npobaema. Ctora je HyMEpUUYKO UCTPaKMBAKE OBE BPCTE BE3€ AIlCOIYTHO OIPABJAHO jep je MpoleHa
0e30e1HOCTH KJbYUHHX JIeJIOBa aBUOHA 0J1 HajBeher 3Hauaja 3a CUTYPHOCT JIETENINIIE U Iy THUKA.
HcTpaxkuBame MPEICTaB/bEHO Y OBOj TE3M 3aCHOBAHO je Ha TPH OCHOBHA Kopaka: 1) aHaIMTHYKO]
nporieHn onrepehema Koja Jeiyjy Ha KPHIO JIaKOT akKpoOaTCKOr aBHOHA TOKOM JieTa, 2)
EKCIEPUMEHTAIHO] aHAJIM3U PEAJHOr KpHJa akpoOaTCKOr aBHOHA H3JI0KEHOI HPETHOCTaB/BEHUM
ontepehemnMa, u 3) HyMEepHUYKO] MPOIIEHN — 3aCHOBAHO] Ha yHNOTPEOH MPOIIMPEHE METO/Ie KOHAYHUX
enemenara (IIMKE) u metone konaunnx enemenara (MKE) — dakropa unrensurera Hamona (PHUH) y
cllyuajy TiojaBe 3aMOpHE MPCIMHE Ha YIIIKaMa OKOBa Be3e KPHIO-TpyI (MIPaBUITHO U3padyHATe BPETHOCTH
®UH-a HajBakHHUje Cy 3a J00pY MpOIEHY BeKa elieMEHTa HM3JI0kKeHOTr 3amopy). OBa Tpu Kopaka Cy
MOBE3aHa jep ce pe3yJTaTH U3 JeJHOT KOPHUCTE y APYTUM C JaACHUM IMJbEM: OCTBAPUTH HAjOOJBH JTH3ajH
yIIku koju he 3Ha4ajHO moBehaTH HUXOB BEK IO/ 3aMOPOM KaJl c€ 10jaBH MPCIMHA U THME CIIPSYUTH
KaractpodanHe mocieauie.

VY by BepudUKaIpje HyMEPHUKOT MOJIeNIa U3BPIICHA je eKCIICpUMEHTAIHA aHallu3a Kpuja y IyHOj
BenmmunHU. [lopehema m3mepenux aedopmanuja u u3padynatux nepopmanuja y MKE cumynanujama
yruba Kpuia aBHOHa moja onTepehemeM, mokaszaia cy BeoMa J00po ciarame, notBplyjyhu nma cy
onrepehema Koja Jenyjy Ha yIIKy OKOBa Be3€ KPUJIO-TPYII T00pO MPOIECHEeHa y aHATUTUIKOM KOPaKy.
JlerasbHa aHaM3a je TMoKaszaja Jia OM YKylTHa MaKCHMallHa aKCHjaJlHa CWJa MPEHEeTa Ha YIIKY MPEKO
ocoBuHUIlE Omna Paxmax = 208,830.7 N, mokx Ou MakcumaltHa TpaHcBep3aiHa cwia oumna Pimax = 20,177.3
N.

3atumM, Kako OM ce MPOydYMII0 KOJUKO OM T0jaBa MpCIMHE MOTJIa OMTH OlacHa M Kako O ce MpoIleHuIa
npeoctaiga 4yBpcroha M BEK Tpajama IOJ 3aMOpPOM oOllTeheHe KOMITOHEHTE, HalpaBJbeH j& MOJEIN
KOHAUHUX eJIeMEHaTa YIIIKe OKOBa M CIIPOBEJCHE Cy aHaTu3e KOpUIThemeM MaKCHUMAalHH BPEIHOCTH
cuna. [IpermocraBibeHO je J1a ce 300T BpJIO BEJIMKOT Hampe3ama Ha YIIKH MOTY IO0jaBUTH W yraoHa U
MIPOJIOpHA MPCIIMHA, OJHOCHO JIa TocToju MoryhHoCT mojaBe omTehema kKoje He ujie 1o 1eloj 1e0buHI
yiike u MoryhHocT mojaBe omrehema 1o 11enoj nedspunu. Maeja je 6uia ga ce yrnopeau pacT yraoHe
MIPCIIMHE ca pacToM IpojopHe (AyOMHCKE) MpCinHe, 00€ CMEIITEeHe Ha MCTO] TO3UIIUjH, a 3aTHUM J1a Cce
MIPOLIEHU PU3HK Of] T'yOMTKa MHTETPUTETA OKOBA Be3e Kajia ohe 1o nojase omrehema. M3pauyHaru 6poj
IUKJIyca 10 MOTIyHOr jioma (no6ujen nomohy IapucoBor 3akona xopuimhewem [IMKE y Abaqus-y)
OMO je OYEeKMBAHO HHU3AK, IITO TOTBphyje UMILEHHUIly Ja C€ MpPOjeKTOBaHE YIIKE OKOBa MOpajy
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penusajuuparu kopumhemeM T3B. fail-safe mpuctyna koju 103BoJbaBa MMojaBy M pacT MPCIMHE JIO
onpeheHe myxuHe.

[Iponena nodujeHor 6poja mukiryca kopuimhemeM [IMKE Mosxe npencraBpatu mpoOiieM jep He ocToje
eKCIIEpPUMEHTAIHU TOJAIlM O PACTy TpCIUMHA Ha OokoBuMa; ctora je kimacuyna MKE kopumhena 3a
nporeHy Opoja mukiyca nooujenux y Abaqus-y. Mcra reomerpuja je yBesena y Ansys Workbench u
M3BpIICHA je HyMEepUuYKa CHMYyJallMja 3aCHOBaHa Ha KopHIIhemy METoJe HEeCTPYKTypUpaHE Mpexe
(MHM) u SMART TtexHonoruje unkopropupane y Ansys Workbench: nobujenu cy Bpiio ciauynu
pesynratu onnMma u3 Abaqus-a. Pasnuke y uzpadyHarum cpenmum BpenHoctuma G H-oBa Hucy Oune
3HauvajHe (BpeaHoctu nooujene kopuirhemem [IMKE cy Hemito Buiiie), 10K je mpouemeHn 0poj MUKITyca
y Ansys-y 6au3y 6poja nukityca gooujeHor y Abaqus-y. BaxHo je ucrahu na ce — 3a pasnuky oa IIMKE
IJIe C€ UCTa MpeXa KOPUCTHU TOKOM LIeJie CUMYJIalje — Mpeka oko (ppoHTa npciauHe y Ansys-y Mmema 1
npuiarohasa ca CBakuM KOPaKOM pacTa y cBpXy OOJber ,,XxBaTama' BpeJHOCTHU M0Jba OKO YBOPOBA MPEXKE
y 613uHU GpOHTA MPCITUHE.

KonayHo, HaKOH IITO Cy 3aBpIIEHAa CBa TPH KOpaka, y 3aBpIIHOj (a3u paja aHaIU3UPaHU CY
QITEPHATHBHH OOJIMIM YIIIKE OKOBA Be3€ KPHJIO-TPYI Ca IIMJBEM Jla C€ MOCTUTHE IYXKH BEK Tpajama
omrrehene ymke kopumhemem fail-safe mpucryna. Hekonnko reomerpujckux napamerapa je BapupaHo
TOKOM TIpolieca peu3ajHa ca yHanpea AepUHUCAaHUM LHJbeM: noBehaTu Opoj muKiIyca 10 HOTIYHOT
aoma ycnen 3amopa. HoBu mpeanoxkeHu Au3ajH yIIKe AOHOCH mMoBehaHy Macy (ajiu He W 3HauajHo
nosehany y nopehemwy ca MacoM YUTaBOI OKOBA), aJIM U 3HA4YajHO MOOOJbILIAH BEK IO/ 3aMOPOM IITO
cMamyje MOryhHOCT MOTIYHOr JoMa YIIKM Ipe Hero mro ce omTeheme NpuMeTH y peIoBHUM
MperyieinMa Kao JIeNTy OApIKaBamba JICTEIHUIIE.

Kibyune peuun: [IKME, PacT 3amopHe nipciuHe, YIIKa OKOBa Be3e KpHiIo-Tpyil, Jlak akpoGapcku aBUOH
Hayuna o6sact: O06nacT TEXHHYKMX HayKa, MAIIMHCTBO

¥Y:ika Hayuna obJiact: Ba3zgyxomnoBcBo

YK 6poj: 629.735:621.791.05: 539.42(043.3)
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Nomenclature
Lt

Lw

Mac

XAC

Xc.G

XC.G nom
FT

MF
Xcp
Fr
Frt
Mf
Mrf
q

P
SE

CE(y)
Csk

Z(y)
L(y)

MT(Y)
Ma(Y)
Xo (N)
Yo (N)
Z, (N)
Y, (N)
Z, (N)

CMac

Horizental tail lift (N)

Wing Lift (N)

Mean aerodynamic centre

Position of aerodynamic centre (m)

Position of centre of gravity (m)

Position nominal of centre of gravity (m)
Transversal forces due to aerodynamic loading (N)
Bending moment due to aerodynamic loading (N)
Positions of center of pressure (m)

Equivalent concentrated forces (N)

Total Equivalent concentrated forces (N)
Equivalent concentrated moment (Nm)

Total Equivalent concentrated moment (Nm)
Aerodynamic load per unit length (N/m)

local pressure (N/m?)

Area of elliptic wing (m?)

Local chord of equivalent elliptic wing (m?)

Chord of equivalent elliptic wing at plane of symmetry (m)
Local upward force (N)

Local lift force (N)

Mass of the wing per unit span (N/m))

Local torsion moment (N.m)

Aerodynamic moment about aerodynamic center (Nm)
Main spar reaction in X direction (N)

Main spar reaction in Y direction (N)
Main spar reaction in Z direction (N)
Main spar reaction in Y direction (N)

Main spar reaction in Z direction (N)

Mass of fuel (kg)
mass of the half empty wing (kg)

Gravity force (m/s?)

Friction coefficient

Root section incidence angle (deg)

Induced angle from the wing in tail region (downwash angle) v(deg)
Angle of attack (deg)

Aspect ratio

Wing span (m)

Wing Chord (m)

Lift coefficient of the airplane

Drag coefficient of the airplane

Airplane center of gravity

Moment coefficient about aerodynamic center
Gravity acceleration g = 9.81( m/s)?

Margin of safety

Load factor



ni
N2
n3
yo,
Sw
S.f
V
Va
Ve
Vb
Vpr
VNE
Vs
Vsk
a
ao
E

F

K
Ki
Kn
Kin
Ket
v

C

m
da/dN
AK
R

N
XGw
XGw
XGw
XGF
XGF
XGF

Abbreviations
EASA
FAR
SIF(s)
XFEM
LEFM
CTOD
FEM
BEM
GFEM
DEM

Airplane positive maneuvering limit load factor
Air plane negative maneuvering limit load factor
Load factor on wheels

Air density (kg/md)

Wing area (m?)

Factor of safety

Airspeed (m/s)

Design maneuvering speed (m/s)

Design cruising speed (m/s)

Design diving speed (m/s)

Design flap speed (m/s)

Never exceed speed (m/s)

Stalling speed (flaps retracted) (m/s)
Stalling speed (flaps full extended) (m/s)
Crack length (m)

Initial crack length (m)

Young’s modulus

Applied force (N)

Stress intensity factor (MPa mm??®)
Mode-1I stress intensity factor (MPa mm®®)
Mode-1 stress intensity factor (MPa mm??)
Mode-1I stress intensity factor (MPa mm®®)
Effective stress intensity factor (MPa mm?®%)
Poisson’s ratio

Constant (in Paris equation)

Constant (in Paris equation)

Fatigue crack growth rate (mm/Cycle)
Stress intensity factors range

Stress ratio

Number of cycles

Wing c.g in x direction (m)

Wing c.g iny direction (m)

Wing c.g in z direction (m)

Fuel c.g in x direction (m)

Fuel c.g in y direction (m)

Fuel c.g in z direction (m)

European Aviation Safety Agency
Federal Aviation Regulations

Stress Intensity Factor

Extended Finite Element Method.
Linear Elastic Fracture Mechanics
Crack Tip Opening Displacement

Finite Element Method

Boundary Elements Method
Generalized Finite Element Method

The Displacement Extrapolation Method
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SN
VCCT
GDC
MCCI
PUM
DOF
UMM
PUFEM

Stress Level Versus Number of Cycles (curve)
Virtual Crack Closure Technique

Generalized Form Displacement Correlation Method
Modified Crack Closure Integral

Partition of Unity Method

Degrees of freedom

Unstructured Mesh Method

Partition of unity finite element method
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CHAPTER 1
INTRODUCTION



1 INTRODUCTION

1.1 Background and Motivation

The wing spar is connected to the supporting elements of the aircraft fuselage through specially
designed elements-aircraft fittings. In most cases, to the main frame of the fuselage. All loads from the
wing are transmitted to the main frame and through the wing-fuselage fitting.

It is needless to point out the extreme importance of the accurate design of this fitting: its fatigue
damage leads to an immediate separation of the wing from the fuselage and a consequent loss of aircraft.
During the flight, fatigue cracks appear on the parts of the wing exposed to tensile stresses. These cracks
are monitored, and certain measures are taken when they reach a critical length, but their appearance is
not tolerated in the wing-fuselage fittings. This is also the reason why the cracks growth in these has not
been studied so far and why the experimental tests of the remaining fatigue life of the damaged fitting
were not required from the manufacturer.

This, of course, does not mean that fatigue cracks did not appear and that they cannot appear in
practice: a few recent cases, which only by sheer luck did not turn into tragedies, confirm this. Namely,
in November 2019, the appearance of fatigue cracks on the wing-fuselage fitting for two Boeing737 NG
aircraft was reported by the Indonesian Airline Lion Air. These cracks were accidentally discovered
before their regular inspection [1].

After that, over 50 aircraft of this type were landed around the world to determine the condition
of their wing-fuselage fitting (Ryanair discovered 3 cracked wing-fuselage fitting in its fleet) [2]. The
institutions of the international aviation authorities in charge of aircraft safety are now widely considering
the introduction of mandatory fatigue tests for damaged fittings to estimate their remaining fatigue life.

By redesigning the wing-fuselage attachment, it is possible to extend the life even in the event
of damage, but this will not change the long-adopted approach (safe-life) in their design. The intention
is to increase the aircraft's safety and guarantee it even in the event of unforeseen damage. Of course, the
question arises about the size of the "safe” damage to the fitting, i.e., the crack size that will not lead to
its failure.

The answer to this question can be given most precisely by experiments that are often time-
consuming and expensive. As a suitable alternative to the experimental verification of a newly designed
(or modified) fitting, numerical modelling is imposed. Over the years, many numerical techniques, such
as the finite element method (FEM), the boundary element method (BEM), the mesh less process, and
the extended finite element method (XFEM), have been presented to simulate fracture mechanics
problems, such as fatigue crack growth.

By using XFEM, a conformal mesh is not required, which makes modelling of variable
discontinuities or crack growth significantly simplified. On the other hand, by applying the Unstructured
Mesh Method (UMM), FEM has been improved by enabling alteration of the finite element mesh only
in the immediate vicinity of the crack, which considerably simplifies the modelling of crack propagation
with this method as well.

1.2 Literature review

Pin-loaded attachment lugs (Figure 1.1) are the most responsible for wing-to-fuselage load
transfer during the flight and, therefore, their structural integrity is crucial for overall aircraft safety. The
potential failure of the wing-fuselage attachment lug would almost certainly result in wing loss and,
subsequently, loss of life.

As a result, these parts have to be carefully designed as far as fatigue is conserved. The load-
bearing capacity of the lugs must be checked following recommendations defined by the aviation
regulations since they are the most heavily loaded components.
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During the service, the highest stresses are likely to occur in the region around the attachment
lug’s hole; thus, potential fatigue damage could occur and spread in this area. In order to avoid this,
materials used in the wing-fuselage attachment manufacturing are expensive high strength fatigue-
resistant alloyed steels.

Lugs are redesigned and optimised regularly to reduce costs while maintaining required safety,
but new shape must be approved before manufacturing.

Figure 1.1 Light aircraft wing-fuselage attachment (circled) with two pairs of lugs

Many researchers have made great efforts to analyse the fatigue behaviour of different types of
aircraft attachment lugs and fittings.

Many researchers concentrated their efforts on analysing the fatigue behaviour of the various
types of aircraft attachment lugs and fittings.

S. Barter et al. (1994) [3]. Inspected two F/A-18 trailing-edge flap (TEF) hinge lugs, and large cracks
were found to be present. These cracks were found in different regions around the monoball bearing hole,
and they were similar. The surfaces of both hinge lug bearing holes indicated extensive pitting corrosion
and, in one case, extensive fretting, while the fracture surfaces revealed clear proof of fatigue. They
concluded that the crack growth rate was approximately 10 times quicker than the rate evaluated by the
manufacturer, and it is likely to be accelerated by the corrosive environment. Therefore, the contributing
factor in unexpected failure was corrosion fatigue. They suggested that performing a combined
photography and laboratory investigation can find the reason for a failure and improve inspection
methods to avoid future disastrous failures. Fractography offered the possible crack growth rate, which
showed that non-destructive investigation (NDI) are needed frequently and sensitively. A new NDI
procedure allowed for the detection of smaller cracks.

A three-dimensional boundary element method (BEM) and the J-integral were used by R.

Rigby and M. H. Aliabadi (1997) [4]. Used the BEM and mixed-mode J-integral to investigates crack
behaviour in attachment lugs. Stress intensity factors for both single and two-quarter elliptical cracks
were obtained for several crack length ratios and radius ratios. To evaluate the stress intensity factors for
cracks at attachment lugs. Also, they used the BEM and mixed-mode J-integral to investigates crack



behavior in attachment lugs. Stress intensity factors for both single and two-quarter elliptical cracks were
obtained for several crack length ratios and radius ratios.

C.R.F. Azevedo et al. (2002) [5]. Studied the failure of an aircraft landing gear; the failure was caused
by the fracture of the outer cylinder lug. The results revealed clear evidence of both stable and unstable
crack propagation caused by the orientation of the microstructure adjacent to the free surface. Moreover,
the corrosion cavities located in a critical area and the severe loads absorbed by the outer cylinder during
the landing procedure may be the reason for this failure.

Jong-Ho Kimu Honget et al. (2003) [6]. This research conducted by stress intensity factors for cracks
passing through the thickness initiated from lug holes was compared using the weight function method,
the boundary element method (BEM), interpolating the Brussat solution. The authors found that the
prediction of fatigue crack growth based on the numerical stress intensity factor was quite similar to the
experimental expectation. Also, it was found that the fatigue life of an attachment lug decreases as the
clipping level increases because the clipping of high load cycles reduces the delay effect.

Katarina Maksimovic¢ et al. (2004) [7]. Suggested analytical and numerical methods for estimating
fatigue crack growth life and calculating stress intensity factors for cracks at the attachment lugs. The
stress intensity factor results obtained from finite element numerical methods were in good agreement
with the analytical results for the damaged lugs. The presented analytical methods satisfy the
requirements for damage tolerance analyses of lugs-type joints.

Lucjan Witek (2006) [8]. Analyze the failure of a wing-fuselage connector for an agricultural aircraft.
The careful observation indicated that the original crack surface was covered with corrosion products;
therefore, the failure had a combined fatigue and corrosion character. A method of nonlinear finite
element was employed to analyse the stress state of the connector during the operating condition. The
wing lug failure occurred due to the high-stress areas in the wing lug region. The results were then
included in the total fatigue life (S-N) and crack initiation (e-N) analyses conducted for the load time
history corresponding to 10 minutes of light operation. Visual inspection revealed a typical fatigue
fracture with impact marks. The crack growth was accelerated by the corrosion which covered the crack
original surface. It was clear that the extreme stress in the critical area of the lug was the main reason for
premature fatigue failure. Based on his study, he advised redesigning the wing-fuselage connector for
better fatigue durability.

A. Lanciotti et al. (2006) [9]. Examined two different specimens experimentally.

The first specimen was tested using constant amplitude loading to validate the fatigue crack growth rate
data contained in NASGRO 4 software which is used for Damage Tolerance evaluations. This specimen
was also tested under variable amplitude loading to validate crack growth models used in this study. The
second specimen was tested using both constant and variable amplitude loading fatigue tests, a lug-fork
joint designed as the actual joints present on the aircraft. They observed a higher crack propagation rate
in the lug surface direction than in the lug thickness direction, in contrast to what was observed previously
in the literature. Moreover, they observed that the crack shapes were not concerning variable amplitude
loading or residual stress field produced during bushing installation. Also, they observed that fatigue life
is increased more than five times when ForceMate bushings are used, compared to the shrink fit bushings.
Huan and Moan (2007) [10]. Presented the fatigue life to failure is evaluated through the crack growth
concept. The behaviour of fatigue of the damaged lug is investigated to consider the effect of the lug
head. The failure analysis results compared with the relevant experimental results show that the
developed model can be used for a reliable estimate of the fatigue strength of the pin-loaded lug with
crack through-the-thickness of a hole.

L. Allegrucci et al. in (2009) [11]. Examined a lever reverse of the canopy balancing system of an
MB339 CD aircraft. The lever reverse forged a 7075-T6 aluminium alloy, was broken into two parts
during a pre-flight inspection. Visual observation showed the failure of the lever reverse resulted from
high-cycle fatigue caused by the application of an abnormal force due to an over length of the actuator
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lugs. The corrosion pit also aggravated the fatigue. Visual observation indicated that an over the length
of the actuator lugs caused a severe force on the lever reverse, resulting in high-cycle fatigue failure. A
corrosion pit also boosted the fatigue.

Li-Ming Wu and et al. (2011) [12]. Built a finite element model of a straight attachment lug subjected
to an oblique loading less than 450 using ANSY'S software, a boundary condition of cosine pin-bearing
pressure is assigned at the lug hole. By studying the influence of some dimensionless parameters such as
crack length, radius ratio, and pin-load angle (B) on the SIFs values. The SIF expression for the straight
attachment lug with a single through-the-thickness crack is determined and validated, which can be used
to calculate the stress intensity factor's amplitude (AK). The fatigue crack growth model is established,
and the fatigue crack growth behaviour of 30CrMnSiA straight attachment lugs was investigated
analytically and experimentally.

N. Antoni and F. Gaisne (2011) [13]. Suggested analytical models for bush fitting and pin-loading
condition, leading to an entire calculation of the stress distribution in the lug. Their results were verified
by comparing them with that obtained from finite element numerical simulations, which show the validity
of the adopted assumptions, such as geometric axisymmetry. The main phenomena of friction pin
deformation and local plastic effects under pin-loading are considered to enhance the models. Based on
stress or strain approaches, analytical fatigue models have been derived by considering a fatigue lifetime
calculation of connecting lugs.

S. Mikheevskiy et al. (2012) [14]. Calculated stress intensity factor using the weight function method;
this factor is essential for analysing fatigue crack growth. Also, they have determined the rate of load
shedding by computing the amount of the load transferred through the cracked ligament with the help of
the finite element method. Simulations of the fatigue crack growth under two-variable amplitude loading
spectra have been conducted using the UniGrow fatigue crack growth model. They compared their
computed results with experimental data to prove the ability of the UniGrow model to precisely predict
fatigue crack growth behaviour of two-dimensional planar cracks under a complex stress field. Moreover,
they have indicated that the relatively accurate prediction of fatigue lives of cracked bodies subjected to
complex variable amplitude service loading spectra can be attained using appropriate 'memory rules' and
the two-parameter driving force. The significance of the load shedding in lugs has been estimated by
accounting to reduce the resultant load in the cracked cross-section. They also concluded that eliminating
this in the fatigue crack growth analysis could result in a high underestimation of the life of fatigue crack
growth.

Boljanovi¢ and Maksimovié¢ (2013) [15]. They proposed a computational model to assess the residual
strength of a damaged lug subjected to cyclic loading. A crack through-the-thickness situation was
theoretically studied by using fracture mechanics based on numerical and analytical models.

Mookaiya et al. (2013) [16]. Proposed a computational model used to analyse crack growth in the
attachment lugs with single quarter-elliptical crack and those with single through-the-thickness crack.
The proposed model also addresses the fatigue life estimation, the stress analysis and the crack path
simulations. The commercial software ANSYS and quarter-point (Q-P) finite element were used to
analyse the stress around the crack tip and estimate the stress intensity factor.

Naderi and lyyer (2015) [17]. Used a three-dimensional finite element method (FEM) and extended
finite element method (XFEM) available in ABAQUS to calculate the stress intensity factor (SIF) in
straight lugs of Aluminium 7075-T6. Also, they estimated the crack growth and fatigue life of single
through-thickness and single quarter elliptical corner cracks in the attachment lug. They have compared
their results with the available experimental data for two different load ratios equal to 0.1 and 0.5. They
concluded that the results of the SIF obtained from the XFEM indicate that the estimated fatigue life was
significantly affected by the introduction of different loading boundary conditions.

Slobodanka Boljanovi¢ et al. (2017) [18]. They have developed a calculation procedure for evaluating
the strength of a pin-loaded lug with a crack through the thickness. Cyclic loading with either constant
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amplitude or an overload is applied to the lug. The constructed procedure considers both the calculation
of the stress intensity factor and the assessment of the residual strength. The stresses are addressed
through both analytical and numerical approaches. The fatigue life up to failure is calculated using
Walker's two-parameter driving force model and the Wheeler retardation model for constant amplitude
cyclic loads and overloads, respectively. The suggested crack growth procedure is evaluated by
comparing the computed results with the experimental data available in the literature. A good agreement
between the different results implies that the developed procedure offers a reliable estimation of the
strength for a pin-loaded lug with a crack passing through the thickness under cyclic load. Besides, such
a procedure is carried out to examine the differences between the residual fatigue life under constant
amplitude loads and that under overloads. Finally, they analysed the effect of the width, the diameter of
a hole and the thickness on the lug strength.

Abraham J. Pulickal et al. (2017) [19]. They considered the design of a Wing-Fuselage Lug attachment
for a transport aircraft with a mid-wing configuration. They observed that the maximum elongation was
at the spar only, and the maximum stresses were at the rivet holes that are close to the lugs. They also
found that the best material that can be used for this design is Aluminium AA 2024 as it has a factor of
safety of 2.15. They concluded that the material properties affect strains but not on stresses in FE
calculations (linear elastic conditions). The calculated fatigue life obtained the maximum allowable
working period of the designed wing-fuselage lug attachment.

Sumanth M H and Ayyappa T (2018) [20]. Study the wing-fuselage lug attachment bracket employed
the finite element approach. This study was performed in two cases. In the first case, steel alloy AlSI
4340 and aluminium alloy 2024 T351 were used, whereas in the second case, titanium alloy Ti 6Al 4V
and aluminium alloy 7075 T6 were used. Several iterations were performed for a mesh-independent value
for a maximum stress result. The materials utilized in the second case have better properties than those
used in the first case in the aircraft industry. Comparing the total weight of the brackets used in the first
and second cases were 36.187 kg and 24.435 kg, respectively. Therefore, materials used in the second
case are better and could be used for bracket fabrication. As previously mentioned, several numerical
techniques have been proposed to simulate fracture mechanics problems, such as fatigue crack growth.
Sedmak (2018) [21]. Provided an overview of the state of the art of computational fracture mechanics,
beginning with initial efforts and going as far as recent achievements. Discussion of some problems of
specific aspects of elastic-plastic and linear elastic fracture mechanics has been presented. These
problems include static loading, which its numerical simulation is not an easy task because of complex
geometries, material nonlinearity, and heterogeneity. This complexity becomes more serious, especially
if crack growth is included. Thus, micromechanical modelling of elastic-plastic crack growth is proposed
as a novel and promising approach to address some of the gaps in traditional approaches. In addition to
static loading, some other important practical issues are addressed, such as fatigue crack growth, with
the remaining service life at the focus of the study, utilizing empirical laws for crack growth rates.
Numerical simulation of fatigue crack growth is a challenging problem because of both the complex
processes of material damage and the lack of a strong theoretical basis for defining them. Therefore, the
combination of the theoretical, experimental and numerical approach is presented here to provide a
reliable and efficient estimate of the service life under fatigue loading. This study showed that most
current methods, such as extended finite element methods (XFEM) and improved finite element methods
(FEM), have shown remarkable progress in a very short time and that they have been successfully used
in various research [22], [23], [24], [17], [25], [26], [27]. Still, it has also shown that their potential is not
yet fully appreciated.

James C Sobotka et al. (2019) [28]. They have proposed a new SIF solution for tapered lugs and oblique
loads. These solutions offer driving force estimates for fatigue and fracture across the elliptical quarter-
corner cracks and cracks under pin load. These solutions also include a wide range of geometries based
on comments received from the industry partners. The powerful novel methods employed in their study
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can easily be extended to build new reliable SIF solutions for other complex combinations of cracked
geometries and loads. For example, SIF solutions address other important features of lug-pin
connections.

K. Shridhar et al. (2019) [29]. They have used MSC Patran/Nastran to study the stress distribution for
a pin-loaded lug and detect the maximum tensile stress location, which is likely to be a region of
developing fatigue cracks. Finally, they came up with some remarks; such as, increasing radius ratio
reduces stress concentration factor, the largest stress concentration occurs at the location perpendicular
to the loading direction which, indicates exponential decline as we move further towards the lug edge,
the stress intensity factor (SIF) values are more critical for smaller radius ratios that indicate a significant
change for smaller variations in crack length. The maximum number of cycles to failure increases as the
radius ratio increases, and a higher fatigue crack growth rate occurs in lugs with smaller radius ratios.

1.3 Objective and thesis organization
1.3.1  Objective

The mentioned studies and research activities undoubtedly have significant scientific and
engineering contribution. Most of them were case studies in which analytical and finite and boundary
element based numerical methods were used to determine the causes of cracks appearing in the first place
and then their growth. They did not deal with the fatigue life assessment of the damaged fitting part nor
its optimization.

Based on the previously mentioned, the main goal of the research conducted within the thesis
was to determine the fatigue behaviour of the real damaged wing-fuselage fitting of a light aircraft by
using the newest numerical methods, namely improved finite element methods (FEM) and extended
finite element methods (XFEM). It is expected that the dissertation will contribute to further upgrading
of the design of integral aircraft elements, in the sense that based on its results, verified numerical models,
and adopted methodology, it will be possible to efficiently and accurately determine how resistant a
newly designed (or modified) structure is and how long its remaining life is under the effects of various
fatigue loads.

In accordance, with the mentioned research goal, in this thesis, special attention was paid to the
determination of the load that is transferred from the wing spar to the wing-fuselage attachment lug by
using analytical methods and CFD analysis, then experimental verification of the numerical model of the
wing and, finally, numerical analysis of fatigue behaviour (FEM and XFEM).

Based on the conclusions about the fatigue life of the damaged fitting, guidelines for improving
its fatigue characteristics will be defined, both through a suggestion to change the geometry (while
preserving or even reducing the weight of the fitting) and through a material suggestion that would allow
longer fatigue life than that obtained by using numerical methods. These methods will also be used to
estimate the fatigue life of the improved wing-fuselage fitting.

1.3.2  Thesis organization

The thesis comprises e chapters.

» Background of the thesis topic, literature review, and the thesis objectives and content were
presented in the first chapter.

» Inthe second chapter theoretical background necessary for thesis research is presented: concepts
of linear-elastic fracture mechanics (LEFM), fatigue crack growth propagation and fatigue life
determination.

> In the third chapter the determination of the load that is transferred from the wing spar to the
wing-fuselage attachment lug was carried out by using analytical methods and CFD analysis.



In the fourth chapter Numerical Determination of Loading of Wing-Fuselage Fitting ""Based
on the data obtained in previous chapter in this chapter the determination of the wing-

fuselage attachment load was carried out."

In the fifth chapter XFEM and improved FEM (implemented in software packages Ansys
Workbench and Morfeo for Abaqus) were employed for necessary stress-deformation analyses of
the damaged wing-fuselage fitting and numerical simulation of the crack growth propagation and
fatigue life assessment.

Experimental verification of the numerically calculated stresses and deformations obtained in the
third chapter was presented in the sixth chapter.

Optimization of the wing-fuselage attachment lug, together with the numerical analysis of its
fatigue behavior with mentioned methods, and comparison of fatigue lives of original and
optimized attachment lug, were conducted in the seventh chapter.

Finally, in the eighth chapter, the conclusions and guidelines for further research, together with
the thesis's achieved contributions, are given.



CHAPTER 2
LINEAR ELASTIC FRACTURE MECHANICS and
FATIGUE



2 Linear-Elastic Fracture Mechanics

2.1 Fracture Mechanics and Fatigue

Fracture mechanics is a scientific and engineering discipline dealing with the study of mechanical
phenomena, such as stress distribution, in materials with geometrical discontinuities, namely cracks.
Fracture mechanics uses two different approaches to describe the behaviour of cracked structures. The
first is linear-elastic fracture mechanics (LEFM), and the second is elastoplastic fracture mechanics
(EPFM). LEFM represent an analytical approach to fracture by linking the stress distribution in the
vicinity of the crack tip/front to other parameters such as the nominal applied stress and the geometry
and orientation of the crack.

Linear elastic fracture mechanics (LEFM) can be applied only as long as the nonlinear material
deformation domain is restricted to a small zone surrounding the crack tip. But, for many materials,
LEFM cannot be used for fracture characterization. In those cases, an alternative fracture mechanics
model is required, and that is EPFM. EPFM applies to materials that exhibit time-independent, nonlinear
behaviour (i.e., plastic deformation) [30].

2.2 Stress Concentration

Stress concentration factors, Kt, can be determined by theoretical formulas, testing or
computational methods. The index near K stands for theoretical because it is determined recurring to the
elastic theory. Usually, theoretical modes of obtaining Kt are through the Elastic Theory, and the
computational ones are through the Finite Element Method. It is possible to get Kt through testing as
well by using photo-elasticity or strain gauges. This parameter is also very important for crack initiation
and propagation, as a crack is normally formed due to stress concentration on the micro crack’s tip. As
so, designers should try to avoid stress concentration on the components to prevent fatigue.

Additionally, geometrically similar components have the same Kt, but different stress gradients
will be found in the two components. This occurs because the stress concentration factor is a
dimensionless parameter. Consequently, the biggest components will have higher areas and volumes
where there will be highly stressed material, thus contributing to an increase in fatigue effects. This is
known as the fatigue size effect. Stress concentration around fastener holes is one of the most critical
aspects leading to fatigue in aircraft. As so, its comprehension and determination are of great importance.
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Figure 2.1 A prototype of a notched part (strip with central hole)
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Geometrical notches such as holes cannot be avoided. The notches are causing an
inhomogeneous stress distribution, as shown in Figure 2.1.

The theoretical stress concentration factor, Kt, is defined as the ratio between the peak stress,
the stress concentration point (the root of the notch) and the nominal stress present if a stress

concentration did not occur.

0.
K, = __peak (2.1)
Onormal

The stress concentration is depending on the geometry of the notch configuration. Reducing
stress concentrations as much as possible is required to avoid fatigue problems. The present section is
dedicated to various aspects of stress concentrations and the effect of the geometry on Kt. This is one of
the fundamental issues of designing a fatigue-resistant structure. Problems discussed in the present
section covers definitions of stress concentration factors, calculations and estimations of Kt -values, stress
gradients, aspects related to size and shape effects, superposition of notches and methods to determine
Kt —values.

2.3 Analytical calculations

As shown in Figure 2.2, the displacement functions u(x,y) and v(X, y) has to be found for a two-
dimensional problem. The strains follow these functions, and the stresses are linked to the strains by
Hooke’s law. Then the problem is solved. The tensile strains, &, (x,y) and €, (x,y), and the shear strain

Yxy (x,y)must satisfy the compatibility equation. The stresses oy, g, and 7,,, are linked to the strains by
three equations representing Hooke’s law, including the elastic constants of the material.
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Figure 2.2 An elliptical hole with stress concentration.

The Airy stress function ¢ leads to a biharmonic equation. The problem then is to find a function
¢ that satisfies this equation. The solution will still contain unknown constants, which should follow the
boundary conditions. These conditions are essential for solving a particular problem. For the tensile strip
with a central hole in Figure 2.1, the boundary conditions are:

1. At the upper and lower edge: gy, = S, 0,= 0, 7,,= 0.
2. At the side edges (x = £W/2): 0,=0, 7., = 0.
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3. At the edge of the hole: the stress perpendicular to the hole edge, and the shear stress is zero. An exact
analytical solution for the simple case of Figure 2.1, a strip with a hole, is not available, but accurate
numerical approximations were obtained. However, for an infinite sheet with an elliptical hole, the exact
solution was obtained [31].

This problem is known as a classical problem in the theory of Elasticity [32]. It is not a simple
problem. Elliptical coordinates and complex functions are used to arrive at the solution, which then
provides the stress distribution in the entire plate. The results illustrate several interesting features of
stress distributions around the hole. The tangential stresses along the edge of the hole are of great interest.
The maximum stress, g4k, Occurs at the end of the main axis (x=a, y=0) , see Figure 2.2. The semi-
axes of the elliptical hole are a and b, respectively. The tip radius at the end of the major axis follows

2
fromp = %. The equations for the peak stress and K; are simple:

a a
apeak=s(1+25)=s 142 [ (2.2)

Opeak a a
Ke=—F% =142-=1+2 |- (2.3)
‘ Onormal b p

The last equation indicates that a small notch root radius p will give a high K. A significant
radius results in a low Kt value, illustrated in Figure 2.3.
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Figure 2.3 Hole shape and its effect on K,

Using large radii in notched components is to reduce the stress concentration. A circular hole is
a particular case obtained from an ellipse with equal axes; a = b. The K, -value according to Equation
(2.3) is equal to 3. The K;-value will be somewhat lower because the component has a finite width. In
practice, fatigue cracks have indeed frequently occurred in structures at open holes.

The tangential stress at the end of the vertical axis (y = b, x = 0) in Figure 2.2 is compressive
stress, equal to the tensile stress applied to the infinite plate. This result is valid for all ellipses and a
circular hole (see Figure 2.3). Along the edge of the hole, starting from a to the top of hole b, the tangential
stress changes from +3S to —S, following the equation:

g, = S(1+2COS 2¢) (2.4)
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The value of the tangential stress must go through zero (o, = 0) which occurs at p= 60°.
2.3.1  Stress Intensity Factors

If the notch root radius p is reduced to a minimal value, the stress concentration factor Kt tends
to approach infinity. In that case, the notch becomes crack. So, the K;-value is no longer a meaningful
concept to indicate the severity of the stress distribution around the crack tip. A new concept to describe
the stress distribution around the crack tip is called stress intensity factor K. This concept was originally
developed through the work of [33] Irwin. The stress intensity factor K is the fracture mechanics
parameter, and it describes the stress distribution around crack tips. The crack initiation life is highly
dependent on the Kt -value. The crack initiation period is followed by the fatigue crack growth period,
see Figure 2.4.

Cyclic || Crack || Microcrack [, Macrocrack | | Final

slip nucleation growth growth failure
< Initiation period > <Crack growth period >
Kt . K ch
Stress concentration Stress intensity Fracture
factor factor toughness

Figure 2.4 Factors of different phases of the fatigue life.

The application of the stress intensity factor to present fatigue crack tip data and predict fatigue
crack growth is referred to as “linear elastic fracture mechanics”.
The stress concentration factor Kt is given by Equation:

Kt=1+2%=1+2 a/p (2.5)
with the tip radius p = b%/a. The elliptical hole becomes a crack by decreasing the minor axis b
to zero. If b = 0 the hole is a crack with a tip radius p = 0, stress concentration factor is K,= oo, regardless
of the semi-crack length. This result is not valid. However, the stress distribution around the tip of a crack

shows a characteristic picture; this is illustrated in Figure 2.5 by photo-elastic results of a specimen with
three cracks loaded in tension.

Figure 2.5 Three types of cracks are shown by Photo-elastic picture
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Note the similar butterfly pattern at each crack tip. Similar isochromatic pictures occur at the
tips of the three cracks, which suggest similar stress distributions at the crack tips. The “intensity” of the
crack tip stress distribution is depending on the stress intensity factor K, which can be written as:

K =pS+<ra (2.6)

In this equation, S is the remote loading stress, a is the crack length, and g is a dimensionless
factor depending on the specimen’s geometry or structural component. The important feature is that stress
distribution around the tip of the crack can be fully described as a linear function of the stress intensity
factor K. The concept of the stress intensity factor is presented in this chapter. First, different cracks are
listed, followed by more details about stress intensity factors for several geometries. Some basic aspects
of the stress analysis of cracked configurations are addressed, including differences between plane stress
and plane strain situations, crack tip plasticity and determination of K factors. The basic principle of the
application of K factors to fatigue crack growth is considered.

2.3.2 Fracture modes
I.  Model

Mode | (Figure 2.6-MODE 1) encompasses all normal stresses that cause the crack to open, i.e.,
the crack edges to be removed symmetrically with respect to the crack plane. A pure state of mode |
stress thus always exists when there is a symmetrical force flow path with respect to the crack plane. For
example, this is the case in tensile-loaded and bending-loaded components when the crack grows
perpendicular to the normal stress. Since extended fatigue crack growth occurs under the influence of
normal stress, fatigue cracks whose loading direction does not change in the cracking process are
generally in a state of mode I loading.

¥

MODE I MODE II MODE III
Tensile Shear Torsion

Figure 2.6 The three basic crack loading types in Mode I, Mode 11, and Mode 11 of fracture mechanics

1. Mode 11

This loading mode (Figure 2.6-MODE 1) is associated with all shear stresses that engender
opposed sliding of the crack surfaces in the direction of the crack. This is the case, for example, in
components that are subjected to plane shear loading, either globally or locally.
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[, Mode Il

This loading mode (Figure 2.6-MODE I11) corresponds to the non-plane shear stress state, which
causes the crack surfaces to move against each other at a right angle to the crack direction, i.e., in the
direction of the crack front. Mode Il loading can be encountered, for example, in torsional loaded shafts
when the crack is found in a plane that is perpendicular to the shaft axis.

V. Mixed mode

The basic crack loading types described above can also appear in a combination called mixed-
mode loading. It is a plane mixed-mode situation when, for example, mode | and mode Il are
superimposed. Mixed-mode loading can be recognized, among other ways, by its asymmetrical force
flow distribution with respect to the crack. If all three crack loading mode types are superimposed, it is
referred to as a general or spatial mixed mode state. For example, this is associated with surface cracks,
internal cracks, or edge cracks lying at an angle to the loading direction within the component or on the
component surface, or cracks in multiaxially loaded component [34].

2.3.3  The Energy Release Rate

This method is known as energy balance. The energy release rate G is defined by the energy
necessary to make the crack fronts extending the crack length by a unit length [35]:

6 = - Wror 2.7)
da

Where:
Wyot = We — Wexr (Wext is the work of external forces, and We is the strain energy of structure).
The energy release rate G corresponds to the decrease in the total potential energy Wpot of the cracked
body.
The relation between G to the stress intensity factors is given by:
G = (KIZ + KIZI) + KIZII

2.8
& 2 (2.8)

Where:
E' = E for plane stress, and E' = E /(1 — v?) for plane strain. p is the shear modulus.

2.3.4  J-integral

J-integral is a parameter to deal with the Non-linear fracture problem. J-integral is based on the
concept of conservation of energy. It is less dependent on the crack tip, which means there is no need to
do the special treatment on the mesh around the crack tip. The J-integral equation is given by: [35], [36].
This means there is no need to do the special treatment on the mesh around the crack tip. The J-integral
equation is given by:

J = j (dez -T; Z—Zi) ds (2.9)

r
Where:

W is the strain energy density, T; is the traction vector, u; is the displacement vector, and ds is
an element of arc along the integration contour (see Figure 2.7).
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Crack

Figure 2.7 Counter clockwise loop around the crack tip with a clockwise loop

In the LEFM method, the stress and displacement components at the crack tip are known as
functions relative to the crack tip. But for a multi-mode loading, they have been used by the SIF Ki, Ki
and K. The integration path is usually required to be only a circle around the crack tip; this can be done
because the J-integral is path-independent. The J-integral is related to the SIF. In Mode I, the J-integral
is equivalent to the energy release rate G. This means that J-integral can be used in the crack growth
criteria of LEFM as a replacement for K and G [35], [36].

1
Plane stress | = EKIZ (2.10)

1—v?
Plane strain | = (T)KIZ (2.11)

2.3.5 Fatigue Crack Propagation

Fatigue is a process of local strength reduction. The phenomenon is often referred to as a process
of damage accumulation in a material undergoing fluctuating loading, which occurs in engineering
materials such as metallic alloys, polymers and composites. Different parameters are used to define the
mechanical fatigue process that occurs when a structure is subjected to repeated loads, like cyclic load,
stress intensity, and crack growth rate. The maximum load is Pmax, the minimum load Pmin [kN], and
the ratio between the minimum and maximum load is (Pmin/Pmax) is called the load ratio R, which is
often used to measure the mean stress. Crack growth rate da/dN is the crack increment da per loading
cycle increment dN. The stress intensity factor K [MPavm], working on the crack tip, is calculated from
the applied load P and actual crack length and direction in a construction. The maximum stress intensity
is Kmax, the minimum Kmin, and the difference between both is AK, see Figure 2.8. Fluctuating loads
can lead to fluctuating local high stresses, and small microscopic cracks may appear. Once a crack exists
in a structure, it will tend to grow under cyclic loading. Even if the maximum of the cyclic load on
construction is below the material's elastic limit, fatigue may lead to failure. Fatigue is progressive in
which the damage develops slowly in the early stages and near the end of a structure’s life, and it
accelerates very quickly towards failure.

cyclic stress intensity:

AK =K . —K

min

load |KN]

load ratio:
R=Fum
K

max

P, min

stress intensity |MI':l\'n|]

cycles [N]
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Figure 2.8 Fatigue loading vs number of cycles

However, details of the fatigue process may differ between materials. The fatigue process can
be defined generally as [37] “The process of the cycle-by-cycle accumulation of local damage in a
material undergoing fluctuating stresses and strains.”

2.3.6  Description of the fatigue phenomenon

Fatigue of metallic in structures has been studied since the beginning of the 19" century.
Railroads, bridges, steam engines: a whole gamut of new structures and machines was developed, made
of steel in the Industrial Revolution. Many of them were exposed to cyclic stresses during service life,
and many of them failed; the origin of failure was unknown until Albert [38] made the first report about
failure caused by fatigue in 1829. He observed the failure of iron mine-hoist chains caused by repeated
small loads. Ten years later, in 1839, Poncelet, a professor of mechanics at the école d'application, Metz,
introduced the term fatigue in his lectures. Rankine [39] recognized the importance of stress
concentration in 1843. He noted that fracture occurs near sharp corners. However, until then, the
phenomenon was described qualitatively only.

Wohler made a major step in 1860. Wohler, a railroad engineer, started performing systematic
experimental research on railroad axles. He observed that steel would rupture at stress below the elastic
limit if cyclic stress were applied. However, there was a critical value of cyclic stress, the fatigue limit,
below which failure would not occur. He found a way to visualize “time to failure” for specific materials.
the stress amplitude o is plotted as a function of the number of cyc’to failure In the S-N-curve approach
(see Figure 2.10) [40] [36].
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Figure 2.9 Stress vs. number of cycles curves for low-carbon steel 1045 and AA 2014

A logarithmic scale is used for the horizontal axis, while the stress is plotted using either a linear
or logarithmic scale. Fatigue limit: the stress below which a material can be stressed cyclically for an
infinite number of times without failure. Fatigue strength: the stress at which failure occurs for a given
number of cycles.
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The first crack surface investigations were made by Ewing [41] in 1903. He showed the nature
of fatigue cracks using a microscope, see Figure 2.10.

Figure 2.10 Ewing & Humfrey showed crack surface in 1903

Around 1920, Griffith investigated the discrepancy between a material's theoretical strength and
the actual value, sometimes 1000 times less than the predicted value. He discovered that many
microscopic cracks and/or other imperfections exist in every material. He assumed that these small cracks
lowered the overall strength. Because of the applied load, high-stress concentrations are expected near
these small cracks, which magnify the stresses at the crack tip. These cracks will grow more quickly,
causing the material to fail long before reaching its theoretical strength. Any voids, corners, or hollow
areas in the internal area of the material also result in stress concentrations. Mostly fracture will begin in
one of these areas simply because of this phenomenon [42].

After 1960: Paris and Elber have made an important push to understand Paris, and Elber made
the fatigue process. In 1961, Paris found a more or less linear correlation on double logarithmic scales
between crack growth rate da/dN and cyclic stress intensity factor AK for some part of the fatigue curve
(See Figure 2.11) [43]. This well-known Paris’ law reads:

da
N C(AK)™ (2.12)
Where: AK = Kmax - Kmin and C and m are experimentally determined scaling constants.

Paris’ law will be discussed in more detail in the next section.

Paris regime

power law behaviour H
da
= C(AK)"

N

-

= AK(h
— K‘:

Kmil‘

crack growth rate [m/cycle] —p

stress intensity range AK [MPaym] —

Figure 2.11 Linear correlation between crack growth rate da/dN and stress intensity factor K on a log-
log scale (Paris’Law)
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2.3.7  Fatigue crack growth regions

Fatigue crack propagation, referred to as stage Il in Figure 2.12, represents a large portion of the
fatigue life of many materials and engineering structures. Accurate prediction of the fatigue crack
propagation stage is of utmost importance for determining the fatigue life. The main objective of the
fatigue crack propagation may be presented in this form: "Determine the number of the cycles N¢ required
for a crack to grow, from a certain initial crack size ao to the maximum allowable crack size ac, and the
form of this increase a =a(N), where the crack size a corresponds to N loading cycles.

log(da/dN

!
Region | ' Region 11
I

Region 111

loglAK)
Figure 2.12 The rate of crack growth in different regions

As shown in Figure 2.13, fatigue crack growth results cover a range of K-values and crack
growth rates. It does not give indications about crack growth rates outside this range. More extensive
experiments have shown that two vertical asymptotes occur in a da/dN-AK graph (see Figure 2.12. The
left asymptote at K = Kth indicates that K-values below this threshold level are too low to cause crack
growth. The other asymptote at the right-hand side occurs for a K cycle with Kmax = Kc. It means that
Kmax reaches a critical value which leads to complete failure of the specimen. If da/dN is plotted as a
function of K on a double log scale, the function da/dN = fR(K) is supposed to cover three different parts,
indicated by I, I, and 111 [44]. The corresponding AK-regions are referred to as:

e Stage | - the threshold K-region: transition to a finite crack growth rate from no propagation
below a threshold value of AK.

e Stage Il - the Paris-K-region: “power law” dependence of crack growth rate on AK.

e Stage Ill - the stable tearing crack growth region: acceleration of growth rate with AK,
approaching catastrophic fracture.

2.3.8 Crack growth

The data on fatigue crack propagation is obtained from pre-cracked specimens subjected to
fluctuating loads, and the change in crack size as a function of loading cycles is reported. The size of the
crack is proportional to the number of loading cycles for various load amplitudes. The stress intensity
factor is used as a correlation parameter. Typically, experimental results are plotted as a log (K) versus
log (da/dN) graph. K denotes the range of the stress intensity factor, and da/dN denotes the crack
propagation rate. Typically, the load is sinusoidal in shape and has a constant amplitude and frequency.
To define the variance in the stress intensity factor during a loading period, two of the four parameters
Kmax, Kmin, K =Kmax - Kmin, or R=Kmin /Kmax, are required.
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Figure 2.12 illustrates a standard plot of the characteristic sigmoidal of a log(K)-log(da/dN)
fatigue crack growth rate curve. Three distinct regions may be identified. In area I, da/dN quickly
decreases to a minimal value. There is a threshold value for the stress strength factor range Kth for certain
materials, indicating that no crack propagation occurs when K < than Kth, ultimately resulting in
catastrophic failure.

The experimental results show that the fatigue crack growth rate curve is proportional to the
ratio R and that as R increases, the curve shifts toward higher da/dN values. Cyclic stresses caused by
constant or variable amplitude loading can be represented using two of a variety of alternative parameters.
Cyclic stresses with constant amplitude are characterized by three parameters: mean stress (om), stress
amplitude (o) and a frequency (w, v). The frequency does not have to be defined to convey information
about the severity of the stresses. Only two parameters are necessary to accurately describe the stresses
generated by a constant amplitude loading period.

Other parameters, such as the minimum stress (omin) and the maximum stress (omax), can
describe the stresses completely. Additionally, the stress range, AG=@'max-0'min, Can be used in conjunction
with any of the others, except a. Additionally, another parameter is frequently more convenient. This is
referred to as the stress ratio R, which is defined as R=min/max.

One of the above parameters can be replaced by the load ratio R to define the cyclic load. Any
of the following combinations fully describe the stresses in a constant amplitude loading: Ag and R, &'min
and R, omaxand R. ga and R, and om. and R. The case of R=0 defines the condition in which the stress
always rises from, and returns to 0. When R= -1, the stress cycles around zero as a mean, called fully
reversed loading.

To study the parameters that affect fatigue crack growth, a through-thickness crack is considered
a wide plate subjected to remote stressing that varies cyclically between the constant minimum and
maximum values. The stress range is defined as AG= Gmax-Gmin.

The fatigue crack growth rate is defined as the crack extension, Aa, during a small number of
cycles, AN, the propagation rate is Aa / AN, which in the limit can be written as the differential da/dn. It
has been found experimentally that provided the stress ratio R= amin/ omaxis the same then AK correlates
fatigue crack growth rates in specimens with different stress ranges and crack lengths and also correlates
crack growth rates in specimens of different geometry. This correlation is presented in

Figure 2.13

o
Eé:g:u_ A ’ 1 I ' EI log da/dn A IEI
2a 2a

e

Iax ::Iiﬁt‘*\\\\\ﬂ

CRITICAL 2a AT Ag,

DATA GENERATED

HIGH STRESS RANGE, Ag),
LOW STRESS RANGE. Ao,

NUMBER OF CYCLES, n log AK

(@) (b)

Figure 2.13 (a)Crack length vs number of cycles, and (b) logda/dn vs log dK
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The data obtained with a high-stress range, Aanigh, commence at relatively high values of da/dN
and AK. The data for a low-stress range, Aalow, cOmMmence at lower values of da/dN and AK but reach
the same high values as in the high-stress range case.

Furthermore, the stress ratio R can have a significant influence on the crack growth behaviour.
In other words, besides the stress intensity factor range, AK, there is an influence of the relative values
of Kmax and Kmin since R= omin/ 6max = Kmax / Kmin. This is presented in Figure 2.12 The rate of crack
growth in different regions shows that crack growth rates at the same stress intensity range AK values
are generally higher when load ratio R increases. It is important to note that the effect of the load ratio R
has proved to be from the bibliography strongly material dependent [45] [36].

1 F 3

10 T T
1 10 100

v

Stress intensity factor range/t K, MPa \fr_n
Figure 2.14 Mean stress effect on fatigue crack for Aluminium alloys

Several different quantitative continuum mechanics models of fatigue crack propagation have
been proposed in the literature. All these models lead to relations based mainly on experimental data
correlations. They relate da/dN to such variables as the external load, the crack length, the geometry, and
the material properties. As previously mentioned, one of the most widely used fatigue crack propagation
laws proposed by Paris and Erdogan is usually referred to in the literature as the "Paris law". It has the
form:

da
N C(AK)™ (2.13)
Where AK = Kmax- Kmin, With Kmaxand Kmin referring to the maximum and minimum values

of the stress intensity factor in the load cycle. The constant C and m are determined empirically from a
log(AK) - log(da/dN) plot. The value of m is usually taken equal to 4 for aluminium alloys, resulting in
the so-called "4th power law", while the coefficient C is assumed to be a material constant. Paris Law
relation represents a linear relationship between log (AK) and log (da/dN) and is used to describe the
fatigue crack propagation. Experimental data are well predicted using the Paris Law equation for specific
geometrical configurations and loading conditions. The effect of a mean stress, loading, and specimen
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geometry is included in the constant C. "Paris law" has been widely used to predict the fatigue crack
propagation life of engineering components.

The crack growth mechanism shows that a fatigue crack grows by a small amount in every load
cycle. Growth is the geometrical consequence of slip and cracks tip blunting. Re-sharpening of the crack
tip upon unloading sets the stage for growth in the next cycle. It can be concluded from this mechanism
that the crack growth per cycle, Aa, will be larger if the maximum stress in the cycle is higher (more
opening) and if the minimum stress is lower (more re-sharpening). The local stresses at the crack tip can
be described in terms of the stress intensity factor K, where K= fov/malf o is the nominal applied stress.
In a cycle, the applied stress varies from omint0 omax Over range AK. Therefore, the local stresses vary
by the following equation:

AK = BAoma (2.14)

An amount of crack growth is defined as Aa in one cycle, which is expressed in m/cycle. If
growth were measured over, e.g. AN = 10000 cycles, the average growth per cycle would be Aa/AN, the
crack propagation rate. In the limit where N — 1, this rate can be expressed as the differential da/dN.
When a structural component is subjected to fatigue loading, a dominant crack reaches a critical size
under the peak load during the last cycle leading to catastrophic failure. The basic objective of the fatigue
crack propagation simulation is the determination of the crack size, a, as a function of the number of
cycles, N. Thus, the fatigue crack propagation life Np is obtained. When the type of the applied load and
the expression of the stress intensity factor is known, the application of one of the foregoing fatigue laws
enables a realistic calculation of the fatigue crack propagation life of the component. For example,
consider a plane fatigue crack of the length 2ao in a plane subjected to a uniform stress o perpendicular
to the plane of the crack. The stress intensity factor K is given by:

K = f(a)ovra (2.15)

Where f(a) is a geometry-dependent function. Integrating the fatigue crack propagation law
expressed by equation 2.12 gives:

%  da
N—N, = fa CAK)™ (2.16)
where N, is the number of load cycles corresponding to the half crack length a, . Introducing
the stress intensity factor range AK, where K is given from equation 2.13, into the previous equation
results in:

N—N, = f i da_____ 2.17)
a C[f(a)Aa\/na ]

Assuming that the function f(a) is equal to its initial value f(a,) so that AK = AKy/a/a,,
where AK, = f(aO)Aa\/n—ao, so, the previous equation gives:
2a,
(m — 2)C(4K )™
Form #2. Unstable crack propagation occurs when K,,,4, = K;c = f(a)0paxVma . From which
the critical crack length ao is obtained. Then, the equation 2.15 for a= ao gives the fatigue crack

propagation life Np= Nc — No. Usually, since f(a) varies with the crack length a, the integration of the
previous equation cannot be performed directly, but only through numerical methods.

N-NO =

a

_ (@)%"1] (2.18)

22



Kmax

Kmin

Figure 2.15 Constant amplitude fatigue crack growth under small yielding conditions

Since 1960 Paris, et al. [43], [46] and [36] confirmed the application of fracture mechanics to
fatigue problems, and it has become almost routine. The techniques for investigating fatigue under
constant amplitude loading at small-scale yielding conditions are fairly well established. Still, several
uncertainties remain. The concept of similitude, when it applies, provides the theoretical basis for fracture
mechanics. Similitude implies that the crack tip conditions are uniquely defined by a single loading
parameter such as the stress intensity factor. Consider a growing crack in the presence of constant
amplitude cyclic stress intensity
Figure 2.15. Behind the plastic zone, which is developed at the crack tip, a plastic wake is formed. When
it is small, the plastic zone is embedded in an elastic singularity zone. In that case, the conditions at the
crack tip are uniquely defined by the current K value, and Kmin and Kmax describe the crack growth
rate. For the similitude assumption to be valid, the crack tip of the growing crack needs to be sufficiently
far from its initial position, and external boundaries should be remote.

Soon after the Paris law gained wide acceptance as a predictor of fatigue crack growth, many
researchers realized that this simple expression was not universally applicable. As Figure 2.12 illustrates,
a log-log plot of da/dN versus AK is sigmoidal rather than linear when crack growth data are obtained
over a sufficiently wide range. Also, the fatigue crack growth rate shows a dependence on the R ratio,
especially at both extremes of the crack growth curve. A discovery by Elber [47] provided at least a
partial explanation for both the fatigue threshold and R ratio effect.

2.3.9 Crackclosure

Paris’ law is generally accepted for a wide range of different materials; however, the physical
meaning is limited. The primary issue at that time was how to explain stress ratio effects. In 1970 Elber
published a famous article titled “Fatigue Crack Closure under Cyclic Tension” [47]. In this article, he
assumed crack closure to be the cause of stress ratio-effects. He meant contact of the crack surfaces by
crack closure at a load above the minimum load. Elber assumed that, when crack closure occurs, the
effective cyclic stress intensity range AKeff that works on the crack tip is lower than the expected or
applied AK-range, see Figure 2.16. The crack growth rate is no longer a result of the total AK magnitude
but only of its part.
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Figure 2.16 Elber’s principle of crack closure theory

When a specimen is cyclically loaded at Kmax and Kmin, the crack faces are in contact below Kaop,
the stress intensity at which the crack opens. Elber assumed that the portion of the cycle that is below
Kop does not contribute to fatigue crack growth. Since the definition of the effective stress intensity range
IS AK.rr = Kimax — Kop -A modified version of equation 2.11 proposed:

da

Crack closure occurs as a consequence of crack tip plasticity. At the tip of a growing fatigue
crack, each loading cycle generates a monotonic plastic zone during increased loading and a much
smaller reversed plastic zone during unloading. Approximately the reversed plastic zone size is one-
quarter of the size of the monotonic plastic zone. Due to this, there is a residual plastic deformation
consisting of monotonically stretched material. As the crack grows, the residual plastic deformation
forms a wake of monotonically stretched material along the crack edges. Because the residual
deformation results from tensile loading, the material in the crack edges are elongated normal to the crack
surfaces and have to be accommodated by the surrounding elastically stressed material, this is no problem
as long as the crack is open. Since then, the crack edges will show a displacement normal to the crack
surfaces. However, as the fatigue load decreases, the crack will tend to close during unloading, and the
residual deformation becomes important.

2.3.10 Effect of Residual Stresses on Crack Propagation

Our knowledge of the correlation between residual stress and fatigue strength is perplexed
because:

e The fatigue strength depends significantly on the condition of the surface. Such major factors
overshadow the effect of residual stress as weld geometry and surface irregularities.

e A fatigue crack may initiate in a region containing tensile residual stresses. The rate of crack
growth may be amplified due to the presence of tensile residual stresses. However, when the
crack grows and enters regions containing compressive residual stresses, the crack growth rate
may be reduced. As a result, it is questionable whether or not the total effect of residual stresses
on the overall crack growth is significant.

e When residual stresses are altered by heat treatment such as peening, the metallurgical and
mechanical properties of the metal are also changed. A schematic presentation of the stress field
behind and in front of a crack tip under cyclic loading without welding residual stresses is
illustrated in Figure 2.17.
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Figure 2.17 The reverse plastic zone forms during periodic loading [48].

How residual stresses affect the plastic zone shown in Figure 2.17 and the fatigue strength of a
welded structure is still a matter of debate. Some researchers had reported that the fatigue strength
increased when specimens had compressive residual stresses, especially on the specimen surfaces; others
believe that residual stresses have only a negligible effect on the fatigue strength of the weld elements.
It has been suggested that in a good weld, residual stresses can be ignored. Also, it has been recommended
that geometry affects fatigue behaviour much more than residual stresses. But, others researchers feel
that there is significant evidence that residual stresses affect fatigue strength. Munse [49] summarizes as
follows:

"Based on the available data, it is believed that the effects of residual stresses may differ from
one instance to another, depending upon the materials and geometry analyzed parts, the state of stress,
the scale of applied stress, the type of stress cycle, and perhaps other factors. Many of the investigations
designed to evaluate the effects of residual stress have included tests of members that have been subjected
to different stress relief heat treatments. The changes in fatigue behaviour resulting from these heat
treatments, in some cases, have been negligible. In contrast, in other investigations, the various stress-
relief treatments have increased fatigue strength by as much as twenty percent. Since it is impossible to
carry out heat treatment for stress relief without altering the metallurgical and mechanical properties of
weldment, the question always arises as to whether benefits are derived from the reduction of residual
stresses or the improved properties in other respects.”
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CHAPTER 3
DETERMINATION OF LOADS ACTING ON THE
WING and PIN-LUG WING ATTACHMENT
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3 DETERMINATION OF LOADS ACTING ON THE WING and PIN-LUG
WING ATTACHMENT

"In order to conduct the fatigue life analysis of the wing-fuselage fitting, it was necessary
to determine the appropriate wing loads. To do that, all necessary aerodynamic parameters were
calculated for all the load cases, in accordance with EASA CS 23 requirements. Based on these
aerodynamic parameters the corresponding forces and moments that are acting on the wing were
obtained (including weight of the aircraft and fuel), and the critical load cases were determined and
the analysis of the wing structure using finite element method was carried out. These calculations
are presented in this chapter."

T ‘“‘“\| M s Gl D

nwW

Figure 3.1 Forces acting during symmetric equilibrium manoeuvre

3.1 Equilibrium equations:

L,+Ly—nW =0 (3.1)
T—D=0 (3.2)

Assuming that thrust and drag are in-line, then h =0 so the drag or thrust are not involved in the
moment equation for vertical loads, lift forces may be solved directly a

MAC+LW.dW_LT.dT=0 (34)
r dy + dr '

3.2 DETERMINATION OF LOADS ACTING ON THE WING and PIN-LUG WING

ATTACHMENT
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Figure 3.2 Variations of a position of the centre of gravity

W =mg (3.7)

1 _

3.2.1 C.G.atD 0.23
dw = X023 — X0.266 (3.9)
dy = 0.0558 m
dr = Xwg + X026 — X0.23 (3.10)
dr = 4.4532m

dy,+dr =44762 mm (3.11)
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_MAC+anW

Ly i d (3.12)
w
Ly
=g ——— (3.14)
z . p . VD . SW
322 CG.atD 0.28
dW = x0.28 - x0_266 = 0.217 m (315)
dT = xWE + x0.26 - x0_28 = 4455 m (316)
d, +dr = 44767 m (3.17)
MACD + nW ¢ dW
= 3.18
r d,, +dr (3.18)
MAC + TlW * dW
= 3.19
r dy, + dr (3.19)
Myca +nW - d
Ly = 24 v (3.20)

dy +dr

As Ly, Ly and nWW changes their directions, while M, don't, and the previously obtained
equations will be changed

MAC _anW
d, +dr

Ly = (3.21)

323 Case D Loads
m=920Kg, W =mg =9022.12 N
n=6, nW =54132.71 N
Vp = 107.06 m/s,p = 1.225Kg/m3?,S,, = 15.027m? ,c = 1.55m, Cyyac = —0.066
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xWE = 4486 m

a. C.G.atD 023

b. C.G.atD_0.28

MACD=E'p'VD2'SW'CMAC'

Mycp = —10792.16 N - m

dw = X023 — Xo0.266
dyy = —0.0558 m
dr = Xwg + X026 — X023
dy = 44532 m
d, +dy = 44762 m

L _MAC+anW
T d, +dr

Ly = —=3085.48 N
LW =nW — LT
Ly = 5721820 N

LW
S

C, = 0.5424

dw = X028 — X0.266

30

c

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)



dr = Xwg + X026 — X0.28
dr =4455m
d, +dy = 44767 m

_MACD+nW'dW
= d,+d

Ly = —2148.34 N

LW:nW_LT

Ly = 56281.05 N

LW
Rl S
C, = 0.5335

3.24 CaseA
m =920Kg, W = mg = 9022.12N
n=6nW =54132.71N
V, = 66.905m/s, p = 1.225 Kg/m3, Syy = 15.027 m2,¢ = 1.55m, Cyyac = —0.0663

1
Myca :E'P'VAZ “Swi " Cymac " €
MACA = _4214‘.74 Nm

a. C.G.atA 0.23

dw = X023 — X0.266

dy = —0.0558 m
dr = Xwg + X026 — X0.23

31

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)



b. C.G.atA 0.28

dr = 44532 m

d, +dr = 44762 m

T =

_MAC+anW
d, +dr

Ly =—-1616.22 N

LW:nW_LT

Ly, = 5574893 N

CL=

Ly

1
3P VESy

¢, = 1.3531

dw = X028 — X0.266

dr = Xwg + X026 — Xo.28

d; = 4.455m

d, + dr = 44767m

Ly =

_ MACA +anW

dy +dr

Ly = —679.08 N

LW:nW_LT
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(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)



Ly = 54811.79 N (3.67)

Ly
CL=1 3 (3.68)
C, = 1.330 (3.69)
325 CaseE
m=920Kg, W =mg =9022.12 N, n = 3,nW = 27066.355 N
Ve = 107.06 m/s, p = 1.225 Kg/m3, Sy = 15.027 m%, T = 1.55m, Cy4c = —0.0663
1 , _
Mycg = 2 "p V& Sw: Cyac-C (3.70)
Mycg = —10792.16 Nm (3.71)

As L, Ly and nWW changes their directions, while M, don't, and the previously obtained
equations will be changed.
a. C.G.atE 0.23

dw = X023 — X0.266 (3.72)
dyy = —0.0558 m (3.73)

dr = Xwg + X026 — X023 (3.74)
dy = 44532 m (3.75)

d, +d, = 44762 m (3.76)
Ly = —2748.41N (3.78)
Ly =nW — Ly (3.79)
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b. C.G.atE_0.28

Ly, = 29814.765 N

Ly
S B
7 . p . VE . SW

C, = 0.2826

dw = X028 — X0.266

dy = 0.0217 m

dr = Xwg + X026 — X0.28

d, +dy = 44767 m

MAC _anW
LT:

dy +dr

Ly = —2541.94N

LWZnW_LT

Ly = 29608.295 N

LW
R S
C, = 0.2806
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(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)



326 CaseG
m=920Kg,W =mg =9022.12 N, n = 3,nW = 27066.355 NV; = 66.905m/s,p = 1.225 Kg/
m3,Sy, = 15.027 m?, ¢ = 1.55m, Cyyuc = —0.066

Myce = %'P V& Sw Cuyac € (3.94)
Myce = —4214.74 Nm (3.95)
a. C.G.atG 0.23
dw = X023 — X0.266 (3.96)
dy = —0.0558 m (3.97)
dr = Xywg + X026 — X0.23 (3.98)
dp = 44532 m (3.99)
d, +dr = 44762 m (3.100)
Ly = MACZI:ZT' il (3.101)
Ly = —1278.996 N (3.102)
Ly =nW — Ly (3.103)
Ly, = 28345.351N (3.104)
Ly
=g (3.105)
30 VESw
C, = 0.6880 (3.106)
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b. C.G.atG_0.28

dw = X028 — X0.266 (3.107)
dy = 0.0217m (3.108)
dr = 4.486 + x 6 — X028 (3.109)
dr = 4.455m (3.110)
dy, +dr =44767m (3.111)
Ly = MACd; ZM;T dw (3.112)
L =—1072.683 (3.113)
Ly =nW — Ly (3.114)
Ly = 28139.038N (3.115)
LW
CL=1—"— (3.116)
ijAZSW
C, = 0.6830 (3.117)

3.2.7 Overview of defined cases Table 3.1

Table 3.1 Summary of defined cases

Case | n |V (m/s)|Pyg(N/m? | Lt(N) Lt (m) Lw (m) CL
A 023 | 6| 66.90 | 2741.311 | -1616.08 | -3085.480 | 55748.930 | 1.353
A 028 | 6| 66.90 | 2741.311 | -10792.16 | -2148.340 | 54811.789 | 1.330
D 023 |6 | 107.06 | 7020.379 | -4214.74 | -1616.220 | 57218.199 | 0.542
D 028 | 6 | 107.06 | 7020.379 | -4214.74 -679.080 | 56281.051 | 0.533
E 023 | 3| 107.06 | 7020.379 | -10792.16 | -2748.410 | 29814.766 | 0.283
E 028 | 3| 107.06 | 7020.379 | -10792.16 | -2541.940 | 29608.295 | 0.281
G 023 | 3| 66.90 | 2741.721 | -4214.74 | -1278.996 | 28345.352 | 0.688
G 028 | 3| 66.90 | 2741.721 | -4214.74 | -1072.683 | 28139.037 | 0.683
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3.3 Approximate span-wise distribution of aerodynamic load

Schrenk examined experimental results for many untwisted wing plan forms and devised. The
approximate rule that distribution of the additional lift (lift associated with the chord distribution without
twist) is nearly proportional at every point to the ordinate that lies halfway between the elliptical and
actual chord distribution for the same total area and span. For the untwisted wing, the basic lift equal to
zero.

The area of the real wing is:
b/2

S = f c(y)-dy (3.118)
—b/2
While the area of the elliptic wing is:
Sy = % e+ b (3.119)

As the area of real wing and equivalent elliptic one are equals, so cgg -chord of the equivalent

elliptic wing at the plane of symmetry is csz = % , Where b — is span (equal for both wings)

The local chord of the equivalent elliptic wing is:

cg(y) = Csg - /1 - (by% 2 (3.120)

b

Lift equation is written as:

2
L= [l co-ay (3.121)
Where local pressure is defined as:
N 1 CsE Y .,
p—(mz)—k 2[1+C(y) 1 (b/2 ] (3.122)

and factor of proportionality: k = 5

So we find:

2 2

N _11 Csg 1
pC3) =501 +-3 _(b/Z 15

) (3.123)

Schrenk’s approximate span wise distributed aerodynamic load is:
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N lieoy + e 1 - oy & (3.124)
3G = 3le) + s [1- () 5 .

A Fortran Code WING_LOADING is used to calculate aerodynamic load and the results can be
found in Appendix A

Aerodynamic Load:

Aerodynamic Loads

8000
— Case: A_028
7000 Case: D_028
Case: E_023
6000 Case: E_028
Case:G _023
Case: G_028
5000 Case: G_028
£
2 4000
(e
3000
2000
1000 |

Figure 3.3 Span-wise distribution of aerodynamic loading
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Figure 3.4 Shear forces due to aerodynamic loading
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Figure 3.5 Bending moment due to aerodynamic loading
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3.4 Loading of wing

Table 3.2 Load casesaty =0

Case Y(m) | q(N/m)| FT(N) MF (Nm)
A_0.23 0 7066.73 | 28023.35 | 61340.898
A_0.28 0 6947.93 | 27552.28 | 60309.77
D _0.23 0 7252.97 | 28761.91 | 62957.566
D_0.28 0 7134.18 | 28290.82 | 61926.41
E_0.23 0 3779.32 | 14987.01 | 32805.383
E_0.28 0 3753.14 | 14883.22 | 32578.203
G_0.23 0 3593.05 | 14248.37 | 31188.576
G_0.28 0 3566.9 | 14144.67 | 30961.568

x/c
Figure 3.6 Chord wise distribution of p for A023 and D023 cases

3.5 Analysis of the wing structure using finite element method

For these two cases, the distributed pressure loading is recalculated in equivalent systems of
forces distributed along each rib.

These forces are distributed over the ribs of the wing. The bending moments at positions of ribs
cross-sections are equal to moments of distributed pressure loading. The moments of systems of forces
and moments of distributed pressure loading about the wing's leading edge are similar too.

The transversal forces and bending moments for a case of distributed pressure loading and
loading of concentrated forces on ribs.
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Table 3.3 Results of Loads for Case D_0.23 for Transversal Forces and Bending Moments

Case: D_023
Y (m) Distributed pressure loading | Equivalent concentrated forces.
Ft (N) Mf (Nm) Fr(N) | Frt(N) | Mrf(Nm)
0 28761.9 62957.566 0 28399.4 | 62957.566

0.08 28471.8 60685.621 | 1150.51 | 28399.4 | 60685.621
0.337 | 26696.5 53682.66 1791.9 | 27248.9 | 53682.66
0.593 | 24883.4 47165.68 1943.93 | 25457 | 47165.68
0.884 | 22860.6 40323.383 | 2213.92 | 23513 | 40323.383

1.24 20446.6 32740.896 | 2346.85 | 21299.1 | 32740.896
1.596 | 18088.3 25993.887 2269.9 | 18952.3 | 25993.887
1.922 | 15960.7 20555.436 | 2095.28 | 16682.4 | 20555.436
2.247 | 13876.3 15814.63 2046.53 | 14587.1 | 15814.63
2.573 11830 11726.408 1990.7 | 12540.6 | 11726.408
2.895 | 9861.32 8329.353 1994.26 | 10549.9 | 8329.353

3.23 7880.97 5463.226 1915.81 | 8555.6 | 5463.226
3.565 | 5982.19 3238.893 1814.33 | 6639.8 | 3238.893
3.899 | 4187.69 1627.189 1752.12 | 4825.46 | 1627.189
4235 | 2512.09 594.546 1243.98 | 3073.35 | 594.546

4.56 1055.8 92.727 1829.37 | 829.369 0

Table 3.4 Results of Loads for Case E_0.23 for Transversal Forces and Bending Moments

Case: E_023
Y (m) Distributed pressure loading | Equivalent concentrated forces
Ft (N) Mf (Nm) Fr(N) | Frt(N) | Mrf (Nm)
0 14987 32805.383 0 14798.1 | 32805.383

0.08 14835.8 31621.535 | 599.517 | 14798.1 | 31621.535
0.337 | 13910.8 27972.502 | 933.646 | 14198.6 | 27972.502
0.593 12966 24576.682 | 1012.94 | 13264.9 | 24576.682
0.884 11912 21011.355 | 1153.65 | 12252 | 21011.355

1.24 10654.1 17060.344 | 1222.85 | 11098.3 | 17060.344
1.596 | 9425.29 13544.67 1182.79 | 9875.49 | 13544.67
1.922 | 8316.67 10710.849 | 1091.79 | 8692.7 | 10710.849
2.247 | 7230.54 8240.551 1066.4 | 7600.92 | 8240.551
2573 | 6164.26 6110.296 1037.29 | 6534.52 | 6110.296
2.895 | 5138.45 4340.188 1044.14 | 5497.23 | 4340.188
3.233 | 4097.51 2835.044 997.215 | 4453.09 | 2835.044
3.565 | 3117.15 1687.694 941.461 | 3455.87 | 1687.694

3.899 | 2182.09 847.881 912.978 | 2514.41 | 847.881
4.235 | 1308.98 309.8 648.202 | 1601.43 309.8
4.56 550.145 48.318 953.231 | 953.231 0
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Figure 3.8 Numbers of applied forces at nodes on lower side of ribs

L, !

1 2 3 4 S 6 7 8 9 10 1

Figure 3.9 Ribs Positions and numbers
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3.6 Load distribution along the chord

Distributed load P (x) per m?, along the cord c of the airfoil at a distance y from the plane of symmetry:

PROGRAM WING_FORCES
Table 3.7 Load casesdistribution of forces and pressure

Table 3.5 Load distribution of forces and pressure case D0.23

Table 3.6 Load distribution of forces and pressure case E0.23

P(x)=q-[C.fu() +C - fu(8) + B - f3(6,0)] (3.125)

q — Dynamical pressure.
B-angle of aileron or flap deflection.
C,, - Local lift coefficient due to angle of attack a and angle 8 of aileron or flap deflection.

dc,

Cy -coefficient of the moment without deflection of aileron or flap, which corresponds to the
angle of attack a for case Cy,g—0).
This moment coefficient is related to the pointat x = 0.28 - ¢

Cm =0y —moment coefficient related to the point at the leading edge of an airfoil.

C,, - f1.(8)-function of load distribution for straight-line airfoil at the angle of attack «
(Without deflection of aileron or flap) having:

C f1y (8)-function of load distribution for the parabolic airfoil, with lift equal to zero and
curvature, is such that the coefficient of the moment at

x = 0.28 - c is exactly C

%@ﬁ

C.f.(9) Cy fu (0) B1,(0.9)

Figure 3.10 Stringer with an effective thickness of skin
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B (8, ®)-function of load distribution of straight-line airfoil with deflected aileron or flap
for angle S, and with lift equal to zero.

2
6 = arccos (1 __x) (3.129)
c
2¢,
@ = arccos ( CC L _ 1) (3.130)
Curve-1
£,(6) = 0.716 - cot g (9) (3.131)
L ' 2
Curve-2
0
£, (6) = 5.8 - sin (8) — 3.26 - cot g (E) (3.132)
Curve-3
B 1— cos (6 +0) ) 0
fp(0,0) =13 log (1 o5 (6 = QD) + (0.024 —1.273 - sin ((D)) - cotg (E) (3.133)
5.
. SN
5
1 —Curve # 1
] —Curve # 2
A0.-
5.
-20'7""I""\"“I""I“II
0.0 02 04 0.6 08 1.
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Figure 3.11 Functions for chord-wise load distribution
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Figure 3.12 Actual chord-wise pressure distributions at positions of ribs Case D0.23

350

- —Rib1

300 E Rib3

- Rib4

250 —Rib5

- ——Rib6

200 ¢ —Rib7

= —Rib8

5150 —Rib9

——Rib10

100 [ —Rib11
50 F
O r

0 0102 0304 05 0@(,9)7 0809 1 11 12 13
Figure 3.13 Distributions of applied equivalent forces at nodes of ribs Case D0.23

3.7 Flap and aileron loading

Pressure on point 26 at the end of the rib is the pressure at the leading edge of the flap or
aileron.
Position of flap ribs equals positions of (1,2,3,4,5 and 6) wing ribs, while positions of aileron ribs are
equal to positions of 6,7,8,9,10 and 11 wing ribs.
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Instead of lightly curvilinear, it is assumed that chord-wise distributions of pressure over flap
and aileron are linear (triangle shape). Chords of aileron and flaps approximatively are 0.4 m, and the
distance between their ribs approximatively is 0.32 m, so the distributed loading is a =0.4 m.

q =%-a-p (N/m) (3.134)

Table 3.7 Load cases for Ribs

Rib | y(m) | p(N/m? q (N/m)
1 1.240 497.046 99.4092
2 1.596 436.415 87.283
3 1.922 298.809 59.7618
4 2.247 260.396 52.0792
5 2.573 216.398 43.2796
6 2.895 219.205 43.841
7 3.230 157.382 31.4764
8 3.565 77.421 15.4842
9 3.899 28.392 5.6784
10 4.235 72.026 14.4052
11 4.560 89.269 17.8538

Instead of lightly parabolic span-wise load distribution over aileron and flap, the linear ones
are assumed.

99.41
. 43,84
om 1 3147 {54z 17.85
w1 5208 >88 |
43.28 0.335 ‘ 0 335I 0.336
0356 | 0326 ‘0.325 | 0.326 [0.322%784 2P o3 19
AN\ 0325
& A i 2
1
| ? | | .
0.163 1.141 0316 0.336 l 0958 l 01
l l F=2086 NI F=1231N
F,=60.95N F,=55.37N ! 2

Figure 3.14 Actual and assumed distributed loads over flap and aileron for D_023 load case.

3.8 Inertial loading (constant chord) Case D_0.23

Mass of the complete wing: 50.142 kg
Mass of the wing without flap and aileron: 42.181 kg
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Position of c.g x = 623 mm, y = 1561 mm
Mass per unit span of wing:

3.8.1 Moment due to aerodynamic loading:

M1 40) = 29599.908 (Nm)

Mass of wing structure: M = 50.142 (kg)
Mass per unit length of the wing
(y — ystart) = 3.32m

M

M =151 (kg/m) (3.136)

3.8.2 Distributed loading due to inertial loading in case D_023

Inertial loading data:

Mass of the complete wing: 50.142 kg

Position of c.g. X =734 mm, y = 1575 mm

Mass of the wing without flap and aileron: 42.181 kg

Position of c.g x =623 mm, y = 1561 mm

Mass per unit span of wing: 42.181/(4.56-1.24) = 42.181/3.32 = 12.705 kg/m
Distributed inertial loading in D flight case: n=6

gi=m-g-n (3.137)
qr = 747.561 (N/m)

Table 3.8 Reults of Inertial Loads case D_0.23

Rib |y (m) | p(N/m2) | g(N/m) | FT (N) | Mf (Nm)
1 | 1.24 | 497.046 | 99.409 | 2481.926 | 4119.997
2 | 1596 | 436.415 | 87.283 | 2215.792 | 3283.803
3 |1.922 | 298.809 | 59.672 | 1972.084 | 2601.179
4 | 2247 | 260.396 | 52.079 | 1729.125 | 1999.733
5 | 2573 | 216.398 | 43.28 | 1485.418 | 1475.762
6 |2.895| 219.205 | 43.841 | 1244.701 | 1036.213
7 | 3.23 | 157.382 | 31.476 | 994.265 | 661.186
8 [3565| 77.421 | 15.484 | 743.830 | 370.055
9 |3.899 | 28.392 5.678 494,142 | 163.314

10 [ 4.235| 72.026 | 14.405 | 242.959 | 39.481
11 | 456 | 89.269 | 17.854 0.000 | 0.000
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Figure 3.15 Shear forces due to inertial loading of the wing
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Figure 3.16 Span-wise distribution of bending moment due to inertial loading
3.8.3 Distributed loading due to inertial loading in case E_023

g =m-g-n (3.1398)
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q" = 373.780 (N/m)

Table 3.9 Results of Inertial Loads case E_0.23

Rib y (m) q (N) Ft (N) Mf (Nm)
1 1.24 373.784 1240.963 2059.998
2 1.596 373.784 1107.896 1641.902
3 1.922 373.784 986.042 1300.590
4 2.247 373.784 864.562 999.866
5 2.573 373.784 742.709 737.881
6 2.895 373.784 622.350 518.107
7 3.23 373.784 497.133 330.593
8 3.565 373.784 371.915 185.028
9 3.899 373.784 247.071 81.657
10 4.235 373.784 121.480 19.740
11 4.56 373.784 0.000 0.000
1400
