
 

 

UNIVERSITY OF BELGRADE 

 

FACULTY OF MECHANICAL ENGINEERING 

 

 

 
 

 

 
 

 

 

 

Abdussalam Yousef Solob 

 

 

FATIGUE LIFE ANALYSIS OF DAMAGED LIGHT AIRCRAFT 

WING-FUSELAGE FITTING 

 

 

Doctoral Dissertation 

 

 

 

 

 

 

 

 

 

 

Belgrade, 2021.



 

I 

 

УНИВЕРЗИТЕТ У БЕОГРАДУ 

 

МАШИНСКИ ФАКУЛТЕТ 

 

 
 

 

 

 

 

 

Абдусалам Јусеф Солоб 

 

 

АНАЛИЗА ВЕКА ПОД ЗАМОРОМ ОШТЕЋЕНОГ ОКОВА ВЕЗЕ 

КРИЛО ТРУП ЛАКЕ ЛЕТЕЛИЦЕ 

 

 

докторска дисертација 
 

 

 

 

 

 

 

 

Београд, 2021.   



 

II 

 

 

SUPERVISOR:  

Dr Aleksandar Grbović, redovni profesor, 

Univerzitet u Beogradu, Mašinski fakultet 

 

............................................................................... 

 

BOARD OF COMMISSION 

Dr Aleksandar Sedmak, redovni profesor, 

Univerzitet u Beogradu, Mašinski fakultet 

 

............................................................................... 

 

Dr Gordana Kastratović, redovni profesor, 

Univerzitet u Beogradu, Saobraćajni fakultet 

 

............................................................................... 

 

 

 

Data of defence ………………………………………………… 

  



 

III 

 

 

ACKNOWLEDGMENT 

 

Thanks to Allah. 

I would like to express my full thanks to my supervisor full Prof. Aleksandar  Grbovic, for his offers, 

continuous support to the thesis guides, and revision of my research.  

I would like to thank full Prof. Aleksandar Sedmak, full Prof. Gordana Kastratovic, and full Prof. Bojan 

Babic to teach me and their help during my Ph.D. study. 

I would also like to extend my gratitude to the Mechanical Engineering faculty staff at Belgrade 

University. 

I would like to thanks my job in Libya for financial supports. 

I would like to thank any who helped me with this thesis.  

Finally, my deep appreciation is addressed to whole my family Parents, wife, daughters, and sons for 

their patience and supporting me during the period of my study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IV 

 

 

 

 

 

 

 

 

Dedication 

 

 

 

 

 

 

                        To my family  

                                   To my parents 

                                     To my friends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

V 

 

 

Abstract 

Pin-loaded attachment lugs are the most responsible for wing-to-fuselage load transfer during the flight 

and, therefore, their structural integrity is crucial for overall aircraft safety. The potential failure of the 

wing-fuselage attachment lug would almost certainly result in wing loss and, subsequently, loss of life. 

As a result, special attention must be devoted to the fatigue design of these parts. Since lugs are the most 

heavily loaded components, their load-bearing capacity must be checked in accordance with 

recommendations defined by aviation regulations. During the service, the highest stresses are expected 

to occur in the region around the attachment lug’s hole; thus, potential fatigue damage could occur and 

spread in this area. To prevent this, materials used in the wing-fuselage attachment manufacturing are 

expensive high strength fatigue-resistant alloyed steels and according to Federal Aviation Administration 

(FAA) regulations these attachments are not the subject of experimental verifications since they are 

designed as safe-life components.  

However, some recent events in commercial aviation indicate that damages in the wing-fuselage 

attachment might occur quite unexpectedly. Cracks were found on the pickle forks (parts of the wing-

fuselage attachment of Boeing 737NG jets) with less time in service than meets the threshold for 

mandatory inspections. The cracking issue has led many airlines to check their airplanes and it’s reported 

that approximately 50 jets have been grounded worldwide in a search of a solution for this problem. 

Thus, numerical investigation of this kind of attachment is absolutely justified since the evaluation of 

aircraft safety is of the highest importance. 

The research presented in this thesis was based on three main steps: i) analytical evaluation of loads 

acting on the wing of the light aerobatic aircraft during the flight, ii) experimental analysis of real 

aerobatic aircraft wing under presumed loads, and iii) numerical evaluation – based on the use of the 

extended finite element method (XFEM) and finite element method (FEM) – of stress intensity factors 

(SIFs) in the case of fatigue crack occurrence in the wing-fuselage attachment lug (SIF values are the 

most important for fatigue life estimation). All three steps are connected since the results of one step are 

used in others with the ultimate goal: to achieve the best design of lugs which will significantly increase 

the fatigue life of damaged lug and prevent catastrophic consequences.  

Experimental analysis of full-scale wing was carried out for the purpose of numerical model verification. 

Comparisons of deformations measured and deformations calculated in FE simulations of aircraft wing 

deflection under load showed very good agreement, also confirming that loads acting on the wing-

fuselage attachment lug were accurately evaluated in the analytical step. The detailed analysis has shown 

that the total maximum axial force transferred to lug by pin would be Pax,max = 208,830.7 N, whereas the 

maximum transverse force would be Ptr,max = 20,177.3 N.  

Then, to demonstrate how dangerous the crack appearance could be and to estimate the residual strength 

and fatigue life of the cracked component, a finite element model of the actual attachment lug was made, 

and analyses were carried out using the maximum forces. It was assumed that due to very high stress 

both the corner crack and through crack may appear in the lug, i.e. that there is a possibility of damage 

presence which does not spread throughout the whole thickness of the lug and a possibility of the 

appearance of damage through the whole thickness. The idea was to compare the growth of the corner 

crack with the growth of the through crack, both located at the same position, and then to assess the risk 

of losing the integrity of wing-fuselage attachment once the crack has occurred. The calculated number 

of cycles to complete failure (obtained with the help of Paris law and using XFEM in Abaqus) was – as 

expected – low, confirming the fact that the actual attachment lugs must be redesigned using a fail-safe 

approach. 

The assessment of obtained values of a number of cycles in XFEM analysis might be a problem since 

the experimental data are missing; thus, classical FEM was used to evaluate the number of cycles 
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obtained by XFEM. The same geometry was imported into Ansys Workbench and the simulation based 

on the use of Unstructured Mesh Method (UMM) and Separating Morphing and Adaptive Remeshing 

Technology (SMART) was carried out, achieving very similar results. Differences in calculated mean 

values of SIFs are not significant (XFEM results are somewhat higher), while the evaluated number of 

cycles in Ansys is close to the number obtained using XFEM. It is important to point out that – unlike 

the XFEM where the same mesh is used through the whole simulation – mesh around the crack front in 

Ansys changes and adapts with every growth step for the purpose of better capturing the field values 

around the crack front nodes. 

Finally, after completing the above-mentioned three steps, in the final phase of work alternative designs 

of the wing-fuselage attachment were analyzed with the goal of achieving longer fatigue life of the 

damaged lug (fail-safe approach). Several geometrical parameters have been changed during the redesign 

process with a predefined target: increase of the number of cycles until complete failure. The new 

proposed design of lug brings increased mass (but not a significant increase when compared to the mass 

of whole attachment), but significantly improved fatigue life which reduces the possibility of lug failure 

before the crack is observed in regular maintenance inspections. 

 

Key words: XFEM, Fatigue crack growth, Wing-fuselage attachment lug, Light aerobatic aircraft 

Scientific field: Mechanical Engineering 

Scientific subfield: Aerospace Engineering 
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Сажетак 

Ушке окова са носећом осовиницом најодговорније су за пренос оптерећења са крила на труп 

током лета, па је њихов структурни интегритет кључан за укупну безбедност летелице. 

Потенцијални лом ушки окова везе крило-труп скоро сигурно би резултирао губитком крила и, 

последично, губитком живота путника. Због тога се посебна пажња мора посветити пројектовању 

ових елемената са аспекта лома услед замора. С обзиром да су ушке најоптерећенији делови 

окова, њихова носивост се мора проверити у складу са препорукама дефинисаним 

ваздухопловним прописима. Очекује се да ће током радног века доћи до појаве великих напрезања 

у области око отвора ушки; стога би се у овом подручју могле појавити и проширити прслине као 

резултат замора материјала. Да би се то спречило, материјали који се користе у производњи окова 

везе крило-труп јесу легирани челици високе чврстоће отпорни на замор и према прописима 

Федералне управе за ваздухопловство (ФАА) окови нису предмет експерименталних провера јер 

се пројектују као тзв. safe-life компоненте на којима током века није дозвољена појава било каквог 

оштећења. 

Међутим, неки недавни догађаји у комерцијалном ваздухопловству указују на то да би оштећења 

на вези крило-труп могла настати сасвим неочекивано. Откривене су прслине на тзв. носећим 

виљушкама (деловима везе крило-труп трупа авиона Boeing 737NG) пре времена предвиђеног за 

обавезни преглед овог склопа. Проблем уочених прслина навео је многе авио компаније да 

провере своје авионе и око 50 млазних летелица приземљено је широм света у потрази за решењем 

проблема. Стога је нумеричко истраживање ове врсте везе апсолутно оправдано јер је процена 

безбедности кључних делова авиона од највећег значаја за сигурност летелице и путника. 

Истраживање представљено у овој тези засновано је на три основна корака: 1) аналитичкој 

процени оптерећења која делују на крило лаког акробатског авиона током лета, 2) 

експерименталној анализи реалног крила акробатског авиона изложеног претпостављеним 

оптерећењима, и 3) нумеричкој процени – заснованој на употреби проширене методе коначних 

елемената (ПМКЕ) и методе коначних елемената (МКЕ) – фактора интензитета напона (ФИН) у 

случају појаве заморне прслине на ушкама окова везе крило-труп (правилно израчунате вредности 

ФИН-а најважније су за добру процену века елемента изложеног замору). Ова три корака су 

повезана јер се резултати из једног користе у другим с јасним циљем: остварити најбољи дизајн 

ушки који ће значајно повећати њихов век под замором кад се појави прслина и тиме спречити 

катастрофалне последице. 

У циљу верификације нумеричког модела извршена је експериментална анализа крила у пуној 

величини. Поређења измерених деформација и израчунатих деформација у МКЕ симулацијама 

угиба крила авиона под оптерећењем, показала су веома добро слагање, потврђујући да су 

оптерећења која делују на ушку окова везе крило-труп добро процењена у аналитичком кораку. 

Детаљна анализа је показала да би укупна максимална аксијална сила пренета на ушку преко 

осовинице била Pax,max = 208,830.7 N, док би максимална трансверзална сила била Ptr,max = 20,177.3 

N. 

Затим, како би се проучило колико би појава прслине могла бити опасна и како би се проценила 

преостала чврстоћа и век трајања под замором оштећене компоненте, направљен је модел 

коначних елемената ушке окова и спроведене су анализе коришћењем максимални вредности 

сила. Претпостављено је да се због врло великог напрезања на ушки могу појавити и угаона и 

продорна прслина, односно да постоји могућност појаве оштећења које не иде по целој дебљини 

ушке и могућност појаве оштећења по целој дебљини. Идеја је била да се упореди раст угаоне 

прслине са растом продорне (дубинске) прслине, обе смештене на истој позицији, а затим да се 

процени ризик од губитка интегритета окова везе када дође до појаве оштећења. Израчунати број 

циклуса до потпуног лома (добијен помоћу Парисовог закона коришћењем ПМКЕ у Abaqus-у) 

био је очекивано низак, што потврђује чињеницу да се пројектоване ушке окова морају 
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редизајнирати коришћењем тзв. fail-safe приступа који дозвољава појаву и раст прслине до 

одређене дужине. 

Процена добијеног броја циклуса коришћењем ПМКЕ може представљати проблем јер не постоје 

експериментални подаци о расту прслина на оковима; стога је класична МКЕ коришћена за 

процену броја циклуса добијених у Abaqus-у. Иста геометрија је увезена у Ansys Workbench и 

извршена је нумеричка симулација заснована на коришћењу методе неструктуриране мреже 

(МНМ) и SMART технологије инкорпориране у Ansys Workbench: добијени су врло слични 

резултати онима из Abaqus-а. Разлике у израчунатим средњим вредностима ФИН-ова нису биле 

значајне (вредности добијене коришћењем ПМКЕ су нешто више), док је процењени број циклуса 

у Ansys-у близу броја циклуса добијеног у Abaqus-у. Важно је истаћи да се – за разлику од ПМКЕ 

где се иста мрежа користи током целе симулације – мрежа око фронта прслине у Ansys-у мења и 

прилагођава са сваким кораком раста у сврху бољег „хватања“ вредности поља око чворова мреже 

у близини фронта прслине. 

Коначно, након што су завршена сва три корака, у завршној фази рада анализирани су 

алтернативни облици ушке окова везе крило-труп са циљем да се постигне дужи век трајања 

оштећене ушке коришћењем fail-safe приступа. Неколико геометријских параметара је варирано 

током процеса редизајна са унапред дефинисаним циљем: повећати број циклуса до потпуног 

лома услед замора. Нови предложени дизајн ушке доноси повећану масу (али не и значајно 

повећану у поређењу са масом читавог окова), али и значајно побољшан век под замором што 

смањује могућност потпуног лома ушки пре него што се оштећење примети у редовним 

прегледима као делу одржавања летелице. 

 

Кључне речи: ПКМЕ, Раст заморне прслине, Ушка окова везе крило-труп, Лак акробарски авион 

Научна област: Област техничких наука, машинство 

Ужа научна област: Ваздухопловсво 

УДК број: 629.735:621.791.05: 539.42(043.3) 
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Nomenclature 

LT                  Horizental tail lift (N) 

LW    Wing Lift (N) 

MAC    Mean aerodynamic centre 

xAC                Position of aerodynamic centre (m) 

xC.G     Position of centre of gravity (m) 

xC.G nom    Position nominal of centre of gravity (m) 

FT    Transversal forces due to aerodynamic loading (N)  

MF    Bending moment due to aerodynamic loading (N) 

Xcp    Positions of center of pressure (m) 

Fr   Equivalent concentrated forces (N) 

Frt   Total Equivalent concentrated forces (N) 

Mf    Equivalent concentrated moment (Nm) 

Mrf    Total Equivalent concentrated moment (Nm) 

q    Aerodynamic load per unit length (N/m) 

P    local pressure (N/m2) 

SE    Area of elliptic wing (m2)  

CE(y)    Local chord of equivalent elliptic wing (m2) 

𝑐𝑆𝐸    Chord of equivalent elliptic wing at plane of symmetry (m) 

Z(y)    Local upward force (N) 

L(y)    Local lift force (N) 

 𝑚̅    Mass of the wing per unit span (N/m)) 

MT(Y)    Local torsion moment (N.m) 

Ma(Y)    Aerodynamic moment about aerodynamic center (Nm) 

X0 (N)   Main spar reaction in X direction (N)
 
 

Y0 (N)    Main spar reaction in Y direction (N) 

Z0 (N)   Main spar reaction in Z direction (N) 

Y1  (N)    Main spar 
 
reaction in Y direction (N) 

Z1  (N)   Main spar reaction in Z direction (N) 

mF       Mass of fuel (kg) 

mw       mass of the half empty wing (kg) 

𝐺⃗         Gravity force (m/s2) 

Cf        Friction coefficient 

αn        Root section incidence angle (deg) 

αW        Induced angle from the wing in tail region (downwash angle) v(deg) 

α          Angle of attack (deg) 

AR       Aspect ratio  

b          Wing span (m)  

c          Wing Chord  (m)  

CL        Lift coefficient of the airplane  

CD       Drag coefficient of the airplane  

CG      Airplane center of gravity  

CMac    Moment coefficient about aerodynamic center  

g         Gravity acceleration g = 9.81( m/s)2  

MS      Margin of safety  

n    Load factor  
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n1    Airplane positive maneuvering limit load factor  

n2    Air plane negative maneuvering limit load factor  

n3    Load factor on wheels  

    Air density (kg/m3)  

SW   Wing area (m2)  

S.f   Factor of safety  

V    Airspeed (m/s)  

VA    Design maneuvering speed (m/s)   

VC    Design cruising speed (m/s)   

VD    Design diving speed (m/s) 

VDF    Design flap speed (m/s)   

VNE    Never exceed speed (m/s)   

VS          Stalling speed (flaps retracted) (m/s)   

VSF          Stalling speed (flaps full extended) (m/s) 

a            Crack length (m) 

a0        Initial crack length (m) 

𝐸    Young’s modulus 

F    Applied force (N) 

K   Stress intensity factor (MPa mm0.5) 

KI   Mode-I stress intensity factor (MPa mm0.5) 

KII   Mode-I stress intensity factor (MPa mm0.5) 

KIII    Mode-I stress intensity factor (MPa mm0.5) 

Keff   Effective stress intensity factor (MPa mm0.5) 

   Poisson’s ratio 

c    Constant (in Paris equation) 

m    Constant (in Paris equation) 

da/dN   Fatigue crack growth rate (mm/Cycle) 

𝐾    Stress intensity factors range 

R    Stress ratio 

N    Number of cycles 

xGw   Wing c.g in x direction (m) 

xGw    Wing c.g iny direction (m) 

xGw    Wing c.g in z direction (m) 

xGF    Fuel c.g in x direction (m) 

xGF    Fuel c.g in y direction (m) 

xGF    Fuel c.g in z direction (m) 

 

Abbreviations 

EASA    European Aviation Safety Agency 

FAR         Federal Aviation Regulations 

SIF(s)      Stress Intensity Factor 

XFEM      Extended Finite Element Method. 

LEFM      Linear Elastic Fracture Mechanics 

CTOD      Crack Tip Opening Displacement 

FEM        Finite Element Method 

BEM        Boundary Elements Method 

GFEM      Generalized Finite Element Method 

DEM        The Displacement Extrapolation Method 
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SN            Stress Level Versus Number of Cycles (curve) 

VCCT      Virtual Crack Closure Technique 

GDC        Generalized Form Displacement Correlation Method 

MCCI      Modified Crack Closure Integral 

PUM        Partition of Unity Method 

DOF         Degrees of freedom 

UMM       Unstructured Mesh Method 

PUFEM    Partition of unity finite element method 
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 INTRODUCTION 

 Background and Motivation 

The wing spar is connected to the supporting elements of the aircraft fuselage through specially 

designed elements-aircraft fittings. In most cases, to the main frame of the fuselage. All loads from the 

wing are transmitted to the main frame and through the wing-fuselage fitting. 

It is needless to point out the extreme importance of the accurate design of this fitting: its fatigue 

damage leads to an immediate separation of the wing from the fuselage and a consequent loss of aircraft. 

During the flight, fatigue cracks appear on the parts of the wing exposed to tensile stresses. These cracks 

are monitored, and certain measures are taken when they reach a critical length, but their appearance is 

not tolerated in the wing-fuselage fittings. This is also the reason why the cracks growth in these has not 

been studied so far and why the experimental tests of the remaining fatigue life of the damaged fitting 

were not required from the manufacturer. 

This, of course, does not mean that fatigue cracks did not appear and that they cannot appear in 

practice: a few recent cases, which only by sheer luck did not turn into tragedies, confirm this. Namely, 

in November 2019, the appearance of fatigue cracks on the wing-fuselage fitting for two Boeing  737 NG 

aircraft was reported by the Indonesian Airline Lion Air. These cracks were accidentally discovered 

before their regular inspection [1].  

After that, over 50 aircraft of this type were landed around the world to determine the condition 

of their wing-fuselage fitting (Ryanair discovered 3 cracked wing-fuselage fitting in its fleet) [2]. The 

institutions of the international aviation authorities in charge of aircraft safety are now widely considering 

the introduction of mandatory fatigue tests for damaged fittings to estimate their remaining fatigue life. 

By redesigning the wing-fuselage attachment, it is possible to extend the life even in the event 

of damage, but this will not change the long-adopted approach (safe-life) in their design. The intention 

is to increase the aircraft's safety and guarantee it even in the event of unforeseen damage. Of course, the 

question arises about the size of the "safe" damage to the fitting, i.e., the crack size that will not lead to 

its failure.  

The answer to this question can be given most precisely by experiments that are often time-

consuming and expensive. As a suitable alternative to the experimental verification of a newly designed 

(or modified) fitting, numerical modelling is imposed. Over the years, many numerical techniques, such 

as the finite element method (FEM), the boundary element method (BEM), the mesh less process, and 

the extended finite element method (XFEM), have been presented to simulate fracture mechanics 

problems, such as fatigue crack growth.  

By using XFEM, a conformal mesh is not required, which makes modelling of variable 

discontinuities or crack growth significantly simplified. On the other hand, by applying the Unstructured 

Mesh Method (UMM), FEM has been improved by enabling alteration of the finite element mesh only 

in the immediate vicinity of the crack, which considerably simplifies the modelling of crack propagation 

with this method as well. 

 Literature review 

Pin-loaded attachment lugs (Figure 1.1) are the most responsible for wing-to-fuselage load 

transfer during the flight and, therefore, their structural integrity is crucial for overall aircraft safety. The 

potential failure of the wing-fuselage attachment lug would almost certainly result in wing loss and, 

subsequently, loss of life. 

As a result, these parts have to be carefully designed as far as fatigue is conserved. The load-

bearing capacity of the lugs must be checked following recommendations defined by the aviation 

regulations since they are the most heavily loaded components.  
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During the service, the highest stresses are likely to occur in the region around the attachment 

lug’s hole; thus, potential fatigue damage could occur and spread in this area. In order to avoid this, 

materials used in the wing-fuselage attachment manufacturing are expensive high strength fatigue-

resistant alloyed steels.  

Lugs are redesigned and optimised regularly to reduce costs while maintaining required safety, 

but new shape must be approved before manufacturing. 

 

 
 

Figure 1.1 Light aircraft wing-fuselage attachment (circled) with two pairs of lugs 

 

Many researchers have made great efforts to analyse the fatigue behaviour of different types of 

aircraft attachment lugs and fittings.  

Many researchers concentrated their efforts on analysing the fatigue behaviour of the various 

types of aircraft attachment lugs and fittings. 

 

S. Barter et al. (1994) [3]. Inspected two F/A-18 trailing-edge flap (TEF) hinge lugs, and large cracks 

were found to be present. These cracks were found in different regions around the monoball bearing hole, 

and they were similar. The surfaces of both hinge lug bearing holes indicated extensive pitting corrosion 

and, in one case, extensive fretting, while the fracture surfaces revealed clear proof of fatigue. They 

concluded that the crack growth rate was approximately 10 times quicker than the rate evaluated by the 

manufacturer, and it is likely to be accelerated by the corrosive environment. Therefore, the contributing 

factor in unexpected failure was corrosion fatigue. They suggested that performing a combined 

photography and laboratory investigation can find the reason for a failure and improve inspection 

methods to avoid future disastrous failures. Fractography offered the possible crack growth rate, which 

showed that non-destructive investigation (NDI) are needed frequently and sensitively. A new NDI 

procedure allowed for the detection of smaller cracks. 

A three-dimensional boundary element method (BEM) and the J-integral were used by R. 

Rigby and M. H. Aliabadi (1997) [4]. Used the BEM and mixed-mode J-integral to investigates crack 

behaviour in attachment lugs. Stress intensity factors for both single and two-quarter elliptical cracks 

were obtained for several crack length ratios and radius ratios. To evaluate the stress intensity factors for 

cracks at attachment lugs. Also, they used the BEM and mixed-mode J-integral to investigates crack 
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behavior in attachment lugs. Stress intensity factors for both single and two-quarter elliptical cracks were 

obtained for several crack length ratios and radius ratios. 

C.R.F. Azevedo et al. (2002) [5]. Studied the failure of an aircraft landing gear; the failure was caused 

by the fracture of the outer cylinder lug. The results revealed clear evidence of both stable and unstable 

crack propagation caused by the orientation of the microstructure adjacent to the free surface. Moreover, 

the corrosion cavities located in a critical area and the severe loads absorbed by the outer cylinder during 

the landing procedure may be the reason for this failure. 

Jong-Ho Kimu Honget et al. (2003) [6]. This research conducted by stress intensity factors for cracks 

passing through the thickness initiated from lug holes was compared using the weight function method, 

the boundary element method (BEM), interpolating the Brussat solution. The authors found that the 

prediction of fatigue crack growth based on the numerical stress intensity factor was quite similar to the 

experimental expectation. Also, it was found that the fatigue life of an attachment lug decreases as the 

clipping level increases because the clipping of high load cycles reduces the delay effect. 

Katarina Maksimović et al. (2004) [7]. Suggested analytical and numerical methods for estimating 

fatigue crack growth life and calculating stress intensity factors for cracks at the attachment lugs. The 

stress intensity factor results obtained from finite element numerical methods were in good agreement 

with the analytical results for the damaged lugs. The presented analytical methods satisfy the 

requirements for damage tolerance analyses of lugs-type joints. 

Lucjan Witek (2006) [8]. Analyze the failure of a wing-fuselage connector for an agricultural aircraft. 

The careful observation indicated that the original crack surface was covered with corrosion products; 

therefore, the failure had a combined fatigue and corrosion character. A method of nonlinear finite 

element was employed to analyse the stress state of the connector during the operating condition. The 

wing lug failure occurred due to the high-stress areas in the wing lug region. The results were then 

included in the total fatigue life (S-N) and crack initiation (e-N) analyses conducted for the load time 

history corresponding to 10 minutes of light operation. Visual inspection revealed a typical fatigue 

fracture with impact marks. The crack growth was accelerated by the corrosion which covered the crack 

original surface. It was clear that the extreme stress in the critical area of the lug was the main reason for 

premature fatigue failure. Based on his study, he advised redesigning the wing-fuselage connector for 

better fatigue durability. 

A. Lanciotti et al. (2006) [9]. Examined two different specimens experimentally. 

 The first specimen was tested using constant amplitude loading to validate the fatigue crack growth rate 

data contained in NASGRO 4 software which is used for Damage Tolerance evaluations. This specimen 

was also tested under variable amplitude loading to validate crack growth models used in this study. The 

second specimen was tested using both constant and variable amplitude loading fatigue tests, a lug-fork 

joint designed as the actual joints present on the aircraft. They observed a higher crack propagation rate 

in the lug surface direction than in the lug thickness direction, in contrast to what was observed previously 

in the literature. Moreover, they observed that the crack shapes were not concerning variable amplitude 

loading or residual stress field produced during bushing installation. Also, they observed that fatigue life 

is increased more than five times when ForceMate bushings are used, compared to the shrink fit bushings. 

Huan and Moan (2007) [10]. Presented the fatigue life to failure is evaluated through the crack growth 

concept. The behaviour of fatigue of the damaged lug is investigated to consider the effect of the lug 

head. The failure analysis results compared with the relevant experimental results show that the 

developed model can be used for a reliable estimate of the fatigue strength of the pin-loaded lug with 

crack through-the-thickness of a hole. 

L. Allegrucci et al. in (2009) [11]. Examined a lever reverse of the canopy balancing system of an 

MB339 CD aircraft. The lever reverse forged a 7075-T6 aluminium alloy, was broken into two parts 

during a pre-flight inspection. Visual observation showed the failure of the lever reverse resulted from 

high-cycle fatigue caused by the application of an abnormal force due to an over length of the actuator 
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lugs. The corrosion pit also aggravated the fatigue. Visual observation indicated that an over the length 

of the actuator lugs caused a severe force on the lever reverse, resulting in high-cycle fatigue failure. A 

corrosion pit also boosted the fatigue. 

Li-Ming Wu and et al. (2011) [12]. Built a finite element model of a straight attachment lug subjected 

to an oblique loading less than 45o using ANSYS software, a boundary condition of cosine pin-bearing 

pressure is assigned at the lug hole. By studying the influence of some dimensionless parameters such as 

crack length, radius ratio, and pin-load angle (β) on the SIFs values. The SIF expression for the straight 

attachment lug with a single through-the-thickness crack is determined and validated, which can be used 

to calculate the stress intensity factor's amplitude (ΔK). The fatigue crack growth model is established, 

and the fatigue crack growth behaviour of 30CrMnSiA straight attachment lugs was investigated 

analytically and experimentally. 

N. Antoni and F. Gaisne (2011) [13]. Suggested analytical models for bush fitting and pin-loading 

condition, leading to an entire calculation of the stress distribution in the lug. Their results were verified 

by comparing them with that obtained from finite element numerical simulations, which show the validity 

of the adopted assumptions, such as geometric axisymmetry. The main phenomena of friction pin 

deformation and local plastic effects under pin-loading are considered to enhance the models. Based on 

stress or strain approaches, analytical fatigue models have been derived by considering a fatigue lifetime 

calculation of connecting lugs.  

S. Mikheevskiy et al. (2012) [14]. Calculated stress intensity factor using the weight function method; 

this factor is essential for analysing fatigue crack growth. Also, they have determined the rate of load 

shedding by computing the amount of the load transferred through the cracked ligament with the help of 

the finite element method. Simulations of the fatigue crack growth under two-variable amplitude loading 

spectra have been conducted using the UniGrow fatigue crack growth model. They compared their 

computed results with experimental data to prove the ability of the UniGrow model to precisely predict 

fatigue crack growth behaviour of two-dimensional planar cracks under a complex stress field. Moreover, 

they have indicated that the relatively accurate prediction of fatigue lives of cracked bodies subjected to 

complex variable amplitude service loading spectra can be attained using appropriate 'memory rules' and 

the two-parameter driving force. The significance of the load shedding in lugs has been estimated by 

accounting to reduce the resultant load in the cracked cross-section. They also concluded that eliminating 

this in the fatigue crack growth analysis could result in a high underestimation of the life of fatigue crack 

growth. 

Boljanović and Maksimović (2013) [15]. They proposed a computational model to assess the residual 

strength of a damaged lug subjected to cyclic loading. A crack through-the-thickness situation was 

theoretically studied by using fracture mechanics based on numerical and analytical models. 

Mookaiya et al. (2013) [16]. Proposed a computational model used to analyse crack growth in the 

attachment lugs with single quarter-elliptical crack and those with single through-the-thickness crack. 

The proposed model also addresses the fatigue life estimation, the stress analysis and the crack path 

simulations. The commercial software ANSYS and quarter-point (Q-P) finite element were used to 

analyse the stress around the crack tip and estimate the stress intensity factor. 

 Naderi and Iyyer (2015) [17]. Used a three-dimensional finite element method (FEM) and extended 

finite element method (XFEM) available in ABAQUS to calculate the stress intensity factor (SIF) in 

straight lugs of Aluminium 7075-T6. Also, they estimated the crack growth and fatigue life of single 

through-thickness and single quarter elliptical corner cracks in the attachment lug. They have compared 

their results with the available experimental data for two different load ratios equal to 0.1 and 0.5. They 

concluded that the results of the SIF obtained from the XFEM indicate that the estimated fatigue life was 

significantly affected by the introduction of different loading boundary conditions. 

Slobodanka Boljanović et al. (2017) [18]. They have developed a calculation procedure for evaluating 

the strength of a pin-loaded lug with a crack through the thickness. Cyclic loading with either constant 
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amplitude or an overload is applied to the lug. The constructed procedure considers both the calculation 

of the stress intensity factor and the assessment of the residual strength. The stresses are addressed 

through both analytical and numerical approaches. The fatigue life up to failure is calculated using 

Walker's two-parameter driving force model and the Wheeler retardation model for constant amplitude 

cyclic loads and overloads, respectively. The suggested crack growth procedure is evaluated by 

comparing the computed results with the experimental data available in the literature. A good agreement 

between the different results implies that the developed procedure offers a reliable estimation of the 

strength for a pin-loaded lug with a crack passing through the thickness under cyclic load. Besides, such 

a procedure is carried out to examine the differences between the residual fatigue life under constant 

amplitude loads and that under overloads. Finally, they analysed the effect of the width, the diameter of 

a hole and the thickness on the lug strength. 

Abraham J. Pulickal et al. (2017) [19]. They considered the design of a Wing-Fuselage Lug attachment 

for a transport aircraft with a mid-wing configuration. They observed that the maximum elongation was 

at the spar only, and the maximum stresses were at the rivet holes that are close to the lugs. They also 

found that the best material that can be used for this design is Aluminium AA 2024 as it has a factor of 

safety of 2.15. They concluded that the material properties affect strains but not on stresses in FE 

calculations (linear elastic conditions). The calculated fatigue life obtained the maximum allowable 

working period of the designed wing-fuselage lug attachment. 

Sumanth M H and Ayyappa T (2018) [20]. Study the wing-fuselage lug attachment bracket employed 

the finite element approach. This study was performed in two cases. In the first case, steel alloy AlSl 

4340 and aluminium alloy 2024 T351 were used, whereas in the second case, titanium alloy Ti 6Al 4V 

and aluminium alloy 7075 T6 were used. Several iterations were performed for a mesh-independent value 

for a maximum stress result. The materials utilized in the second case have better properties than those 

used in the first case in the aircraft industry. Comparing the total weight of the brackets used in the first 

and second cases were 36.187 kg and 24.435 kg, respectively. Therefore, materials used in the second 

case are better and could be used for bracket fabrication. As previously mentioned, several numerical 

techniques have been proposed to simulate fracture mechanics problems, such as fatigue crack growth. 

Sedmak (2018) [21]. Provided an overview of the state of the art of computational fracture mechanics, 

beginning with initial efforts and going as far as recent achievements. Discussion of some problems of 

specific aspects of elastic-plastic and linear elastic fracture mechanics has been presented. These 

problems include static loading, which its numerical simulation is not an easy task because of complex 

geometries, material nonlinearity, and heterogeneity. This complexity becomes more serious, especially 

if crack growth is included. Thus, micromechanical modelling of elastic-plastic crack growth is proposed 

as a novel and promising approach to address some of the gaps in traditional approaches. In addition to 

static loading, some other important practical issues are addressed, such as fatigue crack growth, with 

the remaining service life at the focus of the study, utilizing empirical laws for crack growth rates. 

Numerical simulation of fatigue crack growth is a challenging problem because of both the complex 

processes of material damage and the lack of a strong theoretical basis for defining them. Therefore, the 

combination of the theoretical, experimental and numerical approach is presented here to provide a 

reliable and efficient estimate of the service life under fatigue loading. This study showed that most 

current methods, such as extended finite element methods (XFEM) and improved finite element methods 

(FEM), have shown remarkable progress in a very short time and that they have been successfully used 

in various research [22], [23], [24], [17], [25], [26], [27]. Still, it has also shown that their potential is not 

yet fully appreciated. 

James C Sobotka et al. (2019)  [28]. They have proposed a new SIF solution for tapered lugs and oblique 

loads. These solutions offer driving force estimates for fatigue and fracture across the elliptical quarter-

corner cracks and cracks under pin load. These solutions also include a wide range of geometries based 

on comments received from the industry partners. The powerful novel methods employed in their study 
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can easily be extended to build new reliable SIF solutions for other complex combinations of cracked 

geometries and loads. For example, SIF solutions address other important features of lug-pin 

connections. 

K. Shridhar et al. (2019) [29]. They have used MSC Patran/Nastran to study the stress distribution for 

a pin-loaded lug and detect the maximum tensile stress location, which is likely to be a region of 

developing fatigue cracks. Finally, they came up with some remarks; such as, increasing radius ratio 

reduces stress concentration factor, the largest stress concentration occurs at the location perpendicular 

to the loading direction which, indicates exponential decline as we move further towards the lug edge, 

the stress intensity factor (SIF) values are more critical for smaller radius ratios that indicate a significant 

change for smaller variations in crack length. The maximum number of cycles to failure increases as the 

radius ratio increases, and a higher fatigue crack growth rate occurs in lugs with smaller radius ratios.  

 Objective and thesis organization  

 Objective 

 The mentioned studies and research activities undoubtedly have significant scientific and 

engineering contribution. Most of them were case studies in which analytical and finite and boundary 

element based numerical methods were used to determine the causes of cracks appearing in the first place 

and then their growth. They did not deal with the fatigue life assessment of the damaged fitting part nor 

its optimization.   

 Based on the previously mentioned, the main goal of the research conducted within the thesis 

was to determine the fatigue behaviour of the real damaged wing-fuselage fitting of a light aircraft by 

using the newest numerical methods, namely improved finite element methods (FEM) and extended 

finite element methods (XFEM). It is expected that the dissertation will contribute to further upgrading 

of the design of integral aircraft elements, in the sense that based on its results, verified numerical models, 

and adopted methodology, it will be possible to efficiently and accurately determine how resistant a 

newly designed (or modified) structure is and how long its remaining life is under the effects of various 

fatigue loads. 

 In accordance, with the mentioned research goal, in this thesis, special attention was paid to the 

determination of the load that is transferred from the wing spar to the wing-fuselage attachment lug by 

using analytical methods and CFD analysis, then experimental verification of the numerical model of the 

wing and, finally, numerical analysis of fatigue behaviour (FEM and XFEM). 

 Based on the conclusions about the fatigue life of the damaged fitting, guidelines for improving 

its fatigue characteristics will be defined, both through a suggestion to change the geometry (while 

preserving or even reducing the weight of the fitting) and through a material suggestion that would allow 

longer fatigue life than that obtained by using numerical methods. These methods will also be used to 

estimate the fatigue life of the improved wing-fuselage fitting. 

 Thesis organization 

 The thesis comprises e chapters. 

 Background of the thesis topic, literature review, and the thesis objectives and content were 

presented in the first chapter. 

 In the second chapter theoretical background necessary for thesis research is presented: concepts 

of linear-elastic fracture mechanics (LEFM), fatigue crack growth propagation and fatigue life 

determination. 

 In the third chapter the determination of the load that is transferred from the wing spar to the 

wing-fuselage attachment lug was carried out by using analytical methods and CFD analysis. 
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 In the fourth chapter Numerical Determination of Loading of Wing-Fuselage Fitting "Based 
on the data obtained in previous chapter in this chapter the determination of the wing-    

fuselage attachment load was carried out." 
 In the fifth chapter XFEM and improved FEM (implemented in software packages Ansys 

Workbench and Morfeo for Abaqus) were employed for necessary stress-deformation analyses of 

the damaged wing-fuselage fitting and numerical simulation of the crack growth propagation and 

fatigue life assessment. 

 Experimental verification of the numerically calculated stresses and deformations obtained in the 

third chapter was presented in the sixth chapter. 

 Optimization of the wing-fuselage attachment lug, together with the numerical analysis of its 

fatigue behavior with mentioned methods, and comparison of fatigue lives of original and 

optimized attachment lug, were conducted in the seventh chapter. 

 Finally, in the eighth chapter, the conclusions and guidelines for further research, together with 

the thesis's achieved contributions, are given. 
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CHAPTER 2 

LINEAR ELASTIC FRACTURE MECHANICS and 

FATIGUE 
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 Linear-Elastic Fracture Mechanics 

 Fracture Mechanics and Fatigue 

Fracture mechanics is a scientific and engineering discipline dealing with the study of mechanical 

phenomena, such as stress distribution, in materials with geometrical discontinuities, namely cracks. 

Fracture mechanics uses two different approaches to describe the behaviour of cracked structures. The 

first is linear-elastic fracture mechanics (LEFM), and the second is elastoplastic fracture mechanics 

(EPFM). LEFM represent an analytical approach to fracture by linking the stress distribution in the 

vicinity of the crack tip/front to other parameters such as the nominal applied stress and the geometry 

and orientation of the crack.  

Linear elastic fracture mechanics (LEFM) can be applied only as long as the nonlinear material 

deformation domain is restricted to a small zone surrounding the crack tip. But, for many materials, 

LEFM cannot be used for fracture characterization. In those cases, an alternative fracture mechanics 

model is required, and that is EPFM. EPFM applies to materials that exhibit time-independent, nonlinear 

behaviour (i.e., plastic deformation) [30]. 

 Stress Concentration 

Stress concentration factors, Kt, can be determined by theoretical formulas, testing or 

computational methods. The index near K stands for theoretical because it is determined recurring to the 

elastic theory. Usually, theoretical modes of obtaining Kt are through the Elastic Theory, and the 

computational ones are through the Finite Element Method. It is possible to get Kt through testing as 

well by using photo-elasticity or strain gauges. This parameter is also very important for crack initiation 

and propagation, as a crack is normally formed due to stress concentration on the micro crack’s tip. As 

so, designers should try to avoid stress concentration on the components to prevent fatigue. 

Additionally, geometrically similar components have the same Kt, but different stress gradients 

will be found in the two components. This occurs because the stress concentration factor is a 

dimensionless parameter. Consequently, the biggest components will have higher areas and volumes 

where there will be highly stressed material, thus contributing to an increase in fatigue effects. This is 

known as the fatigue size effect. Stress concentration around fastener holes is one of the most critical 

aspects leading to fatigue in aircraft. As so, its comprehension and determination are of great importance. 

  
 

Figure 2.1 A prototype of a notched part (strip with central hole)  
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 Geometrical notches such as holes cannot be avoided. The notches are causing an 

inhomogeneous stress distribution, as shown in Figure 2.1.  

The theoretical stress concentration factor, Kt, is defined as the ratio between the peak stress, 

the stress concentration point (the root of the notch) and the nominal stress present if a stress 

concentration did not occur. 

 𝐾𝑡 =
𝜎𝑝𝑒𝑎𝑘
𝜎𝑛𝑜𝑟𝑚𝑎𝑙

 (2.1) 

The stress concentration is depending on the geometry of the notch configuration. Reducing 

stress concentrations as much as possible is required to avoid fatigue problems. The present section is 

dedicated to various aspects of stress concentrations and the effect of the geometry on Kt. This is one of 

the fundamental issues of designing a fatigue-resistant structure. Problems discussed in the present 

section covers definitions of stress concentration factors, calculations and estimations of Kt -values, stress 

gradients, aspects related to size and shape effects, superposition of notches and methods to determine 

Kt –values. 

 Analytical calculations 

As shown in Figure 2.2, the displacement functions u(x,y) and v(x, y) has to be found for a two-

dimensional problem. The strains follow these functions, and the stresses are linked to the strains by 

Hooke’s law. Then the problem is solved. The tensile strains, 𝜀𝑥(𝑥, 𝑦) and 𝜀𝑦 (𝑥, 𝑦), and the shear strain 

𝛾𝑥𝑦  (𝑥, 𝑦)must satisfy the compatibility equation. The stresses 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦 are linked to the strains by 

three equations representing Hooke’s law, including the elastic constants of the material. 

 

 
 

Figure 2.2 An elliptical hole with stress concentration.  

 

The Airy stress function 𝜑 leads to a biharmonic equation. The problem then is to find a function 

𝜑 that satisfies this equation. The solution will still contain unknown constants, which should follow the 

boundary conditions. These conditions are essential for solving a particular problem. For the tensile strip 

with a central hole in Figure 2.1, the boundary conditions are: 

1. At the upper and lower edge: 𝜎𝑦 = S, 𝜎𝑥= 0, 𝜏𝑥𝑦= 0. 

2. At the side edges (x = ±W/2): 𝜎𝑥= 0, 𝜏𝑥𝑦 = 0. 
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3. At the edge of the hole: the stress perpendicular to the hole edge, and the shear stress is zero. An exact 

analytical solution for the simple case of Figure 2.1, a strip with a hole, is not available, but accurate 

numerical approximations were obtained. However, for an infinite sheet with an elliptical hole, the exact 

solution was obtained [31]. 

This problem is known as a classical problem in the theory of Elasticity [32]. It is not a simple 

problem. Elliptical coordinates and complex functions are used to arrive at the solution, which then 

provides the stress distribution in the entire plate. The results illustrate several interesting features of 

stress distributions around the hole. The tangential stresses along the edge of the hole are of great interest. 

The maximum stress, 𝜎𝑝𝑒𝑎𝑘, occurs at the end of the main axis (x=a, y=0) , see Figure 2.2. The semi-

axes of the elliptical hole are a and b, respectively. The tip radius at the end of the major axis follows 

from 𝜌 =
𝑏2

𝑎
. The equations for the peak stress and 𝐾𝑡 are simple: 

 𝜎𝑝𝑒𝑎𝑘 = 𝑆 (1 + 2
𝑎

𝑏
 ) = 𝑆(1 + 2√

𝑎

𝜌
 ) (2.2) 

 𝐾𝑡 =
𝜎𝑝𝑒𝑎𝑘
𝜎𝑛𝑜𝑟𝑚𝑎𝑙

= 1 + 2
𝑎

𝑏
= 1 + 2√

𝑎

𝜌
 (2.3) 

The last equation indicates that a small notch root radius will give a high 𝐾𝑡. A significant 

radius results in a low Kt value, illustrated in Figure 2.3. 

 

 
 

Figure 2.3 Hole shape and its effect on 𝐾𝑡 
 

Using large radii in notched components is to reduce the stress concentration. A circular hole is 

a particular case obtained from an ellipse with equal axes; a = b. The 𝐾𝑡 -value according to Equation 

(2.3) is equal to 3. The 𝐾𝑡-value will be somewhat lower because the component has a finite width. In 

practice, fatigue cracks have indeed frequently occurred in structures at open holes. 

 The tangential stress at the end of the vertical axis (y = b, x = 0) in Figure 2.2 is compressive 

stress, equal to the tensile stress applied to the infinite plate. This result is valid for all ellipses and a 

circular hole (see Figure 2.3). Along the edge of the hole, starting from a to the top of hole b, the tangential 

stress changes from +3S to −S, following the equation: 

 

 

 𝜎𝜑 = 𝑆(1 + 2 𝐶𝑂𝑆 2𝜑) (2.4) 
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The value of the tangential stress must go through zero (𝜎𝜑 = 0) which occurs at 𝜑= 60°. 

 Stress Intensity Factors 

If the notch root radius ρ is reduced to a minimal value, the stress concentration factor Kt tends 

to approach infinity. In that case, the notch becomes crack. So, the Kt-value is no longer a meaningful 

concept to indicate the severity of the stress distribution around the crack tip. A new concept to describe 

the stress distribution around the crack tip is called stress intensity factor K. This concept was originally 

developed through the work of [33] Irwin. The stress intensity factor K is the fracture mechanics 

parameter, and it describes the stress distribution around crack tips. The crack initiation life is highly 

dependent on the Kt -value. The crack initiation period is followed by the fatigue crack growth period, 

see Figure 2.4. 

 
 

Figure 2.4 Factors of different phases of the fatigue life. 

 

 The application of the stress intensity factor to present fatigue crack tip data and predict fatigue 

crack growth is referred to as “linear elastic fracture mechanics”. 

 The stress concentration factor Kt is given by Equation: 

 Kt = 1 + 2
a

b
= 1 + 2√a ρ⁄     (2.5) 

with the tip radius ρ = b2/a. The elliptical hole becomes a crack by decreasing the minor axis b 

to zero. If b = 0 the hole is a crack with a tip radius ρ = 0, stress concentration factor is 𝐾𝑡= ∞, regardless 

of the semi-crack length. This result is not valid. However, the stress distribution around the tip of a crack 

shows a characteristic picture; this is illustrated in Figure 2.5 by photo-elastic results of a specimen with 

three cracks loaded in tension. 

  
 

Figure 2.5 Three types of cracks are shown by Photo-elastic picture 
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Note the similar butterfly pattern at each crack tip. Similar isochromatic pictures occur at the 

tips of the three cracks, which suggest similar stress distributions at the crack tips. The “intensity” of the 

crack tip stress distribution is depending on the stress intensity factor K, which can be written as: 

 

 𝐾 = 𝛽 𝑆 √𝜋𝑎 (2.6) 

 

In this equation, S is the remote loading stress, a is the crack length, and β is a dimensionless 

factor depending on the specimen's geometry or structural component. The important feature is that stress 

distribution around the tip of the crack can be fully described as a linear function of the stress intensity 

factor K. The concept of the stress intensity factor is presented in this chapter. First, different cracks are 

listed, followed by more details about stress intensity factors for several geometries. Some basic aspects 

of the stress analysis of cracked configurations are addressed, including differences between plane stress 

and plane strain situations, crack tip plasticity and determination of K factors. The basic principle of the 

application of K factors to fatigue crack growth is considered. 

  Fracture modes 

I. Mode I 

 Mode I (Figure 2.6-MODE I) encompasses all normal stresses that cause the crack to open, i.e., 

the crack edges to be removed symmetrically with respect to the crack plane. A pure state of mode I 

stress thus always exists when there is a symmetrical force flow path with respect to the crack plane. For 

example, this is the case in tensile-loaded and bending-loaded components when the crack grows 

perpendicular to the normal stress. Since extended fatigue crack growth occurs under the influence of 

normal stress, fatigue cracks whose loading direction does not change in the cracking process are 

generally in a state of mode I loading. 

 

 
 

Figure 2.6 The three basic crack loading types in Mode I, Mode II, and Mode III of fracture mechanics 

 

II. Mode II 

 This loading mode (Figure 2.6-MODE II) is associated with all shear stresses that engender 

opposed sliding of the crack surfaces in the direction of the crack. This is the case, for example, in 

components that are subjected to plane shear loading, either globally or locally. 
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III. Mode III 

 This loading mode (Figure 2.6-MODE III) corresponds to the non-plane shear stress state, which 

causes the crack surfaces to move against each other at a right angle to the crack direction, i.e., in the 

direction of the crack front. Mode III loading can be encountered, for example, in torsional loaded shafts 

when the crack is found in a plane that is perpendicular to the shaft axis. 

IV. Mixed mode 

 The basic crack loading types described above can also appear in a combination called mixed-

mode loading. It is a plane mixed-mode situation when, for example, mode I and mode II are 

superimposed. Mixed-mode loading can be recognized, among other ways, by its asymmetrical force 

flow distribution with respect to the crack. If all three crack loading mode types are superimposed, it is 

referred to as a general or spatial mixed mode state. For example, this is associated with surface cracks, 

internal cracks, or edge cracks lying at an angle to the loading direction within the component or on the 

component surface, or cracks in multiaxially loaded component [34]. 

  The Energy Release Rate    

 This method is known as energy balance. The energy release rate G is defined by the energy 

necessary to make the crack fronts extending the crack length by a unit length [35]: 

 𝐺 = −
𝑑𝑊𝑝𝑜𝑡

𝑑𝑎
 (2.7) 

Where: 

 𝑊𝑝𝑜𝑡 = 𝑊𝜀 −𝑊𝑒𝑥𝑡 (Wext is the work of external forces, and Wε is the strain energy of structure). 

The energy release rate G corresponds to the decrease in the total potential energy Wpot of the cracked 

body.  

 The relation between G to the stress intensity factors is given by: 

 𝐺 =
(𝐾𝐼

2 + 𝐾𝐼𝐼
2)

𝐸′
+
𝐾𝐼𝐼𝐼
2

2𝜇
 (2.8) 

Where: 

 𝐸′ = 𝐸 for plane stress, and 𝐸′ = 𝐸/(1 − 𝜈2) for plane strain. μ is the shear modulus. 

  J-integral 

 J-integral is a parameter to deal with the Non-linear fracture problem. J-integral is based on the 

concept of conservation of energy. It is less dependent on the crack tip, which means there is no need to 

do the special treatment on the mesh around the crack tip. The J-integral equation is given by: [35], [36]. 

This means there is no need to do the special treatment on the mesh around the crack tip. The J-integral 

equation is given by: 

 𝐽 =  ∫ ( 𝑊𝑑𝑥2 − 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥𝑖

)𝑑𝑠

𝛤

 (2.9) 

Where: 

W is the strain energy density, 𝑇𝑖 is the traction vector, 𝑢𝑖 is the displacement vector, and ds is 

an element of arc along the integration contour (see Figure 2.7). 
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Figure 2.7 Counter clockwise loop around the crack tip with a clockwise loop 

 

 In the LEFM method, the stress and displacement components at the crack tip are known as 

functions relative to the crack tip. But for a multi-mode loading, they have been used by the SIF KI, KII 

and KIII. The integration path is usually required to be only a circle around the crack tip; this can be done 

because the J-integral is path-independent. The J-integral is related to the SIF. In Mode I, the J-integral 

is equivalent to the energy release rate G. This means that J-integral can be used in the crack growth 

criteria of LEFM as a replacement for K and G  [35], [36]. 

 Plane stress     𝐽 =
1

𝐸
𝐾𝐼
2            (2.10) 

 Plane strain    𝐽 =  
(1 − 𝜈2)

𝐸
𝐾𝐼
2                 (2.11) 

 Fatigue Crack Propagation 

Fatigue is a process of local strength reduction. The phenomenon is often referred to as a process 

of damage accumulation in a material undergoing fluctuating loading, which occurs in engineering 

materials such as metallic alloys, polymers and composites. Different parameters are used to define the 

mechanical fatigue process that occurs when a structure is subjected to repeated loads, like cyclic load, 

stress intensity, and crack growth rate. The maximum load is Pmax, the minimum load Pmin [kN], and 

the ratio between the minimum and maximum load is (Pmin/Pmax) is called the load ratio R, which is 

often used to measure the mean stress. Crack growth rate da/dN is the crack increment da per loading 

cycle increment dN. The stress intensity factor K [MPam], working on the crack tip, is calculated from 

the applied load P and actual crack length and direction in a construction. The maximum stress intensity 

is Kmax, the minimum Kmin, and the difference between both is K, see Figure 2.8. Fluctuating loads 

can lead to fluctuating local high stresses, and small microscopic cracks may appear. Once a crack exists 

in a structure, it will tend to grow under cyclic loading. Even if the maximum of the cyclic load on 

construction is below the material's elastic limit, fatigue may lead to failure. Fatigue is progressive in 

which the damage develops slowly in the early stages and near the end of a structure’s life, and it 

accelerates very quickly towards failure. 
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Figure 2.8 Fatigue loading vs number of cycles  

 

However, details of the fatigue process may differ between materials. The fatigue process can 

be defined generally as [37] “The process of the cycle-by-cycle accumulation of local damage in a 

material undergoing fluctuating stresses and strains.” 

 Description of the fatigue phenomenon 

 Fatigue of metallic in structures has been studied since the beginning of the 19th century. 

Railroads, bridges, steam engines: a whole gamut of new structures and machines was developed, made 

of steel in the Industrial Revolution. Many of them were exposed to cyclic stresses during service life, 

and many of them failed; the origin of failure was unknown until Albert [38] made the first report about 

failure caused by fatigue in 1829. He observed the failure of iron mine-hoist chains caused by repeated 

small loads. Ten years later, in 1839, Poncelet, a professor of mechanics at the école d'application, Metz, 

introduced the term fatigue in his lectures. Rankine [39] recognized the importance of stress 

concentration in 1843. He noted that fracture occurs near sharp corners. However, until then, the 

phenomenon was described qualitatively only. 

Wöhler made a major step in 1860. Wöhler, a railroad engineer, started performing systematic 

experimental research on railroad axles. He observed that steel would rupture at stress below the elastic 

limit if cyclic stress were applied. However, there was a critical value of cyclic stress, the fatigue limit, 

below which failure would not occur. He found a way to visualize “time to failure” for specific materials. 

the stress amplitude  is plotted as a function of the number of cyc`to failure In the S-N-curve approach 

(see Figure 2.10) [40] [36]. 

 
 

Figure 2.9 Stress vs. number of cycles curves for low-carbon steel 1045 and AA 2014  

 

 A logarithmic scale is used for the horizontal axis, while the stress is plotted using either a linear 

or logarithmic scale. Fatigue limit: the stress below which a material can be stressed cyclically for an 

infinite number of times without failure. Fatigue strength: the stress at which failure occurs for a given 

number of cycles. 
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 The first crack surface investigations were made by Ewing [41]  in 1903. He showed the nature 

of fatigue cracks using a microscope, see Figure 2.10. 

 

 
 

Figure 2.10 Ewing & Humfrey showed crack surface in 1903 

 

 Around 1920, Griffith investigated the discrepancy between a material's theoretical strength and 

the actual value, sometimes 1000 times less than the predicted value. He discovered that many 

microscopic cracks and/or other imperfections exist in every material. He assumed that these small cracks 

lowered the overall strength. Because of the applied load, high-stress concentrations are expected near 

these small cracks, which magnify the stresses at the crack tip. These cracks will grow more quickly, 

causing the material to fail long before reaching its theoretical strength. Any voids, corners, or hollow 

areas in the internal area of the material also result in stress concentrations. Mostly fracture will begin in 

one of these areas simply because of this phenomenon [42]. 

 After 1960: Paris and Elber have made an important push to understand Paris, and Elber made 

the fatigue process. In 1961, Paris found a more or less linear correlation on double logarithmic scales 

between crack growth rate da/dN and cyclic stress intensity factor K for some part of the fatigue curve 

(See Figure 2.11) [43]. This well-known Paris’ law reads:  

 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑛 (2.12) 

Where: ΔK = Kmax - Kmin and C and m are experimentally determined scaling constants. 

Paris’ law will be discussed in more detail in the next section. 

 
 

Figure 2.11 Linear correlation between crack growth rate da/dN and stress intensity factor K on a log-

log scale (Paris’Law) 
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 Fatigue crack growth regions 

Fatigue crack propagation, referred to as stage II in Figure 2.12, represents a large portion of the 

fatigue life of many materials and engineering structures. Accurate prediction of the fatigue crack 

propagation stage is of utmost importance for determining the fatigue life. The main objective of the 

fatigue crack propagation may be presented in this form: "Determine the number of the cycles Nc required 

for a crack to grow, from a certain initial crack size 𝑎0 to the maximum allowable crack size 𝑎c, and the 

form of this increase 𝑎 =𝑎(N), where the crack size a corresponds to N loading cycles. 

 

 
Figure 2.12 The rate of crack growth in different regions 

 

 As shown in Figure 2.13, fatigue crack growth results cover a range of K-values and crack 

growth rates. It does not give indications about crack growth rates outside this range. More extensive 

experiments have shown that two vertical asymptotes occur in a da/dN-ΔK graph (see Figure 2.12. The 

left asymptote at K = Kth indicates that K-values below this threshold level are too low to cause crack 

growth. The other asymptote at the right-hand side occurs for a K cycle with Kmax = Kc. It means that 

Kmax reaches a critical value which leads to complete failure of the specimen. If da/dN is plotted as a 

function of K on a double log scale, the function da/dN = fR(K) is supposed to cover three different parts, 

indicated by I, II, and III [44]. The corresponding ΔK-regions are referred to as:  

 Stage I - the threshold K-region: transition to a finite crack growth rate from no propagation 

below a threshold value of ∆K.  

 Stage II - the Paris-K-region: “power law” dependence of crack growth rate on ∆K. 

 Stage III - the stable tearing crack growth region: acceleration of growth rate with ∆K, 

approaching catastrophic fracture. 

 Crack growth 

The data on fatigue crack propagation is obtained from pre-cracked specimens subjected to 

fluctuating loads, and the change in crack size as a function of loading cycles is reported. The size of the 

crack is proportional to the number of loading cycles for various load amplitudes. The stress intensity 

factor is used as a correlation parameter. Typically, experimental results are plotted as a log (K) versus 

log (da/dN) graph. K denotes the range of the stress intensity factor, and da/dN denotes the crack 

propagation rate. Typically, the load is sinusoidal in shape and has a constant amplitude and frequency. 

To define the variance in the stress intensity factor during a loading period, two of the four parameters 

Kmax, Kmin, K =Kmax - Kmin, or R=Kmin /Kmax, are required. 
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Figure 2.12 illustrates a standard plot of the characteristic sigmoidal of a log(K)-log(da/dN) 

fatigue crack growth rate curve. Three distinct regions may be identified. In area I, da/dN quickly 

decreases to a minimal value. There is a threshold value for the stress strength factor range Kth for certain 

materials, indicating that no crack propagation occurs when K < than Kth, ultimately resulting in 

catastrophic failure. 

The experimental results show that the fatigue crack growth rate curve is proportional to the 

ratio R and that as R increases, the curve shifts toward higher da/dN values. Cyclic stresses caused by 

constant or variable amplitude loading can be represented using two of a variety of alternative parameters. 

Cyclic stresses with constant amplitude are characterized by three parameters: mean stress (𝝈m), stress 

amplitude (𝝈𝑎) and a frequency (ω, υ). The frequency does not have to be defined to convey information 

about the severity of the stresses. Only two parameters are necessary to accurately describe the stresses 

generated by a constant amplitude loading period. 

Other parameters, such as the minimum stress (𝝈min) and the maximum stress (𝝈max), can 

describe the stresses completely. Additionally, the stress range, Δ𝝈=𝝈max -𝝈min, can be used in conjunction 

with any of the others, except a. Additionally, another parameter is frequently more convenient. This is 

referred to as the stress ratio R, which is defined as R=min/max. 

One of the above parameters can be replaced by the load ratio R to define the cyclic load. Any 

of the following combinations fully describe the stresses in a constant amplitude loading: Δ𝝈 and R, 𝝈min 

and R, 𝝈max and R. 𝝈a and R, and 𝝈m. and R. The case of R=0 defines the condition in which the stress 

always rises from, and returns to 0. When R= -1, the stress cycles around zero as a mean, called fully 

reversed loading. 

 To study the parameters that affect fatigue crack growth, a through-thickness crack is considered 

a wide plate subjected to remote stressing that varies cyclically between the constant minimum and 

maximum values. The stress range is defined as Δ𝝈= 𝝈max-𝝈min.  

The fatigue crack growth rate is defined as the crack extension, Δ𝑎, during a small number of 

cycles, ΔN, the propagation rate is Δ𝑎 / ΔN, which in the limit can be written as the differential da/dn. It 

has been found experimentally that provided the stress ratio R= 𝝈min/ 𝝈maxis the same then ΔK correlates 

fatigue crack growth rates in specimens with different stress ranges and crack lengths and also correlates 

crack growth rates in specimens of different geometry. This correlation is presented in  

Figure 2.13 

 

 
         (a)                                             (b) 

 

Figure 2.13 (a)Crack length vs number of cycles, and (b) logda/dn vs log dK 
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The data obtained with a high-stress range, Δ𝝈high, commence at relatively high values of da/dN 

and ΔK. The data for a low-stress range, Δ𝝈low, commence at lower values of da/dN and ΔK but reach 

the same high values as in the high-stress range case. 

Furthermore, the stress ratio R can have a significant influence on the crack growth behaviour. 

In other words, besides the stress intensity factor range, ΔK, there is an influence of the relative values 

of Kmax and Kmin since R= 𝝈min/ 𝝈max  =  Kmax  / Kmin. This is presented in Figure 2.12 The rate of crack 

growth in different regions shows that crack growth rates at the same stress intensity range ΔK values 

are generally higher when load ratio R increases. It is important to note that the effect of the load ratio R 

has proved to be from the bibliography strongly material dependent [45] [36]. 

 

 
 

Figure 2.14 Mean stress effect on fatigue crack for Aluminium alloys 

 

 Several different quantitative continuum mechanics models of fatigue crack propagation have 

been proposed in the literature. All these models lead to relations based mainly on experimental data 

correlations. They relate da/dN to such variables as the external load, the crack length, the geometry, and 

the material properties. As previously mentioned, one of the most widely used fatigue crack propagation 

laws proposed by Paris and Erdogan is usually referred to in the literature as the "Paris law". It has the 

form: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑛 (2.13) 

Where ΔK =  Kmax -  Kmin,  with Kmax and  Kmin referring to the maximum and minimum values 

of the stress intensity factor in the load cycle. The constant C and m are determined empirically from a 

log(ΔK) - log(da/dN) plot. The value of m is usually taken equal to 4 for aluminium alloys, resulting in 

the so-called "4th power law", while the coefficient C is assumed to be a material constant.  Paris Law 

relation represents a linear relationship between log (ΔK) and log (da/dN) and is used to describe the 

fatigue crack propagation. Experimental data are well predicted using the Paris Law equation for specific 

geometrical configurations and loading conditions. The effect of a mean stress, loading, and specimen 
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geometry is included in the constant C. "Paris law" has been widely used to predict the fatigue crack 

propagation life of engineering components. 

 The crack growth mechanism shows that a fatigue crack grows by a small amount in every load 

cycle. Growth is the geometrical consequence of slip and cracks tip blunting. Re-sharpening of the crack 

tip upon unloading sets the stage for growth in the next cycle. It can be concluded from this mechanism 

that the crack growth per cycle, Δ𝑎, will be larger if the maximum stress in the cycle is higher (more 

opening) and if the minimum stress is lower (more re-sharpening). The local stresses at the crack tip can 

be described in terms of the stress intensity factor K, where K= 𝛽𝝈√𝝅𝒂If 𝝈 is the nominal applied stress. 

In a cycle, the applied stress varies from σmin to 𝝈max   over range ΔK. Therefore, the local stresses vary 

by the following equation: 

 Δ𝐾 = 𝛽Δ𝜎√𝜋𝑎 (2.14) 

 An amount of crack growth is defined as Δ𝑎 in one cycle, which is expressed in m/cycle. If 

growth were measured over, e.g. ΔN = 10000 cycles, the average growth per cycle would be Δ𝑎/ΔN, the 

crack propagation rate. In the limit where N → 1, this rate can be expressed as the differential da/dN. 

When a structural component is subjected to fatigue loading, a dominant crack reaches a critical size 

under the peak load during the last cycle leading to catastrophic failure. The basic objective of the fatigue 

crack propagation simulation is the determination of the crack size, 𝑎, as a function of the number of 

cycles, N. Thus, the fatigue crack propagation life Np is obtained. When the type of the applied load and 

the expression of the stress intensity factor is known, the application of one of the foregoing fatigue laws 

enables a realistic calculation of the fatigue crack propagation life of the component. For example, 

consider a plane fatigue crack of the length 2𝑎0 in a plane subjected to a uniform stress 𝝈 perpendicular 

to the plane of the crack. The stress intensity factor K is given by: 

 𝐾 = ƒ(𝑎)𝜎√𝜋𝑎 (2.15) 

Where ƒ(𝑎) is a geometry-dependent function. Integrating the fatigue crack propagation law 

expressed by equation 2.12 gives: 

 𝑁 − 𝑁0 = ∫
𝑑𝑎

𝐶(𝛥𝐾)𝑚

𝑎0

𝑎

 (2.16) 

where 𝑁0 is the number of load cycles corresponding to the half crack length 𝑎0 . Introducing 

the stress intensity factor range ΔK, where K is given from equation 2.13, into the previous equation 

results in: 

 𝑁 − 𝑁0 = ∫
𝑑𝑎

𝐶[𝑓(𝑎)𝛥𝜎√𝜋𝑎    ]
𝑚

𝑎0

𝑎

 (2.17) 

Assuming that the function ƒ(𝑎) is equal to its initial value ƒ(𝑎0) so that  Δ𝐾 = Δ𝐾0√𝑎 𝑎0⁄ , 

where Δ𝐾0 = ƒ(𝑎0)Δ𝜎√𝜋𝑎0, so, the previous equation  gives: 

 𝑁 –  𝑁0 =
2𝑎0

(𝑚 − 2)𝐶(𝛥𝐾0)
𝑚
[1 − (

𝑎0
𝑎
)

𝑚
2−1

] (2.18) 

Form ≠2. Unstable crack propagation occurs when 𝐾𝑚𝑎𝑥 = 𝐾𝐼𝐶 = 𝑓(𝑎)𝜎𝑚𝑎𝑥√𝜋𝑎 . From which 

the critical crack length 𝑎0 is obtained. Then, the equation 2.15 for 𝑎= 𝑎0 gives the fatigue crack 

propagation life Np= Nc – N0. Usually, since ƒ(𝑎) varies with the crack length 𝑎, the integration of the 

previous equation cannot be performed directly, but only through numerical methods. 
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Figure 2.15 Constant amplitude fatigue crack growth under small yielding conditions 

 

 Since 1960 Paris, et al.  [43], [46] and [36] confirmed the application of fracture mechanics to 

fatigue problems, and it has become almost routine. The techniques for investigating fatigue under 

constant amplitude loading at small-scale yielding conditions are fairly well established. Still, several 

uncertainties remain. The concept of similitude, when it applies, provides the theoretical basis for fracture 

mechanics. Similitude implies that the crack tip conditions are uniquely defined by a single loading 

parameter such as the stress intensity factor. Consider a growing crack in the presence of constant 

amplitude cyclic stress intensity  

Figure 2.15. Behind the plastic zone, which is developed at the crack tip, a plastic wake is formed. When 

it is small, the plastic zone is embedded in an elastic singularity zone. In that case, the conditions at the 

crack tip are uniquely defined by the current K value, and Kmin and Kmax describe the crack growth 

rate. For the similitude assumption to be valid, the crack tip of the growing crack needs to be sufficiently 

far from its initial position, and external boundaries should be remote. 

 Soon after the Paris law gained wide acceptance as a predictor of fatigue crack growth, many 

researchers realized that this simple expression was not universally applicable. As Figure 2.12 illustrates, 

a log-log plot of da/dN versus ΔK is sigmoidal rather than linear when crack growth data are obtained 

over a sufficiently wide range. Also, the fatigue crack growth rate shows a dependence on the R ratio, 

especially at both extremes of the crack growth curve. A discovery by Elber [47] provided at least a 

partial explanation for both the fatigue threshold and R ratio effect. 

 Crack closure 

 Paris’ law is generally accepted for a wide range of different materials; however, the physical 

meaning is limited. The primary issue at that time was how to explain stress ratio effects. In 1970  Elber 

published a famous article titled “Fatigue Crack Closure under Cyclic Tension” [47]. In this article, he 

assumed crack closure to be the cause of stress ratio-effects. He meant contact of the crack surfaces by 

crack closure at a load above the minimum load. Elber assumed that, when crack closure occurs, the 

effective cyclic stress intensity range Keff that works on the crack tip is lower than the expected or 

applied K-range, see Figure 2.16. The crack growth rate is no longer a result of the total K magnitude 

but only of its part. 
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Figure 2.16 Elber’s principle of crack closure theory 

 

 When a specimen is cyclically loaded at Kmax and Kmin, the crack faces are in contact below Kop, 

the stress intensity at which the crack opens. Elber assumed that the portion of the cycle that is below 

Kop does not contribute to fatigue crack growth. Since the definition of the effective stress intensity range 

is 𝛥𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥  −  𝐾𝑜𝑝 .A modified version of equation 2.11 proposed: 

 
𝑑𝑎 

 𝑑𝑁
= 𝐶(𝛥𝐾𝑒𝑓𝑓)

𝑚 (2.19) 

 Crack closure occurs as a consequence of crack tip plasticity. At the tip of a growing fatigue 

crack, each loading cycle generates a monotonic plastic zone during increased loading and a much 

smaller reversed plastic zone during unloading. Approximately the reversed plastic zone size is one-

quarter of the size of the monotonic plastic zone. Due to this, there is a residual plastic deformation 

consisting of monotonically stretched material. As the crack grows, the residual plastic deformation 

forms a wake of monotonically stretched material along the crack edges. Because the residual 

deformation results from tensile loading, the material in the crack edges are elongated normal to the crack 

surfaces and have to be accommodated by the surrounding elastically stressed material, this is no problem 

as long as the crack is open. Since then, the crack edges will show a displacement normal to the crack 

surfaces. However, as the fatigue load decreases, the crack will tend to close during unloading, and the 

residual deformation becomes important. 

 Effect of Residual Stresses on Crack Propagation 

 Our knowledge of the correlation between residual stress and fatigue strength is perplexed 

because: 

 The fatigue strength depends significantly on the condition of the surface. Such major factors 

overshadow the effect of residual stress as weld geometry and surface irregularities. 

 A fatigue crack may initiate in a region containing tensile residual stresses. The rate of crack 

growth may be amplified due to the presence of tensile residual stresses. However, when the 

crack grows and enters regions containing compressive residual stresses, the crack growth rate 

may be reduced. As a result, it is questionable whether or not the total effect of residual stresses 

on the overall crack growth is significant. 

 When residual stresses are altered by heat treatment such as peening, the metallurgical and 

mechanical properties of the metal are also changed. A schematic presentation of the stress field 

behind and in front of a crack tip under cyclic loading without welding residual stresses is 

illustrated in Figure 2.17. 
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Figure 2.17 The reverse plastic zone forms during periodic loading [48]. 

 

 How residual stresses affect the plastic zone shown in Figure 2.17 and the fatigue strength of a 

welded structure is still a matter of debate. Some researchers had reported that the fatigue strength 

increased when specimens had compressive residual stresses, especially on the specimen surfaces; others 

believe that residual stresses have only a negligible effect on the fatigue strength of the weld elements. 

It has been suggested that in a good weld, residual stresses can be ignored. Also, it has been recommended 

that geometry affects fatigue behaviour much more than residual stresses. But, others researchers feel 

that there is significant evidence that residual stresses affect fatigue strength. Munse [49] summarizes as 

follows: 

 "Based on the available data, it is believed that the effects of residual stresses may differ from 

one instance to another, depending upon the materials and geometry analyzed parts, the state of stress, 

the scale of applied stress, the type of stress cycle, and perhaps other factors. Many of the investigations 

designed to evaluate the effects of residual stress have included tests of members that have been subjected 

to different stress relief heat treatments. The changes in fatigue behaviour resulting from these heat 

treatments, in some cases, have been negligible. In contrast, in other investigations, the various stress-

relief treatments have increased fatigue strength by as much as twenty percent. Since it is impossible to 

carry out heat treatment for stress relief without altering the metallurgical and mechanical properties of 

weldment, the question always arises as to whether benefits are derived from the reduction of residual 

stresses or the improved properties in other respects.”  



 

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

DETERMINATION OF LOADS ACTING ON THE 

WING and PIN-LUG WING ATTACHMENT  



 

27 

 

 DETERMINATION OF LOADS ACTING ON THE WING and PIN-LUG 

WING ATTACHMENT 
 

"In order to conduct the fatigue life analysis of the wing-fuselage fitting, it was necessary 

to determine the appropriate wing loads. To do that, all necessary aerodynamic parameters were 

calculated for all the load cases, in accordance with EASA CS 23 requirements. Based on these 

aerodynamic parameters the corresponding forces and moments that are acting on the wing were 

obtained (including weight of the aircraft and fuel), and the critical load cases were determined and 

the analysis of the wing structure using finite element method was carried out. These calculations 

are presented in this chapter." 

 
 

Figure 3.1 Forces acting during symmetric equilibrium manoeuvre 

 

 Equilibrium equations: 

 𝐿𝑤 + 𝐿𝑇 − 𝑛𝑊 = 0 (3.1) 

 

 𝑇 − 𝐷 = 0 (3.2) 

 

 𝑀𝐴𝐶 + 𝐿𝑤 ⋅ 𝑑𝑊 − 𝐿𝑇 ⋅ 𝑑𝑇 − 𝑇 ⋅ ℎ = 0 (3.3) 

 

Assuming that thrust and drag are in-line, then so the drag or thrust are not involved in the 

moment equation for vertical loads, lift forces may be solved directly a 

 

 𝑀𝐴𝐶 + 𝐿𝑤 ⋅ 𝑑𝑊 − 𝐿𝑇 ⋅ 𝑑𝑇 = 0 (3.4) 

 

 𝐿𝑇 =
𝑀𝐴𝐶 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑊 + 𝑑𝑇
  (3.5) 

 DETERMINATION OF LOADS ACTING ON THE WING and PIN-LUG WING 

ATTACHMENT 

0h 



 

28 

 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.6) 

 

 

 

Figure 3.2 Variations of a position of the centre of gravity 

 

 𝑊 = 𝑚𝑔 (3.7) 

 

 𝑀 =
1

2
∙ 𝜌 ∙ 𝑉 ∙ 𝑆𝑊 ∙ 𝐶𝑀 ∙ 𝑐 (3.8) 

 

 C.G. at D_0.23 

 𝑑𝑊 = 𝑥0.23 − 𝑥0.266 (3.9) 

 

𝑑𝑊 = 0.0558 𝑚 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.23 (3.10) 

 

𝑑𝑇 = 4.4532 𝑚 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4762 𝑚𝑚 (3.11) 
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 𝐿𝑇 =
𝑀𝐴𝐶 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.12) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.13) 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐷

2 ∙ 𝑆𝑊

 (3.14) 

 

 C.G. at D_0.28 

 𝑑𝑊 = 𝑥0.28 − 𝑥0.266 = 0.217 𝑚 (3.15) 

 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.28 = 4.455 𝑚 (3.16) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4767 𝑚 (3.17) 

 

 𝐿𝑇 =
𝑀𝐴𝐶𝐷 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.18) 

 

 𝐿𝑇 =
𝑀𝐴𝐶 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.19) 

 

 𝐿𝑇 =
𝑀𝐴𝐶𝐴 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.20) 

 

As 𝐿𝑊, 𝐿𝑇 and 𝑛𝑊 changes their directions, while 𝑀𝐴𝐶 don't, and the previously obtained 

equations will be changed 

 𝐿𝑇 =
𝑀𝐴𝐶 − 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.21) 

 Case D Loads 

𝑚 = 920 𝐾𝑔 ,  𝑊 = 𝑚𝑔 = 9022.12 𝑁 

𝑛 = 6 ,  𝑛𝑊 = 54132.71 𝑁 

𝑉𝐷 = 107.06  𝑚/𝑠 , 𝜌 = 1.225 𝐾𝑔/𝑚3 , 𝑆𝑊 = 15.027 𝑚2 , 𝑐 = 1.55 𝑚 , 𝐶𝑀𝐴𝐶 = −0.066 
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𝑥𝑊𝐸 = 4.486 𝑚 

 

 𝑀𝐴𝐶𝐷 =
1

2
∙ 𝜌 ∙ 𝑉𝐷

2 ∙ 𝑆𝑊 ∙ 𝐶𝑀𝐴𝐶 ∙ 𝑐 (3.22) 

 

 𝑀𝐴𝐶𝐷 = −10792.16 𝑁 ∙ 𝑚 (3.23) 

 

a. C.G. at D_0.23 

 𝑑𝑊 = 𝑥0.23 − 𝑥0.266 (3.24) 

 

 𝑑𝑊 = −0.0558 𝑚 (3.25) 

 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.23 (3.26) 

 

 𝑑𝑇 = 4.4532 𝑚 (3.27) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4762 𝑚 (3.28) 

 

 𝐿𝑇 =
𝑀𝐴𝐶 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.29) 

 

 𝐿𝑇 = −3085.48 𝑁 (3.30) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.31) 

 

 𝐿𝑊 = 57218.20 𝑁 (3.32) 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐷

2 ∙ 𝑆𝑊

 (3.33) 

 

 𝐶𝐿 = 0.5424 (3.34) 

 

b. C.G. at D_0.28 

 

 𝑑𝑊 = 𝑥0.28 − 𝑥0.266 (3.35) 

 

 𝑑𝑊 = 0.0217𝑚 (3.36) 
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 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.28 (3.37) 

 

 𝑑𝑇 = 4.455 𝑚 (3.38) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4767 𝑚 (3.39) 

 

 𝐿𝑇 =
𝑀𝐴𝐶𝐷 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.40) 

 

 𝐿𝑇 = −2148.34 𝑁 (3.41) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.42) 

 

 𝐿𝑊 = 56281.05 𝑁 (3.43) 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐷

2 ∙ 𝑆𝑊

 (3.44) 

 

 𝐶𝐿 = 0.5335 (3.45) 

 

 Case A  

𝑚 = 920𝐾𝑔, 𝑊 = 𝑚𝑔 = 9022.12𝑁 

𝑛 = 6, 𝑛𝑊 = 54132.71𝑁 

𝑉𝐴 = 66.905 𝑚/𝑠, 𝜌 = 1.225 𝐾𝑔/𝑚
3, 𝑆𝑊 = 15.027 𝑚2, 𝑐 = 1.55 𝑚, 𝐶𝑀𝐴𝐶 = −0.0663 

 𝑀𝐴𝐶𝐴 =
1

2
∙ 𝜌 ∙ 𝑉𝐴

2 ∙ 𝑆𝑊⋮ ∙ 𝐶𝑀𝐴𝐶 ∙ 𝑐 (3.46) 

 

 𝑀𝐴𝐶𝐴 = −4214.74 𝑁𝑚 (3.47) 

 

a. C.G. at A_0.23 

 

 𝑑𝑊 = 𝑥0.23 − 𝑥0.266 (3.48) 

 

 𝑑𝑊 = −0.0558 𝑚 (3.49) 

 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.23 (3.50) 
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 𝑑𝑇 = 4.4532 𝑚 (3.51) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4762 𝑚 (3.52) 

 

 𝐿𝑇 =
𝑀𝐴𝐶 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.53) 

 

 𝐿𝑇 = −1616.22 𝑁 (3.54) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.55) 

 

 𝐿𝑊 = 55748.93 𝑁 (3.56) 

 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐴

2 ∙ 𝑆𝑊

 (3.57) 

 

 𝐶𝐿 = 1.3531 (3.58) 

 

b. C.G. at A_0.28 

 

 𝑑𝑊 = 𝑥0.28 − 𝑥0.266 (3.59) 

 

 𝑑𝑊 = 0.0217𝑚 (3.60) 

 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.28 (3.61) 

 

 𝑑𝑇 = 4.455𝑚 (3.62) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4767𝑚 (3.63) 

 

 𝐿𝑇 =
𝑀𝐴𝐶𝐴 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.64) 

 

 𝐿𝑇 = −679.08 𝑁 (3.65) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.66) 
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 𝐿𝑊 = 54811.79 𝑁 (3.67) 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐴

2 ∙ 𝑆𝑊

 (3.68) 

 

 𝐶𝐿 = 1.330 (3.69) 

 

 Case E 

𝑚 = 920 𝐾𝑔, 𝑊 = 𝑚𝑔 = 9022.12 𝑁, 𝑛 = 3, 𝑛𝑊 = 27066.355 𝑁 

𝑉𝐸 = 107.06 𝑚/𝑠, 𝜌 = 1.225 𝐾𝑔/𝑚
3, 𝑆𝑊 = 15.027 𝑚2, 𝑐 = 1.55 𝑚, 𝐶𝑀𝐴𝐶 = −0.0663 

 

 𝑀𝐴𝐶𝐸 =
1

2
∙ 𝜌 ∙ 𝑉𝐺

2 ∙ 𝑆𝑊⋮ ∙ 𝐶𝑀𝐴𝐶 ∙ 𝑐 (3.70) 

 

 𝑀𝐴𝐶𝐸 = −10792.16 𝑁𝑚 (3.71) 

 

As 𝐿𝑤 , 𝐿𝑇 and 𝑛𝑊 changes their directions, while 𝑀𝐴𝐶 don't, and the previously obtained 

equations will be changed. 

a. C.G. at E_0.23 

 𝑑𝑊 = 𝑥0.23 − 𝑥0.266 (3.72) 

 

 𝑑𝑊 = −0.0558 𝑚 (3.73) 

 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.23 (3.74) 

 

 𝑑𝑇 = 4.4532 𝑚 (3.75) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4762 𝑚 (3.76) 

 

 𝐿𝑇 =
𝑀𝐴𝑐𝐸 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.77) 

 

 𝐿𝑇 = −2748.41 𝑁 (3.78) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.79) 
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 𝐿𝑊 = 29814.765 𝑁 (3.80) 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐸

2 ∙ 𝑆𝑊

 (3.81) 

 

 𝐶𝐿 = 0.2826 (3.82) 

 

b. C.G. at E_0.28 

 

 𝑑𝑊 = 𝑥0.28 − 𝑥0.266 (3.83) 

 

 𝑑𝑊 = 0.0217 𝑚 (3.84) 

 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.28 (3.85) 

 

 𝑑𝑇 = 4.455 𝑚 (3.86) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4767 𝑚 (3.87) 

 

 𝐿𝑇 =
𝑀𝐴𝐶 − 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.88) 

 

 𝐿𝑇 = −2541.94𝑁 (3.89) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.90) 

 

 

 𝐿𝑊 = 29608.295 𝑁 (3.91) 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐸

2 ∙ 𝑆𝑊

 (3.92) 

 

 𝐶𝐿 = 0.2806 (3.93) 
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 Case G 

𝑚 = 920 𝐾𝑔, 𝑊 = 𝑚𝑔 = 9022.12 𝑁, 𝑛 = 3, 𝑛𝑊 = 27066.355 𝑁𝑉𝐺 = 66.905𝑚 𝑠⁄ , 𝜌 = 1.225 𝐾𝑔/

𝑚3, 𝑆𝑊 = 15.027 𝑚2,  𝑐 = 1.55 𝑚, 𝐶𝑀𝐴𝐶 = −0.066 

 

 𝑀𝐴𝐶𝐺 =
1

2
∙ 𝜌 ∙ 𝑉𝐺

2 ∙ 𝑆𝑊 ∙ 𝐶𝑀𝐴𝐶 ∙ 𝑐 (3.94) 

 

 𝑀𝐴𝐶𝐺 = −4214.74 𝑁𝑚 (3.95) 

 

a. C.G. at G_0.23 

 

 𝑑𝑊 = 𝑥0.23 − 𝑥0.266 (3.96) 

 

 𝑑𝑊 = −0.0558 𝑚 (3.97) 

 

 𝑑𝑇 = 𝑥𝑊𝐸 + 𝑥0.26 − 𝑥0.23 (3.98) 

 

 𝑑𝑇 = 4.4532 𝑚 (3.99) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4762 𝑚 (3.100) 

 

 𝐿𝑇 =
𝑀𝐴𝐶𝐺 + 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.101) 

 

 𝐿𝑇 = −1278.996 𝑁 (3.102) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.103) 

 

 𝐿𝑊 = 28345.351𝑁   (3.104) 

 

 

 𝐶𝐿 =
𝐿𝑊

1
2
∙ 𝜌 ∙ 𝑉𝐺

2 ∙ 𝑆𝑊

 (3.105) 

 

 𝐶𝐿 = 0.6880 (3.106) 
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b. C.G. at G_0.28 

 𝑑𝑊 = 𝑥0.28 − 𝑥0.266 (3.107) 

 

 𝑑𝑊 = 0.0217𝑚 (3.108) 

 

 𝑑𝑇 = 4.486 + 𝑥0.26 − 𝑥0.28 (3.109) 

 

 𝑑𝑇 = 4.455𝑚 (3.110) 

 

 𝑑𝑤 + 𝑑𝑇 = 4.4767𝑚 (3.111) 

 

 𝐿𝑇 =
𝑀𝐴𝐶 − 𝑛𝑊 ⋅ 𝑑𝑊

𝑑𝑤 + 𝑑𝑇
 (3.112) 

 

 𝐿𝑇 = −1072.683 (3.113) 

 

 𝐿𝑊 = 𝑛𝑊 − 𝐿𝑇 (3.114) 

 

 𝐿𝑊 = 28139.038𝑁 (3.115) 

 

 𝐶𝐿 =
𝐿𝑊

1
2
𝜌𝑉𝐴

2𝑆𝑊

 (3.116) 

 

 𝐶𝐿 = 0.6830 (3.117) 

 

 Overview of defined cases Table 3.1 

Table 3.1 Summary of defined cases 

 

Case n V (m/s) Pd (N/m2) LT (N) LT (m) LW (m) CL 

A_023 6 66.90 2741.311 -1616.08 -3085.480 55748.930 1.353 

A_028 6 66.90 2741.311 -10792.16 -2148.340 54811.789 1.330 

D_023 6 107.06 7020.379 -4214.74 -1616.220 57218.199 0.542 

D_028 6 107.06 7020.379 -4214.74 -679.080 56281.051 0.533 

E_023 3 107.06 7020.379 -10792.16 -2748.410 29814.766 0.283 

E_028 3 107.06 7020.379 -10792.16 -2541.940 29608.295 0.281 

G_023 3 66.90 2741.721 -4214.74 -1278.996 28345.352 0.688 

G_028 3 66.90 2741.721 -4214.74 -1072.683 28139.037 0.683 
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 Approximate span-wise distribution of aerodynamic load 

Schrenk examined experimental results for many untwisted wing plan forms and devised. The 

approximate rule that distribution of the additional lift (lift associated with the chord distribution without 

twist) is nearly proportional at every point to the ordinate that lies halfway between the elliptical and 

actual chord distribution for the same total area and span. For the untwisted wing, the basic lift equal to 

zero. 

 

The area of the real wing is: 

 𝑆 = ∫ 𝑐
𝑏/2

−𝑏/2

(𝑦) ⋅ 𝑑𝑦 (3.118) 

 

 While the area of the elliptic wing is: 

 𝑆𝐸 =
𝜋

4
⋅ 𝑐𝑆𝐸 ⋅ 𝑏 (3.119) 

 

 As the area of real wing and equivalent elliptic one are equals, so 𝑐𝑆𝐸 ‐chord of the equivalent 

elliptic wing at the plane of symmetry is 𝑐𝑆𝐸 =
4⋅.𝑆

𝜋𝑏
 , where 𝑏 − 𝑖𝑠 span (equal for both wings) 

The local chord of the equivalent elliptic wing is: 

 𝑐𝐸(𝑦) = 𝑐𝑆𝐸 ⋅ √1 − (
𝑦

𝑏/2
)2 (3.120) 

Lift equation is written as: 

 𝐿 = ∫ 𝑝

𝑏
2

−
𝑏
2

(𝑦) ⋅ 𝑐(𝑦) ⋅ 𝑑𝑦 (3.121) 

Where local pressure is defined as: 

 𝑝 = (
𝑁

𝑚2
) = 𝑘 ⋅

1

2
[1 +

𝑐𝑆𝐸
𝑐(𝑦)

√1 − (
𝑦

𝑏/2
)2] (3.122) 

and factor of proportionality: 𝑘 =
𝐿

𝑆′
 

So we find: 

 𝑝(
𝑁

𝑚2
) =

1

2
[1 +

𝑐𝑆𝐸
𝑐(𝑦)

√1 − (
𝑦

𝑏/2
)2] ⋅

𝐿

𝑆′
 (3.123) 

Schrenk’s approximate span wise distributed aerodynamic load is:  
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 𝑞𝐴(
𝑁

𝑚
) =

1

2
[𝑐(𝑦) + 𝑐𝑆𝐸√1 − (

𝑦

𝑏/2
)2] ⋅

𝐿

𝑆′
 (3.124) 

Aerodynamic Load: 

A Fortran Code WING_LOADING is used to calculate aerodynamic load and the results can be 

found in Appendix A 

 
 

Figure 3.3 Span-wise distribution of aerodynamic loading 
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Figure 3.4 Shear forces due to aerodynamic loading 

 
 

Figure 3.5 Bending moment due to aerodynamic loading 
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 Loading of wing  

Table 3.2 Load cases at y = 0 

 

Case Y (m) q (N/m) FT (N) MF (Nm) 

A_0.23 0 7066.73 28023.35 61340.898 

A_0.28 0 6947.93 27552.28 60309.77 

D_0.23 0 7252.97 28761.91 62957.566 

D_0.28 0 7134.18 28290.82 61926.41 

E_0.23 0 3779.32 14987.01 32805.383 

E_0.28 0 3753.14 14883.22 32578.203 

G_0.23 0 3593.05 14248.37 31188.576 

G_0.28 0 3566.9 14144.67 30961.568 

 

 

 
 

 

Figure 3.6 Chord wise distribution of p for A023 and D023 cases 

 

 Analysis of the wing structure using finite element method  

 For these two cases, the distributed pressure loading is recalculated in equivalent systems of 

forces distributed along each rib.  

These forces are distributed over the ribs of the wing. The bending moments at positions of ribs 

cross-sections are equal to moments of distributed pressure loading. The moments of systems of forces 

and moments of distributed pressure loading about the wing's leading edge are similar too. 

The transversal forces and bending moments for a case of distributed pressure loading and 

loading of concentrated forces on ribs. 

x/c 

P (N/mm2) 
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Table 3.3 Results of  Loads for Case D_0.23 for Transversal Forces and Bending Moments 

 

Case:  D_023 

Y (m) 
Distributed pressure loading Equivalent concentrated forces. 

Ft (N) Mf (Nm) Fr (N) Frt (N) Mrf (Nm) 

0 28761.9 62957.566 0 28399.4 62957.566 

0.08 28471.8 60685.621 1150.51 28399.4 60685.621 

0.337 26696.5 53682.66 1791.9 27248.9 53682.66 

0.593 24883.4 47165.68 1943.93 25457 47165.68 

0.884 22860.6 40323.383 2213.92 23513 40323.383 

1.24 20446.6 32740.896 2346.85 21299.1 32740.896 

1.596 18088.3 25993.887 2269.9 18952.3 25993.887 

1.922 15960.7 20555.436 2095.28 16682.4 20555.436 

2.247 13876.3 15814.63 2046.53 14587.1 15814.63 

2.573 11830 11726.408 1990.7 12540.6 11726.408 

2.895 9861.32 8329.353 1994.26 10549.9 8329.353 

3.23 7880.97 5463.226 1915.81 8555.6 5463.226 

3.565 5982.19 3238.893 1814.33 6639.8 3238.893 

3.899 4187.69 1627.189 1752.12 4825.46 1627.189 

4.235 2512.09 594.546 1243.98 3073.35 594.546 

4.56 1055.8 92.727 1829.37 829.369 0 

 

Table 3.4 Results of  Loads for Case E_0.23 for Transversal Forces and Bending Moments 

 

Case: E_023 

 Y (m) 
Distributed pressure loading Equivalent concentrated forces      

Ft (N) Mf (Nm) Fr (N) Frt (N) Mrf (Nm) 

0 14987 32805.383 0 14798.1 32805.383 

0.08 14835.8 31621.535 599.517 14798.1 31621.535 

0.337 13910.8 27972.502 933.646 14198.6 27972.502 

0.593 12966 24576.682 1012.94 13264.9 24576.682 

0.884 11912 21011.355 1153.65 12252 21011.355 

1.24 10654.1 17060.344 1222.85 11098.3 17060.344 

1.596 9425.29 13544.67 1182.79 9875.49 13544.67 

1.922 8316.67 10710.849 1091.79 8692.7 10710.849 

2.247 7230.54 8240.551 1066.4 7600.92 8240.551 

2.573 6164.26 6110.296 1037.29 6534.52 6110.296 

2.895 5138.45 4340.188 1044.14 5497.23 4340.188 

3.233 4097.51 2835.044 997.215 4453.09 2835.044 

3.565 3117.15 1687.694 941.461 3455.87 1687.694 

3.899 2182.09 847.881 912.978 2514.41 847.881 

4.235 1308.98 309.8 648.202 1601.43 309.8 

4.56 550.145 48.318 953.231 953.231 0 
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Figure 3.7 Numbers of points i x and y directions at which the forces are applied 

 

 

 
 

 Figure 3.8 Numbers of applied forces at nodes on lower side of ribs 

 

 

 
Figure 3.9  Ribs Positions and numbers 
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 Load distribution along the chord 

Distributed load 𝑃(𝑥) per 𝑚2, along the cord 𝑐 of the airfoil at a distance 𝑦 from the plane of symmetry:  

 

PROGRAM WING_FORCES 

Table 3.7 Load casesdistribution of forces and pressure  

Table 3.5 Load distribution of forces and pressure case D0.23 

Table 3.6 Load distribution of forces and pressure case E0.23 

 

 

 𝑃(𝑥) = 𝑞 ⋅ [𝐶𝐿 ⋅ 𝑓𝐿(𝜃) + 𝐶 ⋅ 𝑓𝑀(𝜃) + 𝛽 ⋅ 𝑓𝛽(𝜃, ∅)] (3.125) 

 

𝑞 − Dynamical pressure. 

𝛽‐angle of aileron or flap deflection. 

𝐶𝐿 - Local lift coefficient due to angle of attack 𝛼 and angle 𝛽 of aileron or flap deflection. 

 

 𝐶𝐿 = 𝐶𝐿(𝛽=0) +
𝑑𝐶𝐿
𝑑𝛽

⋅ 𝛽 (3.126) 

 

𝐶̅𝑀 ‐coefficient of the moment without deflection of aileron or flap, which corresponds to the 

angle of attack 𝛼 for case 𝐶𝐿(𝛽=0). 

This moment coefficient is related to the point at 𝑥 = 0.28 ⋅ 𝑐 

 

 𝐶̅𝑀 = 𝐶𝑀(𝛽=0) − 0.28 ⋅ 𝐶𝐿(𝛽=0) (3.127) 

 

𝐶𝑀(𝛽=0) —moment coefficient related to the point at the leading edge of an airfoil. 

𝐶𝐿 ⋅ 𝑓𝐿(𝜃)‐function of load distribution for straight-line airfoil at the angle of attack 𝛼 

(Without deflection of aileron or flap) having: 

 

 𝐶𝐿 = 𝐶𝐿(𝛽=0) +
𝑑𝐶𝐿
𝑑𝛽

⋅ 𝛽 (3.128) 

 

 𝐶𝑓𝑀(𝜃)‐function of load distribution for the parabolic airfoil, with lift equal to zero and 

curvature, is such that the coefficient of the moment at 

 𝑥 = 0.28 ⋅ 𝑐 is exactly 𝐶 

 

 

                            

 

Figure 3.10 Stringer with an effective thickness of skin 

     ,L L M MC f C f f    
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𝛽𝑓𝛽(𝜃, ∅)‐function of load distribution of straight-line airfoil with deflected aileron or flap 

for angle 𝛽, and with lift equal to zero. 

 

 𝜃 =  arccos (1 −
2𝑥

𝑐
)  (3.129) 

 

 ∅ =  arccos (
2𝑐𝑎,𝑓
𝑐

− 1) (3.130) 

 

Curve-1 

 

 𝑓𝐿(𝜃) = 0.716 ⋅  cot 𝑔 (
𝜃

2
)  (3.131) 

 

Curve-2 

 

 𝑓𝑀(𝜃) = 5.8 ⋅  sin (𝜃) − 3.26 ⋅  cot 𝑔 (
𝜃

2
)  (3.132) 

 

Curve-3 

 

 𝑓𝛽(𝜃, ∅) = 1.3 ⋅  log (
1 −  cos (𝜃 + ∅)

1 −  cos (𝜃 − ∅)
) + (0.024 − 1.273 ⋅  sin (∅)) ⋅  cot 𝑔 (

𝜃

2
) (3.133) 
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Figure 3.11 Functions for chord-wise load distribution  

 

 
Figure 3.12 Actual chord-wise pressure distributions at positions of ribs Case D0.23 

 
 

Figure 3.13 Distributions of applied equivalent forces at nodes of ribs Case D0.23 

 

 Flap and aileron loading 

Pressure on point 26 at the end of the rib is the pressure at the leading edge of the flap or 

aileron. 

Position of flap ribs equals positions of (1,2,3,4,5 and 6) wing ribs, while positions of aileron ribs are 

equal to positions of 6,7,8,9,10 and 11 wing ribs. 
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Instead of lightly curvilinear, it is assumed that chord-wise distributions of pressure over flap 

and aileron are linear (triangle shape). Chords of aileron and flaps approximatively are 0.4 m, and the 

distance between their ribs approximatively is 0.32 m, so the distributed loading is  a = 0.4 m.  

 

 𝑞 =
1

2
∙ 𝑎 ∙ 𝑝  (𝑁/𝑚) (3.134) 

 

Table 3.7 Load cases for Ribs 

 

Rib y (m) p (N/m2) q (N/m) 

1 1.240 497.046 99.4092 

2 1.596 436.415 87.283 

3 1.922 298.809 59.7618 

4 2.247 260.396 52.0792 

5 2.573 216.398 43.2796 

6 2.895 219.205 43.841 

7 3.230 157.382 31.4764 

8 3.565 77.421 15.4842 

9 3.899 28.392 5.6784 

10 4.235 72.026 14.4052 

11 4.560 89.269 17.8538 

 

Instead of lightly parabolic span-wise load distribution over aileron and flap, the linear ones 

are assumed. 

 
 

Figure 3.14 Actual and assumed distributed loads over flap and aileron for D_023 load case. 

 

 

 Inertial loading (constant chord) Case D_0.23  

Mass of the complete wing:  50.142 kg 

Mass of the wing without flap and aileron: 42.181 kg 
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Position of c.g x = 623 mm, y = 1561 mm 

Mass per unit span of wing:  

 Moment due to aerodynamic loading: 

𝑴𝒙(𝒚=𝟏.𝟒𝟎)
𝑨 = 𝟐𝟗𝟓𝟗𝟗. 𝟗𝟎𝟖 (𝑵𝒎) 

Mass of wing structure:  𝑀 = 50.142 (𝑘𝑔) 
Mass per unit length of the wing 

(𝑦 − 𝑦𝑠𝑡𝑎𝑟𝑡) = 3.32 m 

 

 𝑀 =
M

(𝑦 − 𝑦𝑠𝑡𝑎𝑟𝑡)
 (3.135) 

 

 𝑀 = 15.1  (𝑘𝑔/𝑚) (3.136) 

 

 Distributed loading due to inertial loading in case D_023 

Inertial loading data:  

Mass of the complete wing:  50.142 kg 

Position of c.g.  x = 734 mm, y = 1575 mm 

Mass of the wing without flap and aileron: 42.181 kg 

Position of c.g  x = 623 mm, y = 1561 mm 

Mass per unit span of wing: 42.181/(4.56-1.24) = 42.181/3.32 = 12.705 kg/m 

Distributed inertial loading in D flight case: n=6 

 

 𝑞1
𝐼 = 𝑚 ∙ 𝑔 ⋅ 𝑛 (3.137) 

 

𝑞𝐼
𝑛 = 747.561 (𝑁/𝑚) 

 

Table 3.8 Reults of Inertial Loads case D_0.23 

 

Rib y (m) p (N/m2) q (N/m) FT (N) Mf(Nm) 

1 1.24 497.046 99.409 2481.926 4119.997 

2 1.596 436.415 87.283 2215.792 3283.803 

3 1.922 298.809 59.672 1972.084 2601.179 

4 2.247 260.396 52.079 1729.125 1999.733 

5 2.573 216.398 43.28 1485.418 1475.762 

6 2.895 219.205 43.841 1244.701 1036.213 

7 3.23 157.382 31.476 994.265 661.186 

8 3.565 77.421 15.484 743.830 370.055 

9 3.899 28.392 5.678 494.142 163.314 

10 4.235 72.026 14.405 242.959 39.481 

11 4.56 89.269 17.854 0.000 0.000 
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Figure 3.15 Shear forces due to inertial loading of the wing 

 

 
 

Figure 3.16  Span-wise distribution of bending moment due to inertial loading 

 

 Distributed loading due to inertial loading in case E_023 

 

 𝑞1
𝐼 = 𝑚 ∙ 𝑔 ⋅ 𝑛 (3.138) 
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𝑞𝐼
𝑛 = 373.780 (𝑁/𝑚) 

 

Table 3.9 Results of Inertial Loads case E_0.23  

 

Rib y (m) q (N) Ft (N) Mf (Nm) 

1 1.24 373.784 1240.963 2059.998 

2 1.596 373.784 1107.896 1641.902 

3 1.922 373.784 986.042 1300.590 

4 2.247 373.784 864.562 999.866 

5 2.573 373.784 742.709 737.881 

6 2.895 373.784 622.350 518.107 

7 3.23 373.784 497.133 330.593 

8 3.565 373.784 371.915 185.028 

9 3.899 373.784 247.071 81.657 

10 4.235 373.784 121.480 19.740 

11 4.56 373.784 0.000 0.000 

 

 
 

Figure 3.17 Transversal forces due to inertial loading of wing 
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Figure 3.18 Span-wise distribution of bending moment due to inertial loading 

 

 Finite element model of the wing structure 

 
 

Figure 3.19 Wing structure – without skin 
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Figure 3.20 Finite element model of the wing structure – with skin 

 
 

Figure 3.21 Finite element model of the wing structure – without skin 
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Figure 3.22 Example of applied aerodynamic loads: CASE 023 

 
 

Figure 3.23 Case E_0.23: Loading of wing structure  J = 1.0 applied at ribs 
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Figure 3.24 Fittings and constrained displacements of wing 

 

 RESULTS OF FINITE ELEMENT ANALYSIS 

 
 

 Figure 3.25 Deformed and undeformed configuration of wing structure for CASE D_023  J=1.0 

(maximum displacement at the tip of the wing is 63.3 mm) 
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Figure 3.26 Deformed and undeformed configuration of wing structure for CASE D_0.23  J=1.55 

(maximum displacement at the tip of the wing is 98.1 mm) 

 

 
 

Figure 3.27 CASE D_0.23  J=1.0 total displacements, maximum displacement 35.9 mm 



 

55 

 

 
 

Figure 3.28 CASE D_0.23  J=1.55 Total displacements, maximum displacement 55.6 mm 
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CHAPTER 4 

NUMERICAL DETERMINATION of LOADING of 

WING-FUSELAGE FITTING 
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 Numerical Determination of Loading of Wing-Fuselage Fitting 
"Based on the data obtained in previous chapter in this chapter the determination of the wing-

fuselage attachment load was carried out." 

 Loads on wing 

Calculations performed in this chapter are done following the requirements in EASA CS 23 [50].  

Loads on the wing are calculated by the small program that utilizes the Anderson method to calculate 

span-wise load distribution. Deflection of elevators determined for each flaying condition to maintain 

the equilibrium of moments acting on the airplane. Loads on the wing and reactions of the supports are 

presented schematically in  

Figure 4.2. It is assumed that the main spar is loaded by lift and drag force.  

 

`  

 

Figure 4.1 Airplane geometry (all dimensions in mm) 
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Geometrical data necessary for calculation are given in the  

 

Figure 4.1. 

 Input data 

 Loads in a vertical direction are calculated from the local distribution defined as: 

 

 𝑑𝑍(𝑦) = 𝑑𝑍𝐿(𝑦) − 𝑛 ∙ 𝑔 ∙ 𝑚̅ ∙ 𝑑𝑦 (4.1) 

 

Z(y) is the local upward force, L(y) is the local lift force, 𝑚̅ is the mass of the wing per unit 

span: 

 

 𝑚̅ =
𝑚

(𝑏 − 2𝑦𝑤𝑠𝑡𝑎𝑟𝑡) 2⁄
 (4.2) 

 

𝑚̅ = 13.85 𝑘𝑔/𝑚 

 

Local torsion moment about the aerodynamic centre is calculated by 

 

 𝑀𝑇(𝑦) = 𝑀𝑎(𝑦) − 𝑛 ∙ 𝑔 ∙ 𝑚̅ ∙ (𝑡𝑐𝑔 − 𝑐𝑊̅ 4⁄ ) (4.3) 

 

MT(Y) is the local torsion moment; Ma(Y) is the aerodynamic moment about the aerodynamic 

centre. 

 
 

Figure 4.2 Loads and reactions 
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 Load cases 

According to EASA [50]  CS 23.333(d), CS 23.349(b), CS 23.345, CS 23.455(a) (ii) and CS 

23.455, the load cases specified in the  

Table 4.1 are identified. 

 

Table 4.1 Load cases data 

 

EASA 

CS23. 

Load 

case 

Speed   

(m/s) 
n 

Deflection 

F (º) A (º) H (º) 

333 d 

A 67.12 6.0 0.0 0.0 - 

D 107.22 6.0 0.0 0.0 - 

E 107.22 -3.0 0.0 0.0 - 

G 46.65 -3.0 0.0 0.0 - 

349 b 

AA+ 67.12 4.0 0.0 15.0 - 

AA- 67.12 4.0 0.0 -23.0 - 

DA+ 107.22 4.0 0.0 5.0 - 

DA- 107.22 4.0 0.0 -7.7 - 

345 AF 33.5 2.0 30 0.0 - 

455 a 

AFA+ 33.5 2.0 30 15.0 - 

AFA- 33.5 2.0 30 -23.0 - 

DFA+ 49.14 2.0 30 5.0 - 

DFA- 49.14 2.0 30 -7.7 - 

455 
AH 67.12 1.0 0.0 0.0 - 

AH+ 67.12 1.0 0.0 0.0 30.0 

AH- 67.12 1.0 0.0 0.0 -20.0 

 

Deflections of the horizontal tail are calculated later in this section since it depends on the 

airplane's lift to maintain trim of the airplane. Necessary lift of the horizontal tail calculated from: 

 

 

 𝐶𝐿𝐻 =
𝑞

𝑞𝐻
∙
𝑆

𝑆𝐻
(𝐶𝐿 ∙

𝑥𝑐𝑔

𝑟𝐻
+
𝐶𝑀𝑊𝐹 ∙ 𝑐̅

𝑟𝐻
) (4.4) 

 

Necessary deflection of the horizontal tail is calculated from: 

 

 𝐶𝐿𝐻 =
ð𝐶𝐿𝐻
𝜕𝛼

(𝛼𝐻 −
𝜕𝛼𝐻
𝜕𝛿𝐻

∙ 𝛿𝐻) =
ð𝐶𝐿𝐻
𝜕𝛼𝐻

∙
𝜕𝛼𝐻
𝜕𝛼

(𝛼𝐻 −
𝜕𝛼𝐻
𝜕𝛿𝐻

∙ 𝛿𝐻) (4.5) 

 

Derivative ∂αH / ∂δH is calculated by: 

 

 
𝜕𝛼𝐻
𝜕𝛿𝐻

= −𝜆𝐻 + 𝑘 [(
𝜕𝛼

𝜕𝛿𝐻
)
𝑘=1

+ 𝜆𝐻] (4.6) 
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𝜕𝛼𝐻
𝜕𝛿𝐻

|
𝐾=1

= −
2

𝜋
(√𝜆𝐻(1 − 𝜆𝐻) + 𝑎𝑟𝑐𝑠𝑖𝑛√𝜆𝐻) (4.7) 

 

 

 

 

So: 

 

 
𝜕𝛼𝐻
𝜕𝛿𝐻

|
𝐾=1

= 1 (4.8) 

 

 

 
𝜕𝛼𝐻
𝜕𝛿𝐻

= −1 (4.9) 

 

 

Gradient ∂αH / ∂α is calculated as ∂αH / ∂α=(1-ε) 

 

 
𝜕𝛼𝐻
𝜕𝛼

= (1 − 𝜀𝛼) (4.10) 

 

 𝜀𝛼 = 4.44 ∙ (𝐾Λ ∙ 𝐾𝐻)
1.19 (4.11) 

 

 𝐾Λ =
1

𝐴𝑅
−

1

1 + 𝐴𝑅1.7
 (4.12) 

 

 𝐾𝐻 =
1 − |

𝑏𝐻
𝑏
|

√2𝑟𝐻
𝑏

3
 (4.13) 

 

 

Where: K, Kand KH are wing aspect ratio factor, taper ratio factor, and horizontal tail 

location factor. 

 

After substitution in Equ’s 4.11,4.12 and 4.13 we get: 

 = 0.116 

  = 0.0.67 

 = 0.2124 

 

Necessary deflection of the elevator is: 
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 𝛿𝐻 =
1

𝜕𝛼𝐻
𝜕𝛿𝐻

∙ [𝛼 − 𝛼𝑊 − 𝛼𝑛 −
𝐶𝐿𝐻

𝜕𝐶𝐿𝐻
𝜕𝛼𝐻

∙ (1 − 𝜀𝛼)
] (4.14) 

 
 

Figure 4.3 Definition of horizontal tail angle of attack 

 

Based on the previous figure: 

 

 𝛼𝐻 = 𝛼 − 𝛼𝑊 − 𝛼𝑛 (4.15) 

 

 

αn is the mounting angle of the horizontal tail, αW is induced angle from the wing in the tail 

region (downwash angle), which can be approximately calculated as: 

 

 𝛼𝑊 ≈ (2 +
1

4𝜉2
) ∙

𝐶𝐿𝑤
𝜋 ∙ 𝐴𝑅

 (4.16) 

 

 𝛼𝑊 = (2 +
𝑏𝐹
2

4𝑟2𝐻
) ∙

𝐶𝐿𝑤
𝜋 ∙ 𝐴𝑅

 (4.17) 

 

 𝛼𝑊 =  0.1016 · 𝐶𝐿𝑤  (4.18) 

 

By substituting values of 𝛼  , 𝛼𝑊 and  𝛼𝑛 in Eq 3.15, we get 𝛼𝐻 

 

Where  𝛼𝑛 = 0 

 𝛼𝐻 = (
𝐶𝐿𝑤
𝑎0

+ 𝛼0) . 1016 · 𝐶𝐿𝑤  (4.19) 

Where α0 is wing zero-lift angle of attack in radian, a0 is the wing lift curve slope in 1/radian. 

Note: the zero-lift angle of attack, the moment coefficient, and the wing slope are changed when flaps 

are used. 

 

 
𝛿𝐻 = −(𝛼𝐻 − 0.3359) ∙ 𝐶𝐿𝐻 

 
(4.20) 

 

 𝐶𝐿𝑊 =
(𝑟𝐻 − 𝑥𝑐𝑔) ∙ 𝐶𝐿 − 𝐶𝑀0 ∙ 𝑐̅

𝑟𝐻
 (4.21) 
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 𝐶𝐿 =
𝐶𝐿𝑊 ∙ 𝑟𝐻 + 𝐶𝑀0 ∙ 𝑐̅

𝑟𝐻 − 𝑥𝑐𝑔
 (4.22) 

After adding the increment due to flap and aileron deflections to the moment, wing lift, and 

angle of attack equations, we get the new following equations: 

 

 𝐶𝐿𝐻 =
𝑞

𝑞𝐻
∙
𝑆𝑊
𝑆𝐻

∙ (𝐶𝐿 ∙
𝑥𝑐𝑔
𝑟𝐻

+
(𝐶𝑀0 +

𝑆𝐹
𝑆𝑊

∙
𝜕𝐶𝑚
𝜕𝛿𝐹

∙ 𝛿𝐹 +
𝑆𝐴
𝑆
∙
𝜕𝐶𝑚
𝜕𝛿𝐴

∙ 𝛿𝐴) ∙ 𝑐̅

𝑟𝐻
) (4.23) 

 

 
𝐶𝐿𝑊 =

(𝑟𝐻 − 𝑥𝑐𝑔) ∙ 𝐶𝐿 − (𝐶𝑀0 +
𝑆𝐹
𝑆𝑊

∙
𝜕𝐶𝑚
𝜕𝛿𝐹

∙ 𝛿𝐹 +
𝑆𝐴
𝑆𝑊

∙
𝜕𝐶𝑚
𝜕𝛿𝐴

∙ 𝛿𝐴) ∙ 𝑐̅

𝑟𝐻
 

(4.24) 

 

 𝛼 =
𝐶𝐿𝑊
𝜕𝐶𝐿
𝜕𝛼

+ 𝛼0 + (
𝑆𝐹
𝑆𝑊

∙
𝜕𝛼

𝜕𝛿𝐹
∙ 𝛿𝐹 +

𝑆𝐴
𝑆𝑊

∙
𝜕𝛼

𝜕𝛿𝐴
∙ 𝛿𝐴) (4.25) 

 Deflection of Elevator to Balance Airplane 

Eight characteristic weights of the airplane are chosen to calculate required aerodynamic 

coefficients for stationary flight (for all cases in  

Table 4.1. Wing lift coefficient, deflection of the elevator, and other parameters are computed 

from equations extracted from the previous paragraph; only the lift coefficient of the aircraft calculated 

by the equation below: 

 𝐶𝐿 =
2 ∙ 𝑛 ∙ 𝑚 ∙ 𝑔

𝜌𝑉2𝑆
 (4.26) 

 

 Summary of Aerodynamic Parameters  

The result of calculations shows that the maximum bending moment occurred at full fuel 

weight what mean it’s the proper fuel weight. Tables from Table 4.2 to Table 4.5 show the result of 

calculations for case A, D, E and G. the results of other cases are in appendix C 

Table 4.2 Aerodynamic Parameters at Envelope Point A (δF = 0o, δA = 0o, n = 6.0, V = 66.87m /s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.9728 -0.1499 1.0007 4.136 -7.022 9.87 

2 687.4 -0.016 0.9728 -0.1407 0.9990 4.125 -6.832 9.85 

3 727.4 0.049 1.0294 -0.0618 1.0409 4.407 -5.596 10.37 

4 

 

 

 

 

 

 

 

 

827.4 0.068 1.1780 -0.0264 1.1829 5.364 -5.873 12.14 

5 932.4 0.063 1.3195 -0.0241 1.3240 6.315 -6.780 13.90 

6 932.4 0.045 1.3195 -0.0511 1.3290 6.349 -7.333 13.96 

7 

 

892.4 -0.005 1.2629 -0.1300 1.2871 6.067 -8.569 13.44 

8 792.4 -0.019 1.1143 -0.1476 1.1418 5.087 -7.929 11.63 
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Table 4.3 Aerodynamic Parameters at Envelope Point D (δF = 0o, δA = 0o, n = 6.0, V = 107.22 m /s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.37829 -0.1332 0.40312 0.10746 -2.67 2.45 

2 687.4 -0.016 0.37829 -0.1295 0.40244 0.10293 -2.60 2.45 

3 727.4 0.049 0.40031 -0.0989 0.41874 0.21276 -2.12 2.65 

4 827.4 0.068 0.45809 -0.0851 0.47396 0.58501 -2.22 3.34 

5 932.4 0.063 0.51312 -0.0842 0.52882 0.95485 -2.58 4.03 

6 932.4 0.045 0.51312 -0.0947 0.53078 0.96804 -2.79 4.06 

7 892.4 -0.005 0.49111 -0.1254 0.51449 0.85821 -3.27 3.85 

8 792.4 -0.019 0.43332 -0.1323 0.45798 0.47731 -3.02 3.14 

 

Table 4.4 Aerodynamic Parameters at Envelope Point E (δF = 0o, δA = 0o, n = -3.0, V = 107.22 m /s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 -0.1891 0.1278 -0.2130 -4.05 6.51 -5.29 

2 687.4 -0.016 -0.1891 0.1260 -0.2126 -4.04 6.47 -5.28 

3 727.4 0.049 -0.2002 0.1107 -0.2208 -4.10 6.23 -5.38 

4 827.4 0.068 -0.2290 0.1038 -0.2484 -4.28 6.28 -5.73 

5 932.4 0.063 -0.2566 0.1034 -0.2758 -4.47 6.46 -6.08 

6 932.4 0.045 -0.2566 0.1086 -0.2768 -4.48 6.57 -6.09 

7 892.4 -0.005 -0.2456 0.1239 -0.2687 -4.42 6.81 -5.99 

8 792.4 -0.019 -0.2167 0.1274 -0.2404 -4.23 6.68 -5.63 

 

Table 4.5 Aerodynamic Parameters at Envelope Point G (δF = 0o, δA = 0o, n = -3.0, V = 42.25 m /s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 -0.974 0.1500 -1.0019 -9.36 12.25 -15.20 

2 687.4 -0.016 -0.974 0.1407 -1.0002 -9.35 12.06 -15.18 

3 727.4 0.049 -1.0306 0.0617 -1.0421 -9.64 10.82 -15.70 

4 827.4 0.068 -1.1794 0.0263 -1.1843 -10.59 11.10 -17.49 

5 932.4 0.063 -1.3211 0.0240 -1.3256 -11.55 12.01 -19.26 

6 932.4 0.045 -1.3211 0.0510 -1.3306 -11.58 12.56 -19.33 

7 892.4 -0.005 -1.2644 0.1300 -1.2887 -11.30 13.80 -18.80 

8 792.4 -0.019 -1.1157 0.1477 -1.1432 -10.32 13.16 -16.97 

 

 

 

Table 4.6 Table 4.16 shown  in Appendix C. 
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Table 4.6 Aerodynamic Parameters at Envelope Point AA+ (δF = 0o, δA = 15o, n = 4.0, V = 66.87m/s) 

Table 4.7 Aerodynamic Parameters at Envelope Point AA- (δF = 0o, δA = -23o, n = 4.0, V = 66.87m/s) 

Table 4.8 Aerodynamic Parameters at Envelope Point DA+ (δF = 0o, δA = 5.0o, n = 4.0, V = 107.22m/s) 

Table 4.9 Aerodynamic Parameters at Envelope Point DA- (δF = 0o, δA =-7.7o, n = 4.0, V = 107.22m/s) 

Table 4.10 Aerodynamic Parameters at Envelope Point AF (δF = 30o, δA =0.0o, n = 2.0, V = 33.5m/s) 

Table 4.11 Aerodynamic Parameters at Envelope Point AFA+ (δF = 30o, δA =15o, n = 2.0, V = 33.5m/s) 

Table 4.12 Aerodynamic Parameters at Envelope Point AFA- (δF = 30o, δA =-23o, n = 2.0, V = 33.5m/s) 

Table 4.13 Aerodynamic Parameters at Envelope Point DFA+ (δF = 30o, δA =5.0o, n = 2.0, V=49.14m/s) 

Table 4.14 Aerodynamic Parameters at Envelope Point DFA- (δF = 30o, δA =-7.7o, n = 2.0, V=49.14m/s) 

Table 4.15 Aerodynamic Parameters at Envelope Point AH (δF = 0o, δA =0.0o, n = 1.0, V=66.87m/s) 

Table 4.16 Aerodynamic Parameters at Envelope Point DH (δF = 0o, δA =0.0o, n = 1.0, V=102.22m/s) 

 Reactions of Supports (Internal forces and moments): 

Reactions are shown in  

Figure 4.2. Necessary wing geometric data are: 

xS0 = 0.619 m   main spar position 

xS1 = 0.116 m   front spar position 

tCG = 0.769 m   empty wing center of gravity position 

xFcg = 0.370 m fuel center of gravity position 

 Characteristic point coordinates 

Point “0”: (x0, y0, z0) ≡ (0,0,0)  

Point “1”: (x1, y1, z1) ≡ (xS0 - xS1,0,0) = (0.619 - 0.116,0,0) ≈ (0.503,0,0)  

Wing c.g.: 

(xGw, yGw, zGw) ≡ (-(tCG - xS0,), yGw, 0) =(−(𝑡𝐶𝐺 − 𝑥𝑠1 ),
𝑏/2−

2.48

2

2
, 0)) ≈ (0.15, 1.83, 0) 

Fuel c.g.: 

(xGF, yGF, zGF) ≡ (xS0 – xFcg, yGF, 0) = (0.619 - 0.370,0.811,0) ≈ (0.249,0.811,0) 

Vector position of the characteristic points for “0” is given as: 

 

 

𝑟𝑖 = 0.503𝑖̂ + 0𝑗̂ + 0𝑘̂ 

𝑟𝐺𝑊 = −0.15𝑖̂ + 1.83𝑗̂ + 0𝑘̂ 

𝑟𝐺𝐹 = 0.249𝑖̂ + 0.811𝑗̂ + 0𝑘̂ 

(4.27) 

 

 Equilibrium of forces: 

 ∑𝐹⃗ = 𝐹⃗0 + 𝐹⃗1 + 𝐿⃗⃗ + 𝐷⃗⃗⃗ + 𝐺⃗ = 0 (4.28) 

 

Where 𝐹0⃗⃗ ⃗⃗ , 𝐹1⃗⃗ ⃗⃗ , 𝐿⃗⃗ , 𝐷⃗⃗⃗ and 𝐺⃗ are lift, drag and gravity force 

 

 𝐹⃗0 = 𝑋0𝑖̂ + 𝑌0𝑗̂ + 𝑍0𝑘̂ (4.29) 
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 𝐹⃗1 = 𝑌1𝑗̂ + 𝑍1𝑘̂ (4.30) 

 

Where 𝐹0⃗⃗ ⃗⃗ , 𝐹1⃗⃗ ⃗⃗ , 𝐿⃗⃗ , 𝐷⃗⃗⃗ and 𝐺⃗ are lift, drag and gravity force 

 

  

Or in component form: 

 

 ∑𝐹𝑖 = 𝑋0 − 𝐷 = 0 (4.31) 

 

⇒X0 = D 

 ∑𝐹𝑗 = 𝑌0 − 𝑌1 = 0 (4.32) 

 

 ∑𝐹𝐾 = 𝑍0 + 𝑍1 + 𝐿 − 𝐺 = 0 (4.33) 

⇒ 

 𝑍0 + 𝑍1 = 𝐺 − 𝐿 (4.34) 

 

 External forces 

 Lift force 

The lift vector found by the equation below: 

 

 

 𝐿⃗⃗ = 𝑞 ∙ 𝑘̂ ∫ 𝐶𝑙(𝑦)𝑐(𝑦)𝑑𝑦

𝑏 2⁄

𝑦𝑤𝑠𝑡𝑎𝑟𝑡

 (4.35) 

 

 

 Drag force 

Drag force has consisted of friction drag and induced drag. 

 

 𝐷⃗⃗⃗ = −𝐷𝑖̂ = −𝑖̂ ∫ 𝑑𝑖(𝑦)𝑑𝑦 − 𝑖̂

𝑏 2⁄

𝑦𝑤𝑠𝑡𝑎𝑟𝑡

𝐶𝐷0𝑞(𝑆 2⁄ ) (4.36) 

 

Where:  

yWstart is the distance of the wing connection point from the centre of the aircraft. (Note: the wing 

is not adjacent to the fuselage), S: is the wing area (the wing area divided by 2 because we calculated for 

semi wing), di(y): induced drag at position y and is calculated as: 

 

 𝑑𝑖(𝑦) = 𝜌 ∙ 𝑉∞ ∙ 𝛼𝑖(𝑦) ∙ Γ(𝑦) (4.37) 



 

66 

 

 

 𝑑𝐷⃗⃗⃗ = 𝑑𝑖(𝑦) ∙ 𝑑𝑦(−𝑖̂) (4.38) 

 

Anderson‘s method (NACA report 572) [51] express α(θ ) & Γ(θ ) as: 

 

 𝛼𝑖(𝜃) = ∑𝑛𝐴𝑛

𝑁

𝑛=1

𝑠𝑖𝑛(𝑛𝜃)

𝑠𝑖𝑛 𝜃
 (4.39) 

 

 𝛤(𝜃) = 2𝑏𝑉∞ ∑ 𝐴𝑚 𝑠𝑖𝑛(𝑚𝜃)

𝑁

𝑚=1

 (4.40) 

 

Where:𝑦 = −(𝑏 2⁄ ) ∙ cos 𝜃 ,   𝑑𝑦 = (𝑏 2⁄ ) ∙ sin 𝜃). 

Circulation Coefficients Ai: are determined by a small program (see appendix) which 

implements Anderson‘s method (NACA report 572) [51].  

θ: Transformed span-wise coordinates (polar) (Glauert method) We used a small Matlab 

program to calculate the induced drag coefficient. Friction and form drag coefficient (see appendix): 

 

 𝐶𝐷0 = 𝑘𝑖𝐶𝑓𝑆𝑤𝑒𝑡 𝑆𝑊⁄  (4.41) 
 

 
 

Figure 4.4 Friction Coefficient 

 

Where: 

 Cf = 0.0038 friction coefficient calculated from Figure 4.4 corresponding to Reynold number. 

It’s clear that Cf decreases with increasing the speed, but we deal here with the cruising speed, and we 

use the same value for other calculations to avoid reducing Cf. Because of certain irregularities in the 

wing surface due to exposed rivets, skin overlap, etc., the friction coefficient is increased by 10% to 20%, 

so to be on the safe side, the correction factor 1.2 is applied, and Cf = 0.0038*1.2 = 0.0456. 
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Figure 4.5 Form Factor 

Ki = 1.35 form coefficient found from Figure 4.5, which is constant since it depends on thickness 

ratio and sweepback angle. 

Swet = 23.146 m, wetted area of the wing (projected exposed area of the wing Sexp multiplied by 

1.02 because of curvature of the wing airfoil and duplicated because of the upper and lower surface). 

By adding the friction coefficient to the induced, we will get the total drag coefficient. 

 Gravity force 

 𝐺⃗ = −𝐺⃗𝑘⃗⃗ (4.42) 

 

The wing is subjected to its weight and the inertial weight of fuel in fuel tanks. Weight of the 

wing and fuel contributes to gravity load as: 

 

 𝐺⃗ = 𝐺⃗𝐹 + 𝐺⃗𝑤 (4.43) 

 

 𝐺⃗ = −𝑛(𝑚𝐹 +𝑚𝑤) ∙ 𝑔𝑘̂ (4.44) 

 

Where n: load factor, g: earth gravity acceleration (g = 9.81 m/s2), mF: mass of fuel 

(mF=100/2=50 kg), mw: mass of the half empty wing (mw = 49.702 kg). 

 Design fuel load 

 According to EASA CS 23.343 [50]. If fuel is carried in the wings, the maximum allowable 

weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wings 

fuel weight” if it is less than the maximum weight. 

 The maximum zero wings fuel weight (MZFW) doesn’t mean the maximum takeoff weight 

(MTOW) minus full fuel. This definition is incorrect. The MZFW intends to design the wing for the 

condition where airplane weight is maximum, but the wing fuel tanks are only partially full. Because the 

fuel load alleviates wing bending loads, using the proper fuel load to determine MZFW is important. 

 To determine the proper weight of the fuel that gives the maximum bending moment, we 

increase the fuel weight from zero to full tank, and we calculated the corresponding bending moment for 
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each case. The calculations show that the maximum bending moment occurred at total fuel weight, which 

means it’s the proper fuel weight.  

Table 4.17 to Table 4.20 show the result of calculations for cases A, D, E, and G.   

The used gravity force equation: 

 𝐺𝑤+𝐹 = 𝑔 ∙ (𝑚𝑤 + 𝑥 ∙ 𝑚𝐹) (4.45) 

 

 𝐺𝑤+𝐹 = 9.81 ∙ (49.702 + 𝑥 ∙ 50)         0 ≤ 𝑥 ≤ 1 (4.46) 

thus: 

 

 𝐺⃗ = −𝑛 ∙ 9.81 ∙ (49.702 + 𝑥 ∙ 50)𝑘̂ (4.47) 

 

Table 4.17 Fuel Weight Effect Case A 

 

No. Fuel 

kg 
CLw CD L (N) D (N) G-L (N) MEx (Nm) MEy(Nm) 

1 0.0 1.0007 0.06128 15545.44 951.91 -12619.98 18793.20 -2055.73 

2 0.0 0.9990 0.06108 15518.57 948.81 -12593.11 18751.47 -2050.17 

3 0.0 1.0409 0.06548 16169.38 1017.16 -13243.92 19762.38 -2184.70 

4 0.0 1.1829 0.08188 18375.19 1271.91 -15449.73 23188.66 -2640.64 

4.2 10.0 1.2111 0.08588 18813.41 1334.05 -15299.35 23392.00 -2584.66 

4.4 20.0 1.2393 0.08988 19251.63 1396.18 -15148.97 23595.34 -2528.67 

4.6 30.0 1.2675 0.09388 19689.86 1458.32 -14998.60 23798.68 -2472.69 

4.8 40.0 1.2958 0.09788 20128.08 1520.45 -14848.22 24002.02 -2416.71 

5 50.0 1.3240 0.10018 20566.79 1556.18 -14698.33 24206.12 -2360.83 

6 50.0 1.3290 0.10098 20644.93 1568.61 -14776.47 24327.49 -2376.99 

7 50.0 1.2871 0.09518 19994.12 1478.51 -14125.66 23316.59 -2242.46 

8 50.0 1.1418 0.07698 17737.04 1195.79 -11868.58 19810.65 -1775.92 

 

Table 4.18 Fuel Weight Effect Case D 

 

No. Fuel 

kg 
CLw CD L (N) D (N) G-L (N) MEx 

(Nm) 

MEy(Nm) 

1 0.0 0.4031 0.01790 16102.80 715.03 -13177.34 19658.95 337.76 

2 0.0 0.4024 0.01790 16075.94 715.03 -13150.48 19617.23 343.31 

3 0.0 0.4187 0.01857 16726.75 741.79 -13801.29 20628.13 208.79 

4 0.0 0.4740 0.02116 18932.55 845.25 -16007.09 24054.41 -247.15 

4.2 10.0 0.4849 0.02186 19370.77 873.21 -15856.71 24257.75 -191.17 

4.4 20.0 0.4959 0.02256 19809.00 901.18 -15706.34 24461.09 -135.19 

4.6 30.0 0.5069 0.02326 20247.22 929.14 -15555.96 24664.43 -79.21 

4.8 40.0 0.5178 0.02396 20685.44 957.10 -15405.58 24867.77 -23.23 

5 50.0 0.5288 0.02408 21124.15 961.77 -15255.69 25071.87 32.65 

6 50.0 0.5308 0.02416 21202.30 965.25 -15333.84 25193.25 16.50 

7 50.0 0.5145 0.02331 20551.49 931.06 -14683.03 24182.34 151.02 

8 50.0 0.4580 0.02040 18294.40 814.97 -12425.94 20676.40 617.56 
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Table 4.19 Fuel Weight Effect Case E 

 

No. Fuel 

kg 
CLw CD L (N) D (N) G-L (N) MEx 

(Nm) 

MEy(Nm) 

1 0.0 -0.21297 0.01087 -8507.41 434.09 7044.68 -10537.80 6082.92 

2 0.0 -0.21264 0.01085 -8493.98 433.56 7031.25 -10516.94 6080.14 

3 0.0 -0.22078 0.01101 -8819.39 439.73 7356.66 -11022.39 6147.40 

4 0.0 -0.24839 0.01155 -9922.29 461.44 8459.56 -12735.53 6375.37 

4.2 10.0 -0.25388 0.01168 -10141.40 466.49 8384.37 -12837.20 6347.38 

4.4 20.0 -0.25936 0.01181 -10360.51 471.60 8309.18 -12938.87 6319.39 

4.6 30.0 -0.26485 0.01193 -10579.62 476.71 8233.99 -13040.54 6291.40 

4.8 40.0 -0.27034 0.01206 -10798.73 481.83 8158.80 -13142.21 6263.41 

5 50.0 -0.27583 0.01219 -11018.09 487.02 8083.86 -13244.26 6235.47 

6 50.0 -0.27680 0.01221 -11057.16 487.78 8122.93 -13304.95 6243.55 

7 50.0 -0.26866 0.01201 -10731.76 479.58 7797.53 -12799.50 6176.28 

8 50.0 -0.24041 0.01139 -9603.21 454.92 6668.98 -11046.53 5943.01 

 

Table 4.20 Fuel Weight Effect Case G 

 

No. Fuel kg CLw CD L (N) D (N) G-L (N) MEx (Nm) 
MEy 

(Nm) 

1 0.0 -1.00193 0.06023 -7576.36 455.47 6113.63 -9091.59 2562.53 

2 0.0 -1.00020 0.05999 -7563.27 453.64 6100.54 -9071.26 2559.82 

3 0.0 -1.04215 0.06451 -7880.46 487.78 6417.73 -9563.96 2625.38 

4 0.0 -1.18432 0.08140 -8955.53 615.49 7492.80 -11233.86 2847.60 

4.2 10.0 -1.21257 0.08518 -9169.11 644.14 7412.08 -11326.95 2818.47 

4.4 20.0 -1.24081 0.08897 -9382.69 672.75 7331.36 -11420.03 2789.33 

4.6 30.0 -1.26906 0.09275 -9596.28 701.37 7250.65 -11513.11 2760.20 

4.8 40.0 -1.29730 0.09654 -9809.86 729.98 7169.93 -11606.19 2731.07 

5 50.0 -1.32558 0.10032 -10023.68 758.62 7089.45 -11699.64 2701.98 

6 50.0 -1.33061 0.10108 -10061.76 764.33 7127.53 -11758.80 2709.86 

7 50.0 -1.28867 0.09523 -9744.57 720.08 6810.34 -11266.10 2644.29 

8 50.0 -1.14319 0.07631 -8644.51 577.07 5710.28 -9557.37 2416.91 

 

 External Moments 

 Moment due to Lift force: 

Moment due to lifting force about point “0” is calculated by: 

 

 𝑀⃗⃗⃗𝑂𝐿 ≡ ∫ 𝑟

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

(𝑦) × 𝑑𝐿⃗⃗ (4.48) 



 

70 

 

 

Where: 

 

 𝑑𝐿⃗⃗ = 𝐶𝑙(𝑦) ∙ 𝑞 ∙ 𝐶(𝑦) ∙ 𝑑𝑦𝑘̂ (4.49) 

 

Product c(y)⋅dy represents elementary wing area ds, Dynamic pressure is defined as q = 0.5⋅ 
ρ⋅V2, Cl(y) is local lift coefficient at position y, b is the wing span, and vector r(y) is given as: 

 

 𝑟(𝑦) = 𝑥𝑆𝑖̂ + 𝑦𝑠𝑗̂ + 𝑧𝑠𝑘̂ (4.50) 

 

Where: xs distance of the centre of pressure from the main spar (point 0): 

 

 𝑥𝑆 = 𝑥𝑆0 − 𝑥𝑐𝑝 (4.51) 

 

 𝑥𝑆 = 0.619 − 𝑥𝑐𝑝 (4.52) 

 

 𝑥𝑐𝑝 = [(
𝑥

𝑐
)
𝑎𝑐
−
𝐶𝑀𝐴𝐶
𝐶𝐿

] ∙ 𝑐 (4.53) 

 

 𝑥𝑆 = 𝑥𝑆0 − [(
𝑥

𝑐
)
𝑎𝑐
−
𝐶𝑀𝐴𝐶
𝐶𝐿

] ∙ 𝑐 (4.54) 

 

 𝑥𝑆 = 0.619 − [0.266 −
𝐶𝑀𝐴𝐶
𝐶𝐿

] ∙ 𝑐 (4.55) 

Where: 

ZS = 0 

 

Since we have a constant chord so: Cl (y) = 𝑐̅a = 1.55 m. The integral will be: 

 

 𝑀⃗⃗⃗𝑂𝐿 ≡ 𝑞 ∙ 𝑐 ∙ ∫ (𝑥𝑆𝑖̂ + 𝑦𝑆𝑗̂ + 𝑧𝑆𝑘̂) ×

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

𝐶𝑙(𝑦)𝑘̂ ∙ 𝑑𝑦 (4.56) 

 

 𝑀⃗⃗⃗𝑂𝐿 ≡ −𝑞 ∙ 𝑐𝑎̅ ∙ 𝑥𝑆𝑗̂ ∫ 𝐶𝑙(𝑦) ∙ 𝑑𝑦 + 𝑞 ∙ 𝑐𝑎̅ ∙ 𝑦𝑆𝑖̂

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

∫ 𝐶𝑙(𝑦) ∙ 𝑦𝑑𝑦

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

+ 0 (4.57) 

 

 𝑀⃗⃗⃗𝑂𝐿 ≡ −(𝑥𝑆 ∙ 𝐿(𝑦𝑊𝑠𝑡𝑎𝑟𝑡)) ∙ 𝑗̂ + 𝑀𝐿(𝑦𝑊𝑠𝑡𝑎𝑟𝑡) ∙ 𝑖̂ (4.58) 

 

Note: the moment sign is by the right-hand rule. 
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 Moment due to Drag force: 

 As mentioned, the drag force has consisted of friction drag and induced drag. Friction drag acts 

approximately in the middle of the wing exposed to airflow, while induced drag distribution depends on 

induced velocity distribution and intensity of the circulation. 

 

 𝑀⃗⃗⃗𝑂𝐷 ≡ ∫ 𝑟

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

∙ (𝑦 × 𝑑𝐷⃗⃗⃗) (4.59) 

 

 𝑀⃗⃗⃗𝑂𝐷 = ∫ (𝑥𝑆𝑖̂ + 𝑦𝑆𝑗̂ + 𝑧𝑆𝑘̂) × (𝑑𝑖 + 𝑞 ∙ 𝐶𝐷0∙𝑐(𝑦)) ∙

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

𝑑𝑦 ∙ (−𝑖̂) (4.60) 

 

Since the drag approximately acts on the same level as point “0”, zs = 0 and the equation will 

be: 

induced velocity distribution and intensity of the circulation. 

Since the drag approximately acts on the same level as point “0”, so zs=0 and the equation will 

be:  

 

 𝑀⃗⃗⃗𝑂𝐷 = 𝑘̂ ∫ 𝑦𝑆 ∙ 𝑑𝑖 ∙ 𝑑𝑦 + 𝑘̂ ∫ 𝑦𝑆 ∙ 𝑞 ∙ 𝐶𝐷0 ∙ 𝑐(𝑦) ∙ 𝑑𝑦

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

 (4.61) 

 

 𝑀⃗⃗⃗𝑂𝐷 = 𝑘̂ ∙ (𝑀𝐷𝑖 +𝑀𝐷0) (4.62) 

   

 

 𝑀⃗⃗⃗𝑂𝐷 = 𝑘̂ ∙ 𝑀𝐷 (4.63) 

   

 

The procedures of calculation of friction and induced drag are mentioned in drag force 

calculation. We suppose that the total resultant drag force act at the middle of the wing exposed to airflow 

for approximation. 

 

 Moment due to Gravity forces: 

Moment due to gravity force about “0” is calculated by the following equation: 

 

 𝑀⃗⃗⃗0𝐺 ≡ 𝑟𝐺𝑤 × (𝑛 ∙ 𝑚𝑤 ∙ 𝑔) ∙ (−𝑘̂) + 𝑟𝐺𝐹 ∙ (𝑛 ∙ 𝑚𝐹 ∙ 𝑔) ∙ (−𝑘̂) (4.64) 

 

 Equilibrium of Moments: 

 Equilibrium of moments requires that moment of the external forces and reaction forces about 

any point is equal to zero. We take point “0” to calculate the equilibrium of moments so: 
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 ∑𝑀⃗⃗⃗𝐸 0 = 𝑟1 × (𝑌1𝑗̂ + 𝑍1𝑘̂) + 𝑀𝑥𝑖̂ + 𝑀⃗⃗⃗0𝐿 + 𝑀⃗⃗⃗0𝐷 + 𝑀⃗⃗⃗0𝐺 + 𝑀⃗⃗⃗ = (4.65) 

Or 

 

 (𝑟1𝑦𝑍1 − 𝑟1𝑧𝑌1) ∙ 𝑖̂ − (𝑟1𝑥𝑍1 − 𝑟1𝑧0) ∙ 𝑗̂ + (𝑟1𝑥𝑌1 − 𝑟1𝑦0)𝑘̂ + 𝑀𝑥𝑖̂ = −𝑀⃗⃗⃗𝐸 (4.66) 

  

On the left-hand side of this equation are unknown reactions y1 and z1, while on the right – hand 

side is pitching moment and moments due to lifting, drag and weight of the wing segment (as mentioned, 

no need for pitching moment if we deal with the centre of pressure). To shorten the expressions, we gave 

the external moments the name ME. 

After sorting and combining moments and forces equations (with corresponding numbers), we 

get the following system of equations: 

 

 𝑋0 = 𝐷 (4.67) 

 

 𝑌0 + 𝑌1 = 0 (4.68) 

 

 𝑍0 + 𝑍1 = 𝐺 − 𝐿 (4.69) 

 

 𝑀𝑥 = −𝑀𝐸𝑥 (4.70) 

 

 0.503𝑍1 = 𝑀𝐸𝑦 (4.71) 

 

 0.503𝑌1 = −𝑀𝐸𝑧 (4.72) 

 

Where: 

 𝑀⃗⃗⃗𝐸𝑋 = 𝑀𝐿(𝑌𝑠𝑡𝑎𝑟𝑡) − 𝑛 ∙ 𝑔(𝑚𝑤 ∙ 𝑦𝐺𝑤 +𝑚𝐹 ∙ 𝑦𝐺𝐹) (4.73) 

 

 
𝑀⃗⃗⃗𝐸𝑦 = −(𝑋𝑠 ∙ 𝐿(𝑌𝑠𝑡𝑎𝑟𝑡) + 𝑛 ∙ 𝑔(𝑚𝑤 ∙ 𝑥𝐺𝑤 +𝑚𝐹 ∙ 𝑥𝐺𝐹 + 𝑞 ∙ 𝑐𝑎̅ ∫ 𝐶𝑚(𝑦) ∙ 𝑐(𝑦) ∙

𝑏 2⁄

𝑦𝑊𝑠𝑡𝑎𝑟𝑡

𝑑𝑦)  
(4.74) 

 

Again we deal with the centre of pressure so that the equation will be: 

 

 𝑀⃗⃗⃗𝐸𝑦 = −(𝑋𝑠 ∙ 𝐿(𝑌𝑠𝑡𝑎𝑟𝑡)) + 𝑛 ∙ 𝑔(𝑚𝑤 ∙ 𝑥𝐺𝑤 +𝑚𝐹 ∙ 𝑥𝐺𝐹 (4.75) 

 

 𝑀⃗⃗⃗𝐸𝑍 = 𝑀𝐷𝑖 +𝑀𝐷0 = 𝑀𝐷 (4.76) 

 Load Distribution over Wing 

For the load cases given in  

Table 4.1 with deflection of command surfaces and corresponding angles of attack of the wing, 

the wing's load distribution was calculated using a small program. All eight cases are to be considered 
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for different masses of the airplane. The load distribution over the wing is used to determine the load on 

ribs to use in the structural dimensioning and testing. Reactions for symmetrical load cases are identical 

on right-hand and left-hand semi-wing.  

 For unsymmetrical load cases such as AA+ and AA- reactions on the right-hand semi-wing for 

loading case AA+ are equal to the reactions to the left-hand semi-wing for the loading case AA- and vice 

versa. Only reactions on left-hand side semi-wing loads are calculated; it is also assumed that Cn = Cl 

since angles of attack for the most intensive loads is smaller than 14o. 

Semi-wing’s support reactions for load cases given in Table 4.21.  

 

Table 4.21 Support Reactions at case A, at point A, (δF = 0o, δA = 0o, n = 6.0, V = 67.12 m /s) 

 

No m (kg)  H (o) X0 (N)
 

Y
0 (N)

 
Z

0 (N)
 Y

1  (N)
 Z

1 (N)
 

Mx (Nm)
 

1 687.4 9.87 -7.02 951.91 4636.555 -8533.04 -4636.56 -4086.93 -18793.20 

2 687.4 9.85 -6.83 948.81 4621.423 -8517.22 -4621.42 -4075.89 -18751.47 

3 727.4 10.37 -5.60 1017.16 4954.335 -8900.59 -4954.33 -4343.33 -19762.38 

4 827.4 12.14 -5.87 1271.91 6195.188 -10199.95 -6195.19 -5249.77 -23188.66 

5 932.4 13.90 -6.78 1556.18 7579.799 -10004.83 -7579.80 -4693.51 -24206.12 

6 932.4 13.96 -7.33 1568.61 7640.328 -10050.86 -7640.33 -4725.62 -24327.49 

7 892.4 13.44 -8.57 1478.51 7201.49 -9667.49 -7201.49 -4458.18 -23316.59 

8 792.4 11.63 -7.93 1195.79 5824.445 -8337.92 -5824.45 -3530.66 -19810.65 

 

Table 4.22 Support Reactions at case D, at point D, (δF = 0o, δA = 0o, n = 6.0, V = 107.22m /s) 

 

No m (kg)  H (o) X0 (N)
 

Y
0 (N)

 
Z

0 (N)
 Y

1  (N)
 Z

1  (N)
 

Mx (Nm)
 

1 687.4 2.45 -2.67 715.03 3482.74 -13848.82 -3482.74 671.48 -19658.95 

2 687.4 2.45 -2.60 715.03 3482.74 -13833.00 -3482.74 682.52 -19617.23 

3 727.4 2.65 -2.12 741.79 3613.10 -14216.37 -3613.10 415.08 -20628.13 

4 827.4 3.34 -2.22 845.25 4117.03 -15515.73 -4117.03 -491.36 -24054.41 

5 932.4 4.03 -2.58 961.77 4684.58 -15320.60 -4684.58 64.91 -25071.87 

6 932.4 4.06 -2.79 965.25 4701.51 -15366.63 -4701.51 32.80 

 

-25193.25 

7 892.4 3.85 -3.27 931.06 4534.96 -14983.26 -4534.96 300.24 -24182.34 

8 792.4 3.14 -3.02 814.97 3969.55 -13653.69 -3969.55 1227.75 -20676.40 

 

Table 4.23 Support Reactions at case E, at point E, (δF = 0o, δA = 0o, n = -3.0, V = 107.22m /s) 

 

No m (kg)  H (o) X0 (N)
 

Y
0 (N)

 
Z

0 (N)
 Y

1  (N)
 Z

1  (N)
 

Mx (Nm)
 

1 687.4 -4.71 1.48 434.09 2114.36 -5048.59 -2114.36 12093.27 10537.80 

2 687.4 -4.71 1.45 433.56 2111.75 -5056.50 -2111.75 12087.75 10516.94 

3 727.4 -4.81 1.21 439.73 2141.84 -4864.82 -2141.84 12221.47 11022.39 

4 827.4 -5.16 1.26 461.44 2247.57 -4215.14 -2247.57 12674.69 12735.53 

5 932.4 -5.50 1.44 487.02 2372.16 -4312.70 -2372.16 12396.56 13244.26 
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6 932.4 -5.51 1.54 487.78 2375.85 -4289.68 -2375.85 12412.61 13304.95 

7 892.4 -5.41 1.78 479.58 2335.94 -4481.37 -2335.94 12278.89 12799.50 

8 792.4 -5.06 1.66 454.92 2215.81 -5146.15 -2215.81 11815.14 11046.53 

 

Table 4.24 Support Reactions at case G, at point G, (δF = 0o, δA = 0o, n = -3.0, V = 46.65m /s) 

 

No m (kg)  H (o) X0 (N)
 

Y
0 (N)

 
Z

0 (N)
 Y

1  (N)
 Z

1  (N)
 

Mx (Nm)
 

1 687.4 -14.62 7.23 455.47 2218.47 1019.14 -2218.47 5094.48 9091.59 

2 687.4 -14.60 7.04 453.64 2209.59 1011.43 -2209.59 5089.11 9071.26 

3 727.4 -15.13 5.80 487.78 2375.88 1198.28 -2375.88 5219.45 9563.96 

4 827.4 -16.91 6.08 615.49 2997.93 1831.57 -2997.93 5661.23 11233.86 

5 932.4 -18.69 6.99 758.62 3695.05 1717.71 -3695.05 5371.74 11699.64 

6 932.4 -18.75 7.54 764.33 3722.87 1740.15 -3722.87 5387.39 11758.80 

7 892.4 -18.23 8.78 720.08 3507.37 1553.30 -3507.37 5257.04 11266.10 

8 792.4 -16.40 8.14 577.07 2810.76 905.29 -2810.76 4804.99 9557.37 

 

 Overview of Maximum Loading Cases 

 From the results of all loading cases given in the previous section, it is concluded that in each 

case, the most of the highest value of Z reactions are in number 4, and the other reaction loads are higher 

in number 6. An overview of reactions is given in  

 

Table 4.25 below. The maximum reactions are found in cases A. 6, D. 4, D. 6, E. 4 and E. 6, so these 

loading cases have to be used to dimension structural elements.  

 The maximum positive and negative bending moment are found in case D. 6 and case E. 6. We 

used the bending moment of case D. 6 for dimensioning and testing of the wing (main spar). The 

maximum torsion moment found in case E. 4, so this case also should be tested in the structural test. For 

the structural test, we will test case D. 6 for maximum bending moment and case E.4 for maximum 

torsion moment about the main spar (chapter 7). 

 

Table 4.25 Maximum Loading Cases 

 

Load 

case 
X0 (N)

 
Y

0 (N)
 

Z
0 (N)

 Y
1  (N)

 Z
1  (N)

 
Mx (Nm)

 
My (Nm)

 

A. 4 

A. 6 

1271.91 6195.19 -10199.95 -6195.19 -5249.77 -23188.66 -2640.64 

1568.61 7640.33 -10050.86 -7640.33 -4725.62 -24327.49 -2376.99 

D. 4 

D. 6 

D. 8 

845.25 4117.03 -15515.73 -4117.03 -0491.36 -24054.41 -247.15 

965.25 4701.51 -15366.63 -4701.51 0032.80 -25193.25 16.50 

814.97 3969.55 -13653.69 -3969.55 1227.75 -20676.40 617.56 

E. 4 

E. 6 

E. 8 

461.44 2247.57 -4215.14 -2247.57 12674.69 12735.53 6375.37 

487.78 2375.85 -4289.68 -2375.85 12412.61 13304.95 6243.55 

454.92 2215.81 -5146.15 -2215.81 11815.14 11046.53 5943.01 
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G. 4 

G. 6 

615.49 2997.93 1831.57 -2997.93 5661.23 11233.86 2847.60 

758.62 3695.05 1717.71 -3695.05 5371.74 11699.64 2701.98 

 

 

  Fittings Analysis 

 In the fitting analysis, we use the critical forces and moments summarized in  

 

Table 4.25. 

  

We have a double shear type of lug in the front spar and multiple shears or finger type in the 

main spar in the fitting. See Figure 4.6. The female lug attached to the wing’s spar. The used material is 

steel 1.6604.6. According to EASA CS 23.619 and CS 23.625 [50](a), the safety factor must be multiplied 

by a specific factor known as a fitting factor, which is equal to 1.5, so the fitting safety factor will be: 

 

 𝐹𝑠 = 1.5 ⋅ 1.15 = 1.725   

   

 
          (a)                                                             (b) 

 

Figure 4.6 (a) Double Shear; (b) Multiple Shear or Finger Type 

 

 Main Spar 

The reactions used for lug analysis of the main spar are taken from Table 4.26. Also, we added 

the force caused by the moment about the x-axis to the Y0 reactions. The value of the X0 reaction is so 

small compared with the value of Y0 and Z0 reactions, so we ignored it. 

The value of Y0 before adding the force due to moment about x is 𝑌0 = 4701.51𝑁 , and divided 

over two because there are two connection points in the fitting of the main spar (Figure 4.7), the force 

due to moment is:  

 

 𝑌𝑂𝑀 =
𝑀𝑥

𝑍𝑠𝑝𝑎𝑟
 (4.77) 

 

𝑌𝑂𝑀 = 125966.25 𝑁 

So:  

𝑌0  =  
𝑦0
2

 

 

𝑌0 = 2350.755𝑁 
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Where: Zspar = 0.2 m and Mx = 25193.25 Nm. 

 

 𝑌0(Tension) = 𝑌0𝑀 + 𝑌0     125966.25     

 

𝑌0(Compression) = 𝑌0𝑀 − 𝑌0   123615.495   

 

Table 4.26 The reaction used for the lug analysis 

 

Case Z0 (N) Y0 (N) Tension Y0 (N) Compression 

D. 4 -15515.7 ---- ---- 

D. 6 ---- 123615.48 128316.99 

 

 
 

Figure 4.7 Connections Points in the Fitting of Main Spar 

 

 This value-added to Y0 of the upper connection point (Y0 compression) and subtracted from the 

lower one (Y0 tension). Also, the value divided by 4 for one lug. 

 Applied Load Cases 

We have two applied load cases in our fitting loading, namely, Case I: axial load and Case II: 

Transverse load see Figure 4.8. 
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Figure 4.8 Applied load cases for axial and transverse 

 

 Axial load analysis 

The lug failure modes for this load case are shown in Figure 4.9. 

 

 
 

Figure 4.9 Lug tension and shear‐tear out failures 

 

For our Lug: W = 3.22 cm, D = 1.4 cm, a = 1.69 cm. 

 

a) Tension failure: 

 The following equation gives the tension load: 

 

 𝑃𝑡𝑢𝑥 = 𝐾𝑡 ⋅ 𝐹𝑡𝑢𝑥 ⋅ 𝐴𝑡 (4.78) 
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Figure 4.10. Axial Loading 

Where: 

Ptux: Ultimate load for tension failure 

Kt: Net tension efficiency factor is taken from  

Figure 4.10. Kt =0.90 [52].  

Ftux: Ultimate tensile stress of the lug material in the x-direction. and for steel, 1.6604.6  

𝐹𝑡𝑢𝑥 = 1300 𝑀𝑝𝑎 = 1300 ∙ 10
6 𝑁/𝑚2 

At: Minimum net section for tension 

𝐴𝑡 = (𝑊 − 𝐷) ⋅ 𝑡 = 1.092 𝑐𝑚2 = 1.092 ∙ 10−4 𝑚2 

t: lug thickness = 0.6 cm 

 

So: 

 𝑃𝑡𝑢𝑥 = 𝐾𝑡 ⋅ 𝐹𝑡𝑢𝑥 ⋅ 𝐴𝑡 (4.79) 

 

𝑃𝑡𝑢𝑥 = 127764 𝑁 

 

The Margin of Safety (MS): 

 𝑀𝑆 =
𝑃𝑡𝑢𝑥
𝐹𝑠.𝑓 ∙ 𝑃

− 1 (4.80) 

 

𝑀𝑆 = 1.40   𝑜𝑘 

Where: P = Z 0 /4. 

 

b) Shear‐Bearing failure 

 It consists of shear tear‐out of the lug along with a (40𝑜) the angle on both sides of the pin 

(Figure 4.9), and bearing failure involves the crushing of the lug by the pin bearing. Both of them are 

critical in tension load. 

 The following equation gives the ultimate load: 
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 𝑃𝑏𝑟𝑢 = 𝐾𝑏𝑟 ⋅ 𝐹𝑡𝑢𝑥 ⋅ 𝐴𝑏𝑟 (4.81) 

   

 
Figure 4.11 Axial Loading 

 

Where: 

Pbru:  Ultimate load for shear tear‐out and bearing failure  

Kbr: shear bearing efficiency factor is taken from the Figure 4.11 [52] at 𝑎/𝐷 = 1.21 and 𝐷/𝑡 = 2.33 

(𝑡 : thickness of one lug = 0.6 cm), so: Kbr = 1.55  

Ftux: Ultimate tensile stress of the lug material in 𝑥‐direction. For steel 1.6604.6: 

𝐹𝑡𝑢𝑥 = 1300 𝑀𝑝𝑎 =  1300 ∙ 10
6 N/𝑚2 

𝐴𝑏𝑟: projected bearing area  𝐴𝑏𝑟 = 𝐷 ⋅ 𝑡 = 0.84  𝑐𝑚
2 = 0.84 ∙ 10−4 𝑚2. 

So 

𝑃𝑏𝑟𝑢 = 𝐾𝑏𝑟 ⋅ 𝐹𝑡𝑢𝑥 ⋅ 𝐴𝑏𝑟 = 125580 𝑁 

The Margin of Safety (MS): 

 

 𝑀𝑆 =
𝑃𝑏𝑟𝑢

𝐹𝑡𝑦𝑦 ∙ 𝑃𝑡𝑟
− 1 (4.82) 

 

𝑀𝑆 = 1.36    𝑜𝑘 

 

 

c) Pin‐shear‐off failure 

 Pin single shear‐off failure is given by 

 

 𝑃𝑝𝑠 = 𝐹𝑠𝑢 ⋅ 𝐴𝑝 (4.83) 

 

Where: 

Pps: Ultimate load for pin shear‐off failure 

𝐹𝑠𝑢: Ultimate shear stress of the pin material (steel 1.4534.6) (For steel, ultimate shear stress is 0.75 of 

ultimate tensile stress) 𝜎𝑡 = 1500 × 10
6 𝑁  
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𝐹𝑠𝑢 = 0.75 ∙ 𝜎𝑡 = 1125 ∙ 10
6𝑁/𝑚2 

Pp,s: Pin cross-section area 

Ap: Pin cross-section area  𝐴𝑝 =
𝜋𝐷2

4
= 1.54 𝑐𝑚2 = 1.54 × 10−4 𝑚2 

So: 

 

 𝑃𝑝,𝑠 = 𝜎𝑡 ⋅ 𝐴𝑝 (4.84) 

 

𝑃𝑝,𝑠 = 173250 𝑁 

 

The Margin of Safety (MS): 

 

 
𝑀𝑆 =

𝑃𝑝,𝑠
1.725 ⋅ 𝑃

− 1 

 
(4.85) 

 

𝑀𝑆 = 2.25   ok 

 

Where: 𝑃 = Y0/4  case D6 ,    Y0 = 2350.755𝑁 

P =
𝑌0
4

 

 

P = 587.68875 N 

 

 

d) Pin bending failure 

 If the pin used in the lug is too small, the pin can bend enough to precipitate failure in the lug. 

Since a weak or smaller pin can cause an inner lug (t2) to fail at a smaller load, larger pins (ample 𝑀𝑆) 

are always recommended. 

 The moment arm is given by (Figure 4.12): 

 

 𝑏 =
𝑡1
2
+ 𝛿 + 𝛾 ⋅ (

𝑡2
4
) (4.86) 

 

𝛿 = 0.05 𝑐𝑚 is a gap (lug chamfer or use flange bushings) as shown in Figure 4.12  

 

 
 

Figure 4.12 Pin Moment Arm for Determination of Bending Moment 
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Figure 4.13 Peaking Factor for Pin Bending 

 

𝛾 = 0.25 is reduction factor (only applies to the inner lug) is taken from  

 
 

Figure 4.13 [52]. To calculate the reduction factor, we needed to calculate: 𝑟 =
𝑎−𝐷/2

𝑡2
   and   

(𝑃𝑢) min 

𝐴𝑏𝑟⋅𝐹𝑡𝑢𝑥
=

𝑃𝑏𝑟𝑢

2∙𝐴𝑏𝑟∙𝐹𝑡𝑢𝑥
. 

Abr: the new area was calculated by using the thickness of the female lug. (Pmin) : The smaller of Pbru and 

Ptu for the inner lug (same as for outer lug). 

So, the moment arm is (t1 = 0.6 cm ,  t2 = 1.2 cm ) 𝑏 =
𝑡1

2
+ 𝛿 + 𝛾 ⋅ (

𝑡2

4
) = 0.425 𝑐𝑚, and the 

pin bending moment (P =Y0 /4 case (D6)) is: 

P =
𝑌0
4

 

 

P = 587.68875 N 

 

𝑀 =
𝑃

2
⋅ 𝑏 = 68.17 𝑁𝑚 
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Note: we used the compression force ( 𝑌0 compression) because it gives the maximum bending 

moment. 

 Given the ultimate tensile stress of the pin material, for Ultimate bending moment, assume the 

ultimate bending moment is the moment that produces tension stress at the surface of the pin (tension 

part) equal to the ultimate tensile stress of the material, then 

 

 𝑀𝑢 =
𝜎𝑡 ⋅ 𝜋 ⋅ 𝑟

4

4 ⋅ 𝑟
=
𝜎𝑡 ⋅ 𝜋 ⋅ 𝑟

3

4
 (4.87) 

 

𝑀𝑢 = 2035.75 𝑁𝑚 

 

The Margin of Safety (MS): 

 

 𝑀𝑆 =
𝑀𝑢

𝐹𝑠,𝑓 ⋅ 𝑀
− 1 (4.88) 

 

𝑀𝑆 = 16.31  𝑜𝑘 

 Transverse load analysis 

The lug failure modes for the transverse load case are shown in Figure 4.14 type I below. 

 

 
 

Figure 4.14 Failure mode of transverse load 

 

 The critical transverse load of our lug is found in case D. 4 ( 

 

Table 4.25), and since we have two connection points, the value is divided over two, and there are four 

lugs in one connection (the central lug represent two lugs). 

 

a) The ultimate load 

 The ultimate load is obtained by: 

 

 𝑃𝑡𝑟𝑢 = 𝐾𝑡𝑟𝑢 ⋅ 𝐴𝑏𝑟 ⋅ 𝐹𝑡𝑢𝑦 (4.89) 
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Figure 4.15 Transverse Loading Kt 

Where:  

Ptru: Ultimate transverse load  

Ktru = 1.06 Efficiency factor for transverse load, calculated based on Figure 4.15 [52]  

𝐴𝑏𝑟: Projected bearing area 𝐴𝑏𝑟 = 0.84 × 10
−4𝑚2 

𝐹𝑡𝑢𝑦: Ultimate tensile stress of lug material in 𝑦‐direction (Approximately equal to the ultimate tensile 

in 𝑥 direction)  𝐾𝑡𝑢y = 1300 × 10
6 𝑁/𝑚2  

 

So, the ultimate load is: 

𝑃𝑡𝑟𝑢 = 115752𝑁 

b) The yield load 

 The yield load is given by: 

 

 𝑃𝑦 = 𝐾𝑡𝑟𝑦 ⋅ 𝐴𝑏𝑟 ⋅ 𝐹𝑡𝑢𝑦 (4.90) 

 

Where: 

𝑃𝑦: Yield transverse load  

𝐾𝑡𝑟𝑦 = 0.91: Efficiency factor for transverse yield load calculated based on [52] 

𝐴𝑏𝑟: Projected bearing area 𝐴𝑏𝑟 = 0.84 × 10
−4 𝑚2 

𝐹𝑡𝑢𝑦: Tensile yield stress of lug material in 𝑦‐direction 

The Tensile yield is approximately=0.89 of the ultimate tensile stress from high strength steel, so Ftuy= 

0.89 ⋅1300 ×106 = 1157 ×106 N /m. 

 

The Margin of Safety (MS): 

 𝑀𝑆 =
𝑃𝑡𝑟𝑢

𝐹𝑠,𝑓 ∙ 𝑃𝑡𝑟
− 1 (4.91) 

 

𝑀𝑆 = 33.6  Large 
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 NUMERICAL CRACK PROPAGATION ANALYSIS 

  Introduction 

 In this chapter, numerical analyses of the damaged wing-fuselage attachment lug were 

conducted by XFEM and improved FEM. So a summary of these methods and their implementation in 

corresponding software packages are given at the beginning. 

 Finite element method (FEM) 

The evaluation of Stress Intensity Factor (SIF) for various types of crack positions and 

geometries in the finite element method is widely used to evaluate Stress Intensity Factor (SIF) for several 

types of crack positions geometries. Some procedures usually use extrapolation procedures based on 

point matching techniques with nodal displacements due to their application in many crack 

configurations. An example of this type of technique is the displacement extrapolation method (DEM). 

The number of elements depends on the distributed nodes around the crack tip, which can be set 

by the user, as shown in Figure 5.1. The stresses are computed from the displacement solutions that are 

the primary output of the FE programs [53]. Souiyah et al. employed this method to predict the crack 

propagations directions, calculate the Stress Intensity Factors (SIFs), and then validated the predicted 

SIF and cracked path with the corresponding numerical and analytical results obtained by other 

researchers. The comparison showed that the program could demonstrate the SIF evaluation and the 

crack path direction satisfactorily [54]. 

 

 
Figure 5.1 The cut and patch procedure of generating singular elements around a crack tip 

 

 One of the best-known numerical approaches is the adaptive re-meshing technique based on the 

finite element method. The literature [55], Table 4.2 to Table 4.5 aimed by Ricardo Branco et al. to 

provide an overview of adaptive remeshing technique proposals developed to evaluate the crack shape 

progression and fatigue life. In [56], [57] the SIF of an aluminium plate with central crack was computed 

by A. Gopichand et al., using the virtual crack closure technique (VCCT). Compared with empirical 

values and displacement extrapolation method values, the values obtained were compared with empirical 

values and found to be in order.  

In [58] (displacement distribution, stress distribution, weight function method, J-integral, 

interaction integral) were applied to calculate and compare KI values by using the FE software ABAQUS. 

The selected methods were applied on the benchmark model: the compact tension specimen, and the 

results were compared. Based on this comparison, it was concluded that: 

(1) The J-integral method and the interaction integral implemented thru ABAQUS provide 

consistent K values with the one calculated by ASTM. So it is established that those are appropriate 

methods to determine accurate K values for both 2D and 3D cracks. 
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(2) The displacement and stress extrapolation method deliver consistent results with acceptable 

accuracy. Once the stress and displacement distributions are available, mentioned methods can be used 

for a SIF calculation. KI values were lower than those with J-integral or interaction integral and similar 

to the surface values (lower constraint). 

(3) The 3D model provides more accurate results than 2D models. 

(4) With J-integral, it is not possible to separate KI, KII and KIII. However, this disadvantage can 

be resolved by using the integral interaction method. The interaction integral was the most consistent 

method. In the literature [59], [57] two different crack growth criteria and the crack trajectory prediction 

for various applications were compared using the maximum circumferential stress criterion and the strain 

energy density criterion. For each example, the angle of direction at each crack increment length and the 

final crack propagation path was determined. The displacement extrapolation method was used to 

determine the stress intensity factors under mode I and mixed-mode loading. Numerical calculations 

made by the finite element  methods showed that this technique could correctly describe the stress and 

deformations field near the crack tip. The two criteria gave good results on the crack propagation path, 

and the results between them were very close. 

 The effect of the mesh 

The two criteria gave good results on the crack propagation path, and the results between them 

were very close. In finite element analysis, mesh size is the critical issue. Because it directly affects the 

accuracy, computing time and efforts needed for creating the finite element models. The accuracy of the 

result obtained is determined by the mesh element size [60]. Shashikant T. More and Dr. R. S. Bindu 

[57], [61] presented a study of the effects of the mesh element size on the accuracy of the numerically 

obtained results. The guidelines for choosing the appropriate mesh strategy in finite element modelling 

were based on these results. The analyses were conducted by using Femap and NX-Nastran. It was found 

that for static analysis, which assumes steady loading and response conditions, the model discredited into 

elements of size 40 mm to obtain satisfying results, consuming fewer computer resources and computing 

time. For buckling analysis, the FE model, which was meshed between 30 and 50 mm, gave optimal 

accuracy and efficiency. Three element types and eight-element sizes were used to compare the accuracy 

of modal analysis by Weibing Liu et al. As curve and surface boundary of a higher-order element can 

accurately approach structure boundary, calculation accuracy under hexahedral 36 elements was higher 

than tetrahedral element.  

Meanwhile, the calculation accuracy of modal analysis can be improved by increasing the 

number of nodes. In that case, the order of algebraic equations obtained by the discrete differential 

equation is increased. After mesh type was selected, the calculation accuracy of modal analysis could 

also be increased by changing element size. But when mesh size was changed to a point or a place, the 

changes of calculation accuracy became stable. There is no significance for improving the calculation of 

modal analysis by changing the mesh element size continuous [62]. 

 Extended Finite Element Method (XFEM) 

 Introduction 

 The requirement of re-meshing the discontinuous of crack’s domain is the notable restriction of 

FEM, which represents a significant issue for modelling the crack propagation in complex geometry. To 

mitigate the difficulties of computational crack propagation in FEM, Belytschko and Black [63] 

suggested the extended finite element method (XFEM). This method can resolve the problem of FEM 

by enriching in the proximity of the crack and simulate the domain re-meshing. This method is based on 

the partition of unity and also provides using higher‐order elements or particular finite elements without 

significant changes in the formulation. It has been widely acknowledged that this method since it uses 

the assumptions of linear elastic fracture mechanics (LEFM), simplifies the fracture growth modelling. 



 

87 

 

Since its introduction in  1999 , many new upgrades and applications have been proposed in the scientific 

literature [57], [64]. 

Compared to the finite element method, the XFEM provides many improvements in the 

numerical modelling of fracture propagation. In the FEM, the crack model must follow mesh element 

edges, while crack geometry in the XFEM does not need not be aligned with the mesh element edges, 

which is significant flexibility. This capability has been illustrated in Figure 5.2, [65], [36], [57]. 

 

 
 

Figure 5.2 Comparison of a crack path in FEM (left) and XFEM (right) 

 

The extended finite element method (XFEM) is also known in the literature as a generalized 

finite element method (GFEM) or partition of unity method. (PUM) is a numerical procedure that 

upgrades the traditional finite element method (FEM) by extending the solution space for solutions to 

differential equations with discontinuous functions. The extended finite element method was designed to 

solve the problems with localized features that could not be efficiently resolved by mesh refinement. 

 A key advantage of XFEM is that the finite element mesh does not need to be updated to track 

the crack path in such problems. This method has more general use in solving problems with singularities, 

material interfaces. With the regular meshing of microstructural features such as voids, a localized 

advantage can be described by an appropriate set of basic functions [66]. 
 The extended finite element method (XFEM) has proved to be a competent mathematical tool 

that enables a local enrichment of approximation spaces. The partition of the unity concept recognizes 

the enrichment. This concept gives an approximate solution with well‐known non-smooth characteristics 

in small parts with computational domains, i.e. discontinuities and singularities near the crack tip. 

Standard numerical methods such as a finite element or finite volume often exhibit poor accuracy for 

crack growth simulation problems. The XFEM offers significant advantages by enabling optimal 

convergence for these applications [67], [57]. 

The XFEM is based on the enrichment of the FE model by adding extra degrees of freedom 

added to the nodes of the elements cut by the crack. In this way, crack is included in the numerical model 

without modifying the domain discretization, because the mesh is generated completely independent of 

the fracture. Therefore, only a single mesh is needed for any fracture length and orientation. In addition, 

nodes surrounding the crack tip are enriched with functions that reproduce the asymptotic crack tip 

behaviour. This enables the modelling of the crack within the fracture‐tip element and increases the 

accuracy in calculating the stress intensity factors [65], [57]. 

 Partition of unity 

 Partition of unity is a set 𝑅 of continuous functions from X to the interval [0,1] such that for 

every point, 𝑥 ∈ 𝑋, 
‐ there is a neighbourhood of x where all but one finite number of the functions 𝑜𝑓𝑅 are 0, 
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‐ the sum of all the function values at 𝑥 is 1, ∑ 𝑓𝑖
𝑛
𝑖=1 (𝑥) = 1. 

Partitions of unity are helpful because they often allow extending local constructions to the whole 

space. They are also important for interpolation of data, signal processing, and the theory of spline 

functions. An example of partition of unity for 4 functions is illustrated in Figure 5.3 [65]. 

 

 
 

Figure 5.3 Partition of unity of a circle with four functions 

 

If this condition is verified, any point 𝑥 in X has only finite 𝑖 with 𝑓𝑖(𝑥) ≠ 0. It can be shown 

that the sum in Equation does not have to be identically unity to work; for any function 𝜙(𝑥), it is verified 

that 

 

 ∑𝑓𝑖

𝑛

𝑖=1

(𝑥)𝜙(𝑥) = 𝜙(𝑥) (5.1) 

 

It can also be shown that the partition of unity property is satisfied by the set of finite element 

shape functions Nj, i.e. 

 

 ∑𝑁𝑗

𝑚

𝑗=1

(𝑥) = 1 (5.2) 

       

By improving a finite element approximation, the enrichment procedure may be applied. In other 

words, the accuracy of the solution can be enhanced by including the analytical solution of the problem 

in the finite element formulation. For example, in fracture mechanics problems, if the analytical fracture 

tip solution can be added to the framework of the finite element discretization, predicting fracture tip 

fields may be improved and cause an increase in the number of degrees of freedom. 

 The partition of unity finite element method (PUFEM) [68] using the concept of enrichment 

functions along with the partition of unity property, can help to obtain the following approximation of 

the displacement within a finite element. 

 

 

 𝑢ℎ(𝑥) =∑𝑁𝑗

𝑚

𝑗=1

(𝑥)(𝑢𝑖 +∑𝑝𝑖

𝑛

𝑖=1

(𝑥)𝑎𝑗𝑖) (5.3) 

 

where, 𝑝𝑖(𝑥) is the enrichment functions and 𝑎𝑗𝑖 is the additional unknowns or degrees of 

freedom associated with the enriched solution. 𝑚 and 𝑛 are the total numbers of nodes of finite elements 

and the number of enrichment functions 𝑝𝑖. 
Based on the discussion above, for an enriched node 𝜒𝑘 Equation (5.3) [69]. 

 

 𝑢ℎ(𝑥𝑘) = (𝑢𝑘 +∑𝑝𝑖

𝑛

𝑖=1

(𝑥𝑘)𝑎𝑗̇𝑖) (5.4) 
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Which is not a possible solution. To overcome this problem and satisfy interpolation at the nodal 

point, i.e. 𝑢ℎ(𝑥𝑘𝑖) = 𝑢𝑖, a slightly modified expression for the enriched displacement field was proposed 

as: 

 

 𝑢ℎ(𝑥) =∑𝑁𝑗

𝑚

𝑗=1

(𝑥)[𝑢𝑗 +∑(

𝑛

𝑖=1

𝑝𝑖(𝑥) − 𝑝𝑖(𝑥𝑗))𝑎𝑗̇𝑖 (5.5) 

 

A significant improvement in finite element discretization is provided by the generalized finite 

element method (GFEM), which represent a major improvement in finite element discretization, in which 

two separate shape functions are used for the ordinary and the enriched part of the finite element 

approximation [70] [57], where: 

 

 

 𝑢ℎ(𝑥) =∑𝑁𝑗

𝑚

𝑗=1

(𝑥)𝑢𝑗 +∑𝑁𝑗

𝑚

𝑗=1

(𝑥)∑𝑝𝑖

𝑛

𝑖=1

(𝑥)𝑎𝑗𝑖 (5.6) 

 

Where 𝑁𝑗(𝑥) are the shape functions associated with the enrichment basis function 𝑝𝑖(𝑥). For a 

reason which explained in the previous section, equation. 

 

 𝑢ℎ(𝑥) =∑𝑁𝑗

𝑚

𝑗=1

(𝑥)𝑢𝑗 +∑𝑁𝑗

𝑚

𝑗=1

(𝑥)∑𝑝𝑖

𝑛

𝑖=1

(𝑥)𝑎𝑗𝑖    (5.7) 

 

should be modified as follows: 

 

 𝑢ℎ(𝑥) =∑𝑁𝑗

𝑚

𝑗=1

(𝑥)𝑢𝑗 +∑𝑁

𝑚

𝑗=1

(𝑥) [∑(

𝑛

𝑖=1

𝑝𝑖(𝑥) − 𝑝𝑖(𝑥𝑗))𝑎𝑗𝑖] (5.8) 

    

 Enrichment functions 

 In two‐dimensional problems, crack growth modelling is characterized using two different types 

of enrichment functions: 

 The Heaviside function 

 For the elements wholly cut by the crack, The Heaviside function 𝐻(𝑥) is applied for 

enrichment. The splitting of the element by the fracture results in a jump in the displacement field, and 

the Heaviside function provides a simple mathematical approach to model this kind of behaviour. For a 

continuous curve 𝛤, representing a fracture within the deformable body 𝛺, we can consider a point 

𝑥(𝑥, 𝑦) in 𝛺 (Figure 5.4). The objective is to determine the position of this point concerning the fracture 

location. If the closest point belonging to 𝛤 is 𝜒(𝑥, 𝑦) and the outward normal vector to 𝛤 in 𝑥 is 𝑛, the 

Heaviside function might be defined as follows: 

 

 𝐻(𝑥, 𝑦) = {
1   𝑓𝑜𝑟   (𝑥 − 𝑥̅) ∙ 𝑛 > 0
−1  𝑓𝑜𝑟   (𝑥 − 𝑥̅) ∙ 𝑛 < 0

 (5.9) 
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This function introduces the discontinuity across the fracture faces. 

 
 

Figure 5.4 Evaluation of Heaviside function 

 

 Asymptotic near‐tip field functions 

 For those elements that are not wholly fractured and containing crack tip, the Heaviside function 

cannot be used to approximate the displacement field in the entire element. For the crack tip, the 

enrichment functions originally introduced by Fleming [57], [71] for use in the element free Galerkin 

method. They were later used in XFEM formulation by Belytschko. These four functions describe the 

crack tip displacement field. The first function is discontinuous at the fracture tip. 

 

 

 [𝐹𝛼(𝑟, 𝜃), 𝛼 = 1] =

{
 
 
 

 
 
 √𝑟sin 

𝜃

2

√𝑟cos 
𝛩

2

√𝑟 sin
𝜃

2
sin𝛩

√𝑟cos
𝛩

2
sin𝛩

 (5.10) 

 

 In this formulation 𝑟, 𝜃 are polar coordinates defined at the fracture tip. The above functions 

can simulate the asymptotic mode I and mode II displacement fields in LEFM, representing the near‐tip 

singular behaviour in strains and stresses. These functions significantly improve the accuracy of the 

calculation of KI and KII, [72] [57]. 

Four different additional degrees of freedom in each direction for each node are added to the 

finite element formulation using the enrichment functions. The term √𝑟 sin 
𝜃

2
 discontinuous and 

therefore can represent the discontinuous behaviour at the fracture tip. The remaining three functions are 

used to enhance the approximation of the near crack tip. Figure 5.5 shows a part of a mesh with four‐
node bilinear types of elements. The circled nodes are the nodes of elements wholly cut by the fracture 
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and therefore enriched with Heaviside function. The nodes with the green square are containing fracture 

tip and are enriched by the fracture tip particular function mentioned in the equation: 

. 

 
 

Figure 5.5 The Enriched nodes in extended finite element method. [73] 

 

Based on what discussed about the enrichment functions, the following expression for the 

XFEM approximation might be formulated: 

 

 𝑢ℎ = 𝑢𝐹𝐸𝑀(𝑥) + 𝑢𝐸𝑛𝑟(𝑥) (5.11) 

 

 

𝑢𝑥𝑓𝑒𝑚 =∑𝑁𝑖
𝑖∈𝐼

(𝑥)𝑢𝑖 +∑𝑁𝑖𝑗
𝑗∈𝐽

(𝑥)[𝐻(𝑥)]𝑎𝑗 + ∑[

𝑘∈𝐾𝐼

𝑁𝑘(𝑥)∑𝑏𝑘
𝑙𝐼

4

𝑙=1

𝐹𝑙
𝐼(𝑥)] + 

+ ∑ [

𝑘∈𝐾𝐼𝐼

𝑁𝑘(𝑥)∑𝑏𝑘
𝑙𝐼𝐼

4

𝑙=1

𝐹𝑙
𝐼𝐼(𝑥)] 

(5.12) 

 

where, 𝐽 is the set of nodes whose elements is completely cut by the crack and therefore enriched 

with the Heaviside function (𝑥), KI and 𝐾𝛱 are the sets of nodes containing the fracture tips 1 and 2, and 

crack tip enrichment functions are: 𝐹𝑙
𝐼(𝑥) and 𝐹𝑙

𝐼𝐼.  𝑢𝑖 are the standard degrees of freedom, and 𝑎𝑗 , 𝑏𝑘
𝑙𝐼 , 

𝑏𝑘
𝑙𝐼𝐼 are the vectors of additional nodal degrees of freedom for modelling fracture faces and the two crack 

tips, respectively. 

 Level set method for modelling discontinuities 

 In some cases, numerical simulations include moving objects, such as curves and surfaces on a 

fixed grid. This kind of modelling and tracking is difficult and requires a complex mathematical 

procedure. The Level Set Method (LSM) is a numerical technique that can help to solve these difficulties. 

The critical point in this method is to represent the moving object as a zero level set function. To fully 

characterize a fracture, two different level set functions are defined: 

1. A normal function, 𝜙(𝑥) 
2. A tangential function,𝜓(𝑥)  . 
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Figure 5.6 Construction of level set functions normal function for 𝜙(𝑥) and tangential function,𝜓(𝑥) 

 

For evaluating the signed distance functions, assume 𝛤𝑐 be the crack surface (shown in Figure 

5.6) and 𝑥 the point we want to evaluate the 𝜙(𝑥) function. The normal level set function can be defined 

as: 

 

 𝜙 = (𝜒 − 𝜒) ∙ 𝑛 (5.13) 

       

Where 𝜒 and 𝑛 are defined previously. 

 In Figure 5.7, the plot of the normal signed function 𝜙(𝑥)𝑓𝑜𝑟 a fracture is illustrated. The 

tangential level set function 𝜓(𝑥) is computed by finding the minimum signed distance to the normal at 

the fracture tip. 

 
 

                               (a) 2D contour of 𝜓(𝑥)                                     (b) 3D contour of 𝜓(𝑥)  
 

Figure 5.7 Picture of normal level set function of 𝜓(𝑥) for (a) 2D contour of 𝜓(𝑥) and (b) 3D contour 

of 𝜓(𝑥) 
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In case of an interior fracture, two different functions can be applied. However, a unique 

tangential level set function can be defined as: 

 𝜓(𝑥) = max (𝜓1(𝑥), 𝜓2) (5.14) 

In conclusion, referring to Figure 5.6, it may be written as follows: 

 {
𝑓𝑜𝑟 𝜒 ∈ 𝛤𝑐𝑟 𝜙(𝑥 = 0)  𝑎𝑛𝑑  𝜓(𝑥 ≤ 0)
𝑓𝑜𝑟 𝜒 ∈ 𝛤𝑙𝑖𝑝 𝜙(𝑥 = 0) 𝑎𝑛𝑑   𝜓(𝑥 = 0)

 (5.15) 

Where indicates the fracture tips location. 

 Numerical integration and convergence 

 The Gauss quadrature has been used for polynomial integrands. For non‐polynomial ones, this 

method may reduce the accuracy of results. Introducing a fracture in the finite element discretization 

changes displacements and stresses into non‐linear fields, which the Gauss quadrature cannot integrate. 

 A-triangulation procedure was proposed [74] in which elements edges align with the fracture 

faces. This approach is illustrated in Figure 5.8). Within these sub‐elements, the standard Gauss 

integration procedure can be used. 

 

 
 

Figure 5.8 Sub-triangulation of elements cut by a fracture 

 

 Therefore, for elements containing the fracture tip, including the singular stress field, this 

procedure might be inaccurate if Gauss points of sub-triangles are too close at the fracture tip. 

 Fracture modelling with the standard finite element method is performed by remeshing the 

domain so that elements boundaries match the fracture geometry. But newly created elements have to be 

well conditioned and not badly shaped. Accordingly, remeshing procedure is a complicated and 

computationally costly operation. On the other hand, since the sub-triangulation is performed only for 

integration purposes, no additional degrees of freedom are added to the system and sub-triangles are not 

forced to be well-shaped. 

An alternative method based on eliminating quadrature sub‐elements has been proposed [75], 

[57].  

In such an approach, discontinuous non‐differentiable functions are replaced with equivalent 

polynomial functions. So, consequently, the Gauss quadrature can be carried out over the whole element. 

 The XFEM method provides more accurate results than the FEM one when there is a 

discontinuity in the domain. But, it cannot improve the convergence rate due to the presence of the 

singularity, and the convergence is lower than expected by using the FEM method in smooth problems. 

Several methods have been proposed during the last decades to achieve an optimal rate of convergence, 

e.g. XFEM with a fixed enrichment area, high‐order XFEM [76] as a modified construction of blending 

elements. 
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 XFEM implementation in ABAQUS 

The first formulation of the XFEM goes back to 1999, and therefore, there is a shortage of 

commercial software that has been using such a method. The enormous improvements provided by the 

XFEM have made many attempts to include XFEM in multi‐purpose commercial FEM software. Among 

the commercial software, the most famous ones are LS‐DYNA and Abaqus and ANSYS.  

Other software, including ASTER and Morfeo, which have included this capability XFEM 

module, was introduced in Abaqus in 2009 with the Abaqus 6.9 release [77]. The XFEM implementation 

in Abaqus/Standard is based on the phantom nodes method [76] in which phantom nodes are superposed 

to the real ones to reproduce the presence of the discontinuity. 

Abaqus's crack surfaces and tips are identified with a numerical procedure based on the Level 

Set Method. Once the mesh discretization has been created, each node of the finite element grid is 

characterized with three coordinates for the global coordinate system and two additional parameters, 

called PHILSM and PSILSM. These parameters are nonzero only for the enriched elements, and they 

might be easily interpreted as the nodal coordinates of the enriched nodes in a coordinate system centred 

at the fracture tip and whose axes are, respectively, tangent and normal to the fracture surfaces at the 

fracture tip [77] [57]. 

 

  Improved Finite Element Method 

 By applying the Unstructured Mesh Method (UMM), FEM has been improved by enabling the 

change of the finite element mesh just in the immediate vicinity of the crack, which significantly 

simplifies the modelling of crack growth. Implementing UMM, ANSYS Mechanical has introduced the 

Separating Morphing and Adaptive Re-meshing Technology (SMART) for crack growth simulation [78],  

 [79]. 

This technology automatically updates the mesh at each solution step but only near the crack, 

so the SIFs solutions are computed for every new position of the propagating crack front. This feature 

implies applying one specific element type and patch conforming tetrameshing method, a restriction 

made using the software itself. The simulation of crack growth is done thru the crack increment. The 

minimum crack increment is 0.25 times the average element size along the crack front, and the maximum 

crack increment is 1.5 times the average element size along the crack front.  

So, selecting the average element size along the crack front is of paramount importance, which 

implies that the successful application of SMART highly depends on the mesh definition of the crack 

which propagation is to be simulated. Although new, this improved FEM has been successfully applied 

in several studies [80], [81], [82]. 

The integral interaction method, calculating SIFs for opening mode along the crack front in 

ANSYS, uses area integration for 2D problems and volume integration for 3D problems. The interaction 

integral I is defined as [69]: 

 

 I =

 



 

s

n

V

aux

kikjki

aux

kjij

aux

klklji

dsq

dVuuq



,

 (5.16) 

 

Where: 

 iijij u,, are stress, strain and displacement respectively 

aux

i

aux

ij

aux

ij u,,  are stress, strain and displacement of the auxiliary field respectively 



 

95 

 

iq  is crack-extension vector. 

Here, the interaction integral I is associated with the stress intensity factors as: 

 

 I =   auxauxaux KKKKKK
E

332211*

12


   (5.17) 

Where  3,2,1iK i is mode I, II, and III SIFs modes;  3,2,1iK aux

i are mode I, II, and III SIFs 

auxiliary modes; EE *  for plane stress; 
2

*

1 


E
E  for plane strain and E   ,   are Young’s 

modulus, Poisson’s ratio and shear modulus, respectively. 

 Finite Element Analysis of the Wing-fuselage Attachment Lug  

 In this research, a pin-loaded attachment lug, whose resistance to external forces occurring 

during the flight was analyzed, is shown in Figure 5.9 with all dimensions [83].  

 

 
 

Figure 5.9 The dimensions of wing-fuselage attachment lugs used in the analysis 

  

The lug is part of the assembly developed in CATIA v5 during the design of the light aerobatic 

aircraft Safat 03, and firstly the whole assembly was exported to MSC Patran/Nastran for classical finite 

element analysis (FEA). The highest stresses in the wing-fuselage attachment were identified around lug 

holes  

Figure 5.10b. A magnified view of one of the lugs  

Figure 5.10a, provides insight into the values of  Von Mises stresses in the zone around the hole: 

the stress ranges from 725 MPa to 886 MPa, and these values were obtained in the case when the 

attachment was subjected to maximum expected external forces (load factor was n=6 indicating the flight 
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case with a g-force of 6g). The wing-fuselage attachment material was steel with an adopted Young 

modulus of 206,000 MPa, and the Poisson’s ratio is 0.3 [83]. 

 
                 (a)                                            (b) 

 

Figure 5.10 The stress distribution (a) in wing-fuselage attachment, (b) around the lower lug hole 

  

The detailed analysis of loads to which light aircraft is exposed during the flight has shown that 

the total maximum axial force transferred to lug by pin would be 𝑃𝑎𝑥,𝑚𝑎𝑥 =  208,830.7 N, whereas the 

maximum transverse force would be   𝑃𝑡𝑟,𝑚𝑎𝑥 =  20,177.3 N. Considering that the wing-fuselage 

attachment has a pair of lugs with the exact dimensions and of the same shape Figure 5.9, the values of 

forces acting on each lug should be equal to one-half of the above values, i.e. 𝑃𝑎𝑥,𝑚𝑎𝑥 =  104,415.35  N 

and 𝑃𝑡𝑟,𝑚𝑎𝑥 =  10,088.65 N. The resultant force (Figure 5.11) will then be 𝑃𝑜𝑏,𝑚𝑎𝑥 = 104,901.6 N, and 

the angle α will take the value 𝛼 = 5,52°. Taking into account that 𝑃𝑜𝑏,𝑚𝑎𝑥 is significantly greater 

than 𝑃𝑡𝑟,𝑚𝑎𝑥, and that it only slightly deviates from the horizontal component, it was decided that to 

simplify the numerical model – only the axial component should be used in the analysis of the possible 

crack growth from the lug hole. However, its magnitude was adopted as 𝑃𝑎𝑥 = 104,901.6 N [83].  

 

 
Figure 5.11. The lug dimensions and forces necessary for evaluation of 𝑡,𝑚𝑎𝑥 

 

Light-sport aircraft regulations [84] suggest that maximum allowed tensile stress 𝑡,𝑚𝑎𝑥 along 

the axial direction of pin-loaded attachment lug can be calculated using the following formula: 

 

 𝑡,𝑚𝑎𝑥 =
𝑃𝑎𝑥

(𝑊 − 𝐷0) ∙ 𝑡 ∙ 𝐾𝑎𝑥
 (5.18) 
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where 𝐾𝑎𝑥 represents the axial tension failure factor which can be determined – for selected 

material and 𝑊 𝐷0⁄  ratio – from the diagrams in [85], while 𝑊, 𝐷0 and 𝑡 are shown in Figure 5.11. In 

the case of the lug analyzed here 𝑊 𝐷0⁄ = 32 14 = 2.286⁄  and the material is steel, thus the value of 

𝐾𝑎𝑥 is approximately 0.583, and taking into account that 𝑡 = 12 mm and 𝑃𝑎𝑥 = 104,901.6 N, using 

previous equation, the maximum calculated stress in the axial direction is approximately 𝑡,𝑚𝑎𝑥 =
833 MPa . This value falls within the range of stresses around lug hole obtained in FEA (725 MPa to 

886 MPa), hence 𝑃𝑎𝑥 = 104,901.6 N can be adopted as the external load for the crack growth simulation 

to assess the number of cycles of such high stress that will lead to complete failure of damaged pin-

loaded attachment lug. 

  XFEM analysis of the crack growth in the lug 

 The lug model used in XFEM simulation Figure 5.12 was obtained in CATIA v5 by “cutting 

off” the wing-fuselage attachment model. After that, it was imported to Abaqus and the previously 

calculated load 𝑃𝑎𝑥 = 104,901.6 N was applied in the red zone (Figure 5.12), as well as the adequate 

boundary conditions. It was then assumed that due to very high stress, both the corner crack and through 

crack might appear in the lug, i.e., a possibility of damage presence that does not spread throughout the 

lug's possibility of the appearance of damage through the whole thickness. The idea was to compare the 

growth of the corner crack with the growth of the through crack, both located at the same position, and 

then to assess the risk of losing the integrity of wing-fuselage attachment once the crack has occurred 

[83]. 

 
 

Figure 5.12 The lug model used for XFEM analysis of crack growth 

  

For that purpose two different finite element meshes were used: one made of linear hexahedral 

elements of type C3D8R (Figure 5.13) and the other made of quadratic tetrahedral elements of type 

C3D10 (Figure 5.14). Meshes with the different number of nodes and elements have been used in the 

research to analyze the influence of mesh density to values of cycles obtained, and in thesis two 

significantly different meshes will be presented: hexahedral with 221,708 nodes and 111,023 elements, 

and tetrahedral with 1,121,350 nodes and 695,350 elements. It will be shown that both produce more 

or less the same results [83]. 
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 XFEM simulation of the corner crack growth 

 In first two XFEM simulations, with two different element types, a penny-shaped corner crack 

was generated using a circular surface with a radius of 2 mm.  

 
 

(a)                (b) 

 

Figure 5.13 (a) Initial penny-shaped crack in hexahedral mesh, and (b) crack after 6th step of 

propagation 

 

 
 

Figure 5.14 (a) Initial penny-shaped crack in tetrahedral mesh, and (b) crack after 6th step of propagation 

  

In a case of hexahedral mesh, crack growth was forced to be in a single plane, i.e. newly formed crack 

fronts remained in the plane of initial penny-shaped crack, while in a case of tetrahedral mesh crack 

growth was not limited to a single plane, allowing the new fronts to be generated in the most probable 

directions determined by the calculated values of kink angle. All the stress intensity factors (SIFs) 

calculations have been done with the help of the software add-in named Morfeo/Crack for Abaqus [79], 

which allows the user to choose whether the growth will be simulated in a single plane or not. 

 After six steps of propagation and SIFs calculations, with maximum increment of 1 mm per 

step, both cracks – in hexahedral and tetrahedral mesh – reached the depth of 8 mm (as can be seen in 

Figure 5.13b and Figure 5.14b). Cracks’ propagation was then terminated. Some of the nodes on the 

crack fronts negative values of stress intensity factor were calculated, indicating that crack growth 

stopped in a certain direction(s). This can be clearly seen in Table 5.1 and 

Table 5.2 [83] in, which values of equivalent stress intensity factors 𝐾𝑒𝑞 and Mode I stress intensity 

factors 𝐾𝐼 for two meshes are given. In both cases in 7th step negative values of 𝐾𝐼 occurred (𝐾𝐼 =
−33.38 MPa mm0.5 and 𝐾𝐼 = −9.23 MPa mm

0.5 respectively) even if the shapes of cracks were not the 

same: crack forced to grow in a single plane kept the regular circular shape (Figure 5.13b), while the 

crack that “freely” propagated got irregular shape (Figure 5.14b) [83].  
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Table 5.1 SIF values calculated for corner crack growth in the lug model with hexahedral 

mesh 

   Penny shape edge crack (hexahedral elements) 

   
Equivalent SIF 

𝐾𝑒𝑞 (MPa mm0,5) 
Mode I SIF 

𝐾𝐼 (MPa mm0,5) 

Step 

Crack 

depth 

(mm) 

No. of 

nodes 

on the 

front 

Max Min 
Mean 

value 
Max Min 

Mean 

value 

1 2 14 1281.64 1119.81 1203.12 1282.92 1117.88 1203.04 

2 3 22 1620.84 1266.39 1395.40 1605.83 1093.75 1323.43 

3 4 30 1813.83 1420.85 1560.34 1806.29 1415.71 1552.45 

4 5 38 1990.86 1496.79 1667.47 1983.72 1498.86 1668.65 

5 6 46 2139.00 1588.09 1781.63 2138.81 1585.82 1777.70 

6 7 53 2246.24 1696.40 1872.15 2244.99 1693.98 1873.75 

7 8 58 2353.80 1799.61 1956.56 2342.47 -33.38 1707.04 

 

Table 5.2 SIF values calculated for corner crack growth in the lug model with tetrahedral mesh 

   Penny shape edge crack (tetrahedral elements) 

   
Equivalent SIF 

𝐾𝑒𝑞 (MPa mm0,5) 
Mode I SIF 

𝐾𝐼 (MPa mm0,5) 

Step 

Crack 

depth 

(mm) 

No. of 

nodes 

on the 

front 

Max Min 
Mean 

value 
Max Min 

Mean 

value 

1 2 40 1299.94 1044.84 1155.38 1306.22 1039.67 1153.84 

2 3 53 1929.91 1208.76 1382.53 2447.42 1203.42 1433.43 

3 4 67 1682.04 1298.76 1481.61 3243.83 1303.75 1603.01 

4 5 81 1932.62 1161.30 1563.13 1823.81 1081.39 1487.99 

5 6 120 1866.75 670.82 1354.84 1545.87 473.17 1218.96 

6 7 91 1630.91 349.70 1087.30 1723.08 90.87 857.08 

7 8 87 1746.87 512.43 1132.67 1932.71 -9.23 987.56 

 

The other SIFs values presented in Table 5.1 and 

Table 5.2 will be discussed later.  

 Along with the SIFs calculations, Morfeo/Crack for Abaqus employs Paris law to determine the 

number of applied load cycles that will grow crack to a certain length. In this case, the stress ratio 𝑅 =
−1 was adopted (since during the flight wing load varies from tensile to compressive), while Paris 

coefficient 𝑛 = 2.26 and 𝐶 = 7.526 ∙ 10−11 were taken from fatigue tests [69], [86] with the steel used 

for manufacturing the wing-fuselage attachment showed in Figure 5.9. Results of the integration of the 

Paris function are shown in the graph in Figure 5.15. It shows the change of crack depth with the number 

of applied load cycles for both free growth and in-the-plane crack propagation. The maximum number 

of cycles 𝑁 = 701 (for crack depth 8 𝑚𝑚) was obtained with mesh consisting of hexahedral elements, 

whereas the number of cycles needed to grow the initial crack to the same depth with tetrahedral elements 

was 𝑁 = 632. Obviously, slightly greater number of cycles was obtained with hexahedral elements, but 

difference is less than 10% suggesting that both free and in-the-plane propagation results in similar 
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fatigue life assessments, regardless of the final crack shape (regular or irregular), element type, mesh 

density and SIF deviations (visible in Table 5.1 and  

Table 5.2 [83] . 

 

 
 

Figure 5.15. Number of cycles vs crack depth for hexahedral and tetrahedral mesh 

 

 XFEM simulation of the through crack growth 

 Considering the observed “behavior” of the corner crack, which propagated more or less in the 

same manner in both meshes and “produced” approximately the same number of cycles, it was decided 

to perform a XFEM simulation with the through the crack in FE model with hexahedral mesh only 

(Figure 5.16). The reason why this model was selected prior to the model with tetrahedral mesh was 

simple: a higher number of nodes in tetrahedral mesh produced longer calculation time considerably in 

XFEM based analyses of corner cracks’ growths without producing significantly different results. Thus, 

there was a belief that the number of cycles obtained with tetrahedral mesh would not be substantially 

different from the values obtained with less dense hexahedral mesh [83]. 

 The growth simulation of through crack was performed using both approaches, free and in-the-

plane propagation, and the results of in-the-plane growth are presented here. 
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(a) (b) 

 

Figure 5.16 (a) Initial through crack, and (b) through crack after 9th step of propagation 

 

 The total number of propagation steps was nine, and since the initial crack depth was 1.25 𝑚𝑚, 

a growth increment of 0.75 𝑚𝑚 produced the final crack depth of 7.25 𝑚𝑚 (Figure 5.16). As can be 

seen in Figure 5.16b through crack almost reached the outer surface of the lug.  

 

Table 5.3 SIF values calculated for through crack growth in the lug model with hexahedral mesh 

 

   Through crack 

   
Equivalent SIF 

𝐾𝑒𝑞 (MPa mm0,5) 
Mode I SIF 

𝐾𝐼 (MPa mm0,5) 

Step 

Crack 

depth 

(mm) 

No. of 

nodes 

on the 

front 

Max Min 
Mean 

value 
Max Min 

Mean 

value 

1 1.25 58 2020.73 1878.97 1975.73 2019.43 1876.97 1974.27 

2 2.00 60 2245.33 2182.45 2224.09 2244.20 2180.66 2222.10 

3 2.75 58 2380.99 2345.09 2371.53 2378.64 2320.31 2360.68 

4 3.50 58 2486.80 2440.17 2457.58 2449.92 1971.08 2316.70 

5 4.25 61 2762.26 2413.78 2516.19 2734.97 2360.57 2481.08 

6 5.00 63 2776.20 2609.50 2674.60 2776.03 2288.89 2614.89 

7 5.75 58 2918.78 2702.31 2818.05 2885.23 2696.31 2790.51 

8 6.50 58 3145.00 2965.41 3052.80 3114.52 301.08 2598.67 

9 7.25 67 3532.27 2142.87 3084.65 3642.05 1301.12 2762.92 
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Figure 5.17 Von Mises stresses after 9th step of through crack growth 

 

The SIFs values presented in Table 5.3 were used to calculate the number of cycles to the final 

depth, assuming the same Paris coefficients as for the corner crack. In Figure 5.17 enlarged FE model of 

cracked lug after 9th step of crack propagation can be seen, as well as the stress distribution. This stress 

distribution was used later for comparisons as expected (high values were detected in the vicinity of the 

crack front) [83]. 

  Improved FEM analysis of the crack propagation in the lug 

Since the wing-fuselage attachment must be designed according to the safe-life approach, its 

experimental analysis is not required by Federal Aviation Administration (FAA).  

In the case of lighter aircraft structures, there is a requirement to evaluate the innovative design numerical 

analyses since they are used for obtaining the stresses or number of cycles. However, it can be 

problematic because of the lack of experimental data. 

In this case, traditional FEM was used to evaluate the number of cycles obtained by XFEM in 

Abaqus. Then the same geometry was analyzed in Ansys Workbench v 19.2, where tetrahedral mesh 

with element type SOLID187 was created. This type of analysis could only be conducted with tetrahedral 

mesh (mandatory by Ansys)). The simulation is based on the use of the Unstructured Mesh Method 

(UMM) that creates tetrahedral mesh for crack fronts, achieving the same high-fidelity results as a 

simulation run with “the ideal” hexahedral mesh configuration  [20]. Separating Morphing and Adaptive 

Remeshing Technology (SMART) has been introduced by Ansys, which enables automatic re-meshing 

during the crack growth simulation.  

So, unlike the XFEM method implemented in Abaqus, where there is no re-meshing during the 

simulation, mesh around the crack front in Ansys changes and adapts with every growth step to better 

capture the field values around the crack front nodes. 
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Figure 5.18 Von Mises stresses after “opening” of through crack in Ansys simulation 

 

The same load and boundary conditions previously used in Abaqus were applied to the FE model 

in Ansys. Automated crack growth was defined with the same values of Paris coefficients used in XFEM 

based analysis. Figure 5.18 shows the initial mesh and Von Mises stresses (linear elastic analysis) after 

crack “opening”.  

The equivalent stress distribution was compared to the distribution obtained in Abaqus, and no 

significant difference was found confirming that FEM and XFEM model were equivalents. The extreme 

stress values were not considered since they represented singularities. 

 

 
 

Figure 5.19 Von Mises stresses and the crack shape at the end of propagation (magnified view) 

 

Then, the crack was propagated in Ansys until it reached the same depth as in Abaqus. The 

shape of the crack is shown in Figure 5.19, and obtained stress distribution was compared to the stress 

distribution (Figure 5.17) obtained in Abaqus. Once more, good agreement of the results was found, and 
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since Ansys has incorporated procedure for the calculation of the number of cycles using Paris law, crack 

length vs the number of cycles graph was made. The figure shows the comparison of the mean 𝐾𝐼 values 

calculated in Abaqus (XFEM) and Ansys (FEM), while graphs in Figure  show the comparison of the 

obtained number of cycles of applied load obtained using FEM and XFEM approach [83]. 

 

 
 

Figure 5.20 The mean KI values calculated for the through crack growth using XFEM and FEM 

 

 
 

Figure 5.21 Crack depth vs number of cycles graphs obtained using XFEM and FEM  
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 EXPERIMENTAL VERVE CATION of NUMERICALLY OBTAINED LOAD 
 From the financial point of view of such a project that involves the development and 

manufacturing of the light aerobatic aircraft wing, it is expensive to build several prototypes just to 

validate the wing concept and all wing attachments and connections. On the other hand, it is impossible 

to obtain the license to fly without testing a prototype since civil aviation authorities require testing. In 

the previous Chapter, numerical simulations of wing behavior have been presented, and obtained results 

(deformations and stresses) allow us to predict the specific reactions of the designed wing under specific 

loading conditions. Numerical modelling is not expensive (compared to prototype manufacturing and 

full-scale wing testing), but the accuracy of the FE model has to be evaluated and confirmed before a 

variety of different numerical simulations can be done. Thus, a comparison with the experimental values 

is the only way to validate the quality of the numerical model if the deformation of the wing tip obtained 

in the experiment is close to the wing tip deformation obtained in FE analysis under the same load. In 

that case, we can claim that deformations and stresses numerically evaluated in the wing areas not 

covered in the experiment (since they are not easily accessible, for instance) can be accepted as accurate 

within a reasonable margin of error. Prototype of the wing used in experiments presented in  Figure 6.1 

Prototype of the wing used in experiments 

 

 
 

Figure 6.1 Prototype of the wing used in experiments 

 

 Therefore, a single set of wings (Figure 6.1 and  

Figure 6.2) has been manufactured to validate the mechanical behavior under different loading 

conditions and to evaluate the numerical results presented in the previous Chapter. As shown in  

Figure 6.2, the wing prototype has a completely functional aileron and flap, while Figure 6.3 shows the 

shape of rib number 11. All elements of the wing prototype have been manufactured using aluminium 

alloy 2024-T3, except the wing-fuselage attachment (the material was high-quality steel). The numerical 

model of the wing showed in the previous Chapter was made according to the original wing drawings 

used for prototype manufacturing, too: so, the difference between the actual wing and the 3D model is 

slight if we neglect a number of small features (holes, cut-outs, brackets…) with no considerable 

influence on the load-carrying capabilities of the wing. 
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Figure 6.2 Completely functional flap and aileron  

 

 The primary structure of the wing that supports the bending load is the spar. The spar is 

connected to the fuselage through wing-fuselage attachment, which consists of two components: one of 

them is part of the spar, the other is part of the main fuselage frame (bulkhead). They both have two pairs 

of lugs, and to connect them; pins are used (Figure 6.3). To reduce experimental costs, the part of the 

wing-fuselage attachment that belongs to the bulkhead was not manufactured (due to the complexity of 

its shape), and a simple thick steel plate with holes (Figure 6.3 and Figure 6.4) was used instead. The 

steel plate has two pairs of lugs that fit the lugs of the spar, while the holes on the other side are used to 

attach the wing to steel I-beams in the laboratory (test bench, Figure 6.5), thus holding the wing in a 

horizontal position during tests. The auxiliary spar and the smaller steel plate (visible in Figure 6.3 and 

Figure 6.4) were also used to connect the wing to steel I-beams (Figure 6.5). 

 

   
 

Figure 6.3 Rib number 11 and pins (circled) used to connect the central spar to steel plate  
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Figure 6.4 Steel plate (circled) with holes used to fix the wing and hold it in a horizontal position   

 

 
 

Figure 6.5 Test bench consisting of 6 I-beams carries the wing prototype during experiments 

 

 To measure displacements and strains under predefined loads. A metrology system was installed 

to correlate the numerical simulation values with the tests’ results. As mentioned above, the main goal 

was to compare the displacements (deflections) measured in different zones of the wing prototype with 

the ones obtained numerically. Displacements were measured at 10 positions, while the strain was 

measured at 26 separate locations. In total, 36 strain gauges have been glued to the wing on both upper 

and lower surface (Figure 6.6 and Figure 6.7). The force transducer was also used to measure the applied 

load. For data acquisition, the QuantumX data acquisition system produced by HBM was used. Several 

4-channel universal amplifiers were utilized, and collected signals were processed using Catman software 

from HBM. Catman allows visualization of sensor data, stores data in a binary format, analyses data 

during the tests, and generates output in different forms (including MS Excel files, Figure 6.8) which can 

be used for further data processing. 
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Figure 6.6 Strain gauges used to monitor deflections and strains on the upper surface of the wing 

 

 
 

Figure 6.7 Strain gauges used to monitor deflections and strains on the lower surface of the wing 

 

 
 

Figure 6.8  Data from Catman software exported to MS Excel  
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 Test setup 

 As mentioned above, the central spar was connected by two pins to a thick steel plate, fixed to 

the test bench through threaded bolts. This configuration was designed to create infinitely rigid conditions 

in the wing root, providing conservative test results from the point of view of actual conditions during 

the flight. More than 20 different loading conditions (cases) were used in wing prototype tests over the 

period of one month; here, experimental results for the critical loading condition (case D, n=6, no fuel 

considered) will be presented. 

 The test principle was this: once we calculate loads along wingspan for any case defined by 

regulations, we introduce them to wing prototype using whiffle-tree configuration (Figure 6.9). The 

decision to use a whiffle-tree was made because we needed to apply different loads along the wingspan 

to simulate the nearly parabolic distribution of aerodynamic forces in combination with inertial forces. 

Since we had a single hydraulic jack (Figure 6.10) to introduce the load, the choice of spreaders and link 

rods (stirrups) seemed to be the only solution (the alternative approach was to use bags with sand). 

 

 

 
 

Figure 6.9 Scheme of the whiffle-tree for wing structure testing 

 

 The choice of spreader location allows us to introduce the forces produced by the winglet (the 

winglet was not attached to the wing during experiments). Stirrups’ locations and spreaders’ lengths must 

be determined carefully to impose the load in the experiment that will be close to the load obtained in 

calculations. It is important that the connecting link rods are normal to the central spar when the load 

factor reaches 6g. As a reminder, more than 20 tests were carried out on the test bench and the setting 

was made to suit all the tests. However, spreader lengths and stirrups positions had to be determined by 

considering deflections of the wing when the applied load is equivalent to flight conditions with an 

acceleration 6g. The spreaders have been balanced by considering stirrups weight to avoid inducing extra 

loading to the wing. To protect the wing structure from damage and ensure that the designed load was 

applied along the wing chord. Wooden pads with rubber lining have been used. The wooden pads consist 

of two separated parts to provide easy assembling and disassembling. 

Hydraulic jack 

Link 

rods 

Spreaders 

Wooden pads with rubber lining 
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Figure 6.10 Hydraulic jack (with force transducer) used to apply loads on the wing 

 

 It was decided to apply loads using the whiffle-tree on the ribs’ positions along the wingspan. 

As a result, the whiffle-tree shown in Figure 6.11 was designed in Catia v5 software. But the 

determination of stirrups’ locations and spreaders’ lengths turned out to be a challenging task. 

 
 

Figure 6.11 Designed whiffle-tree system for wing structure testing (CATIA drawing) 

 

 Determination of loads for critical case D and whiffle-tree system dimensions  

 Determining the chord-wise and span-wise distribution of the resultant load, the magnitude of 

the applied loads, as well as the method of applying those loads on the wing are important steps in the 

structural test. Here we suppose that the y-axis goes through the central (main) spar. The moment of 

external load about the y-axis for each wing segment is calculated using the relation: 
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 𝑀𝑦𝑠𝑒𝑔 = −(𝑥𝑠 ∙ 𝐿𝑦𝑠𝑒𝑔) + 𝑛 ∙ 𝑔 ∙ (𝑚𝑤𝑠𝑒𝑔 ∙ 𝑥𝐺𝑤 +𝑚𝐹𝑠𝑒𝑔 ∙ 𝑥𝐺𝐹) (6.1) 

 

Chord-wise position of the resultant load from the main spar is now calculated using: 

 

 𝑥𝑇𝑠𝑒𝑔 =
𝑀𝑦𝑠𝑒𝑔

𝐿𝑇𝑠𝑒𝑔
=
−(𝑥𝑠 ∙ 𝐿𝑦𝑠𝑒𝑔) + 𝑛 ∙ 𝑔 ∙ (𝑚𝑤𝑠𝑒𝑔 ∙ 𝑥𝐺𝑤 +𝑚𝐹𝑠𝑒𝑔 ∙ 𝑥𝐺𝐹)

𝐿𝑦𝑠𝑒𝑔 − 𝑛 ∙ 𝑔 ∙ (𝑚𝑤𝑠𝑒𝑔 +𝑚𝐹𝑠𝑒𝑔)
 (6.2) 

 

Here, 𝑥𝑠 is the distance of the centre of pressure 𝑥𝐶𝑝 from the central spar 

 

 𝑥𝑠 = 𝑥𝑠0 − 𝑥𝐶𝑝 = 0.619 − 𝑥𝐶𝑝 (6.3) 

 

where: 

 𝑥𝐶𝑝 = [(
𝑥

𝑐
)
𝑎𝑐
−
𝐶𝑀𝐴𝐶
𝐶𝐿𝑊

] ∙ 𝑐 (6.4) 

 

  

In the case D (n=6) 𝐶𝐿𝑊 = 0.5308 and 𝐶𝑀𝐴𝐶 = −0.0663, thus the load distribution (lift force 

minus inertial force) and the moment distribution along the span and chord-wise position of the resultant 

load from the central spar are given in Table 6.1 (the fuel is not considered): 

Table 6.1 Load and moment distribution along the span for case D, n=6 (without fuel) 

 

y (m) L (N) W (N) L-W (N) M (Nm) 

4.90 0 0 0 0 

4.87 25.64 23.98 1.66 0.02 

4.82 105.14 63.94 41.20 0.81 

4.75 276.54 119.90 156.64 7.60 

4.66 566.26 191.83 374.43 32.57 

4.54 994.12 287.75 706.37 92.67 

4.40 1573.89 399.65 1174.24 218.2 

4.2 2313.9 527.5 1786.37 446.4 

4.1 3217.95 671.42 2546.53 824.73 

3.86 4285.91 831.28 3454.63 1406.47 

3.64 5514.57 1007.13 4507.44 2249.96 

3.4 6898.12 1198.96 5699.16 3411.12 

3.15 8428.68 1398.79 7029.89 4972.24 

2.88 10096.74 1614.6 8482.14 6987.14 

2.6 11891.42 1838.4 10053.02 9515 

2.3 13800.82 2078.2 11722.62 12606.06 

1.99 15812.15 2325.98 13486.17 16319.11 

1.68 17397.77 2573.77 14824.00 20726.77 

1.35 19086.23 2837.54 16248.69 25800.87 

1.24 21202.3 2925.46 18276.84 27580.02 

 

The load and the moment distribution along the span are given in Figure 6.12 and Figure 6.13. 



 

113 

 

 

 
 

Figure 6.12 Load (𝐿 −𝑊) distribution along the span 

 

 
 

Figure 6.13 Moment distribution along the span 

 

 Since the first rib of the wing prototype is at position 𝑦 = 4.54 𝑚, and rib number 10 is at 

position 𝑦 = 1.566 𝑚 (measured from the x-axis), values of 𝐿 −𝑊 and 𝑀 had to be recalculated for the 

ribs’ positions (let us not forget that decision was made to apply loads on the ribs in the experiment). For 
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that purpose, polynomial interpolation was used, and values calculated at rib positions are given in Table 

2. Obtained values fit well to original graphs, as can be seen for moment values at ribs shown in Figure 

6.14 Moment calculated at ribs’ positions (orange squares) vs moment distribution. 

 

Table 6.2 Calculated loads and moments at ribs. 

Rib No. y (m) L-W (N) Moment (Nm) 

1 4.54 706.37 92.67 

2 4.206 1669.38 482.42 

3 3.872 3474.64 1340.09 

4 3.535 5033.16 2729.79 

5 3.200 6728.67 4651.38 

6 2.865 8517.27 7129.60 

7 2.543 10312.08 10053.12 

8 2.217 12192.68 13570.28 

9 1.891 14125.21 17664.78 

10 1.566 15433.47 22337.97 

 

 
 

Figure 6.14 Moment calculated at ribs’ positions (orange squares) vs moment distribution 

As mentioned above, the ribs are supported with wooden pads, and through them, the loads will 

be applied. To define the lengths of all stirrups and spreaders, as well as their exact positions in whiffle-

tree that will provide the application of precise loads on ribs. The static equilibrium equations must be 

used. Since the whiffle-tree shown in Figure 6.11 is complex for hand calculations, we decided to use 

the Ms Excel file Whiffletree.xlsm available for free download at the website [87]. Figure 6.15 shows the 

screenshot of the main sheet of the Whiffletree.xlsm file. Using the macro integrated into this Excel file, 

we obtained the whiffle-tree dimensions, forces, and moments shown in Figure 6.16 Forces, moments, 

and dimensions of the whiffle-tree and Table 6.3. 
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Figure 6.15 Screenshot of MS Excel file used to design the whiffle-tree 

 

 
 

Figure 6.16 Forces, moments, and dimensions of the whiffle-tree 

 

Table 6.3 Force and moment at each rib for the whiffle-tree configuration shown in Figure 6.16 

Forces, moments, and dimensions of the whiffle-tree. 

Rib No. y (m) Force (N) Moment (Nm) 

1 4.54 300 96 

2 4.206 772 454.048 
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3 3.872 1492 1310.424 

4 3.535 1565 2701.897 

5 3.200 1608 4623.792 

6 2.865 1659 7101.452 

7 2.543 1686 10025.856 

8 2.217 1906 13607.944 

9 1.891 2180 17900.712 

10 1.566 2200 22895.312 

 Total Force (N) 15368  

  

 Comparing the values of moments and forces calculated for the designed whiffle-tree Table 6.3 

with values in Table 6.2, it can be seen that the total force of 15368 N that will be introduced by a 

hydraulic jack is very close to the calculated value of force at tenth rib 15433.47 N (the eleventh rib is at 

the position of support,  

Figure 6.17. At the same time, moment 22895.312 Nm at tenth rib (Table 6.3) is somehow greater than 

moment 22337.97 Nm (see  

Table 6.2 Calculated loads and moments at ribs), but the difference is about 2.5 %. This was considered 

acceptable, and the design of the whiffle-tree shown in Figure 6.16 was adopted. After that, the test 

assembly was completed with the manufactured whiffle-tree shown in Figure 6.18 and Figure 6.19. 

 

 
 

Figure 6.17 Whiffle-tree is not introducing the force on the 11th rib 
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Figure 6.18 Test assembly for the light aerobatic aircraft wing 

 

 

 
 

Figure 6.19 Test assembly for the light aerobatic aircraft wing (view from the other side)  
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 Wing test loading and obtained displacements at the wing tip 

 European Aviation Safety Agency’s specifications for light aerobatic aircraft define two types 

of loading that must be applied to the wing structure during testing: 

 Loading No 1: Load must rise up to the limit load (6g) in steps, adding 10% of the load in each 

step, with a pause of 3 s between steps. Once a 6g load is achieved, slow unloading is conducted. 

 Loading No 2: A destructive test is carried out with loading rise until the limit load (6g) as 

described above, and after that, the incremental increase of load is applied until wing failure. 

 Following these instructions, the load introduced by the hydraulic jack was incrementally 

increased during the test until the maximum force of 15787 N (as measured by force transducer) was 

achieved (see Table 6.4 Values of forces and displacements measured at 10 wing locations). Since the 

force was introduced in too many steps, in Table 6.4 only 15 steps of loading (and unloading) are 

presented.  

Table 6.4 Values of forces and displacements measured at 10 wing locations 

 

F W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

kN mm mm mm mm mm mm mm mm mm mm 

-0.048 -0.215 -0.171 -0.11 -0.069 -0.029 -0.099 -0.146 -0.099 -0.056 -0.029 

3.557 47.38 38.797 26.707 18.196 8.799 24.861 40.916 27.885 18.841 9.966 

7.002 70.564 57.771 39.625 26.77 12.937 36.447 59.901 39.882 26.561 13.731 

10.493 90.557 74.108 50.65 34.116 16.471 46.088 75.19 49.483 32.728 16.598 

12.272 102.06 83.564 57.035 38.484 18.557 51.637 84.046 55.133 36.335 18.314 

14.027 118.25 97.127 66.243 44.802 21.535 60.087 98.041 64.002 42.056 21.239 

14.921 125.65 103.31 70.395 47.629 22.892 63.560 103.45 67.74 44.554 22.44 

15.787 133.43 109.72 74.747 50.652 24.371 67.382 109.27 71.828 47.308 23.753 

12.426 131.16 108.11 74.025 50.475 24.449 67.149 109.67 72.567 48.357 24.718 

10.483 122.32 100.87 69.269 47.269 22.937 63.208 103.63 68.582 45.853 23.643 

7.522 108.07 89.027 61.425 41.958 20.413 56.470 93.409 61.964 41.671 21.782 

6.796 104.46 86.054 59.453 40.617 19.771 54.769 90.797 60.306 40.596 21.302 

3.492 85.181 70.316 48.913 33.477 16.316 45.461 76.085 50.931 34.621 18.505 

-0.009 44.319 36.588 25.535 17.693 8.65 23.741 39.371 27.574 19.228 10.45 

-0.617 26.958 22.245 15.677 10.979 5.364 14.758 24.801 17.279 12.12 6.792 

 

 Table 6.4 Values of forces and displacements measured at 10 wing locations shows 

displacements measured by 10 strain gauges on the wing for each applied force and processed by Catman 

software. Since the deformation at the wing tip for case D was numerically evaluated and presented in 

the previous chapter, we will extract results from two sensors S10 and S11, positioned at the wingtip 

(one was on the upper surface of the wing, the other on the lower). Values collected from the sensor S10 

are represented in column W2 of Table 4, while values from the sensor S11 are represented in column 

W7 of Table 6.4. Extracted values are shown in Table 6.5, while Figure 6.20 shows changes of 

displacement with the change of force, as measured by sensors S10 and S11. 
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Table 6.5 Values of forces and displacement measured by sensors S10 and S11 

 

F S10 S11 

kN mm mm 

-0.048 -0.171 -0.146 

3.557 38.797 40.916 

7.002 57.771 59.901 

10.493 74.108 75.19 

12.272 83.564 84.046 

14.027 97.127 98.041 

14.921 103.311 103.456 

15.787 109.723 109.271 

12.426 108.112 109.679 

10.483 100.874 103.636 

7.522 89.027 93.409 

6.796 86.054 90.797 

3.492 70.316 76.085 

-0.009 36.588 39.371 

-0.617 22.245 24.801 

 

 
 

Figure 6.20 Graph of displacements at the wingtip 

 

The test showed a good correspondence of the force-displacement curve until the limit load.  
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CHAPTER 7 

 OPTIMIZATION of THE WING-FUSELAGE 

ATTACHMENT LUG 
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 OPTIMIZATION of THE WING-FUSELAGE ATTACHMENT LUG 
 

In the previous chapter, it has been established that under the specified load, the initial crack in 

the attachment lug is propagating rather quickly, so in this chapter, the focus will be on the optimization 

of the attachment lug’s geometry. To be more specific, the effect of the crucial geometrical parameters 

on the crack’s growth rate will be analyzed. Also, an improved geometry that is more fatigue resistant 

will be suggested. It has to be noted that one of the easiest ways to extend the fatigue life is the selection 

of the material, in this case, steel that is more fatigue resistant. But, the wing-fuselage attachment 

assembly made of this kind of steel would significantly increase the costs of the design and the production 

of the aircraft. So, it was decided that the material of the attachment lug remain the same, while its 

geometry will be redesigned.  

The initial geometry dimensions of the attachment lug, needed for the optimization, are given 

in the previous chapter. The new finite element mesh was generated (Figure 7.1), with an average element 

mesh size of 1.7mm. This average element mesh size will be used throughout the optimization to avoid 

the influence of the mesh density on the optimization results (the number of cycles to catastrophic 

failure). All other input parameters (boundary conditions, load value and material) are identical to those 

used in the previous chapter. The SIFs values after the first crack propagation step are shown in Figure 

7.2, where it can be seen that  𝐾𝐼 𝑚𝑎𝑥 = 1880.0 𝑀𝑃𝑎√𝑚𝑚,  and also that the most values of 𝐾𝐼 along 

the crack front are between 1850 and 1880.0 𝑀𝑃𝑎√𝑚𝑚. However, mentioned maximum value of 

𝐾𝐼 𝑚𝑎𝑥 will be used afterward as the main optimization criterion, i.e. the goal is to achieve that the 𝐾𝐼 𝑚𝑎𝑥 

after first propagation step be reduced under prescribed value (𝐾𝐼 𝑚𝑎𝑥 < 1400 𝑀𝑃𝑎√𝑚𝑚), if possible.  

The SIF values just before the fracture of the attachment lug are shown in Figure 7.3, where it 

can be seen that the crack has grown for an additional 7.37 mm, regarding its initial size. In Figure 7.4, 

the diagram of the crack growth as a function of the number of cycles is presented. The maximum number 

of cycles Nmax=515 (calculated for R=-1, as before) is slightly higher than the one obtained in the previous 

chapter. The reason for this is that with every new calculation, the software generates a new finite element 

mesh around the crack front, so some results discrepancies will always be present. In any case, the results 

obtained here will be used for comparison with the values that will be obtained after attachment lug 

geometry’s optimization. The initial mass of the attachment lug is 87 grams. 

 

 
 

Figure 7.1 Finite element mesh used in optimization 
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Figure 7.2 SIF values along crack front after 1st step of propagation (original lug) 

 

 
 

Figure 7.3 SIF values after 15th step of propagation (total crack extension 7.37 mm) 
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Figure 7.4 Crack length vs Number of cycles for original lug (Nmax=515) 

 Model number 1: Original lug with increased thickness 

It is known that the fatigue life of any supporting structure will be longer if its thickness is 

increased. This is why it was decided to first analyse the effect of the lug thickness increase without the 

change of other geometrical parameters. It can be seen in Figure 7.5 that the lug thickness was changing 

by adding the material in the normal direction to the coloured surface. This adding was conducted in 

steps of 1.25mm. For all newly obtained thicknesses the 𝐾𝐼 𝑚𝑎𝑥  was calculated and for the t=17mm (see 

Table 7.1) the 𝐾𝐼 𝑚𝑎𝑥  was lower than 1400 𝑀𝑃𝑎√𝑚𝑚 for the first time. The mass of the luge with this 

thickness value is 123 grams, which represents an increase of 41.3%. 

 
 

Figure 7.5 Thickness of lug was varied by adding material perpendicularly to the highlighted face 
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Table 7.1 Values of maximum SIFs after crack opening for different thicknesses 

 

Added thickness (mm) Total thickness (mm) 𝐾𝐼 𝑚𝑎𝑥 (MPa mm0,5) 

0 12.00 1880.0 

1.25 13.25 1789.6 

2.50 14.50 1631.8 

3.75 15.75 1499.5 

5.00 17.00 1391.2 

 

After the first propagation step and the step just before the fracture of the attachment lug with a 

thickness of 17mm, the SIF values are shown in  

Figure 7.6 and Figure 7.7. It is noticeable that the start and the end values of  𝐾𝐼 𝑚𝑎𝑥 are 

significantly lower than the 𝐾𝐼 𝑚𝑎𝑥 for the attachment lug with the initial thickness of 12mm, but at the 

price of the significant increase in its mass. The change of 𝐾𝐼 𝑚𝑎𝑥 in function of lug’s thickness is 

represented in Figure 7.8. In Figure 7.9, the diagram of the crack growth as a function of the number of 

applied load cycles for R=-1 is presented. 

 

 
 

Figure 7.6 Stress intensity factor (SIF) values along crack front after 1st step of propagation 
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Figure 7.7 SIF values after 20th step of propagation (total crack extension 6.84 mm) 

 

 
Figure 7.8 Maximum 𝐾𝐼 after crack opening for different lug thicknesses 

 

The determination coefficient of the trend line 𝑟2 = 1, is presented in Figure 7.8 Maximum 

𝐾𝐼 after crack opening for different lug thicknessesFig. 8. Its equation is: 

 

 𝐾𝐼 𝑚𝑎𝑥 = −1.6111𝑡
4 + 97.343𝑡3 − 2191.4𝑡2 + 21674𝑡 − 77460 (7.1) 

 

With this equation, the value of 𝐾𝐼 𝑚𝑎𝑥 for a given value of thickness in mm can be calculated 

with high accuracy. However, with thickness increase, the mass of the lug is increasing too, so it was 

decided to keep the lug’s thickness value of 17mm, because this thickness provides the double fatigue 

life, regarding the initial lug’s thickness (compare Figure 7.4 and Figure 7.9). 

Since the relation between lug’s thickness and the 𝐾𝐼 𝑚𝑎𝑥 value at the beginning of crack propagation is 

established, and since it is almost certain that the thickness has the dominating influence on the lug’s 

fatigue life, it was logical to assume that with the variation of other geometrical parameters, the lug’s 

fatigue life can be increased to be higher than initial 515 cycles, while decreasing the mass of 123 grams 

(obtained for thickness of 17mm). 
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Figure 7.9 Crack length vs Number of cycles for lug with thickness 17mm (Nmax=1085) 

 Model number 2: Two-parameter optimization of lug  

It was decided to conduct optimization with two input optimization parameters: the lug’s 

thickness and the rounding radius (highlighted surfaces in Figure 7.10). In the Design Exploration 

module of Ansys Workbench, the total number of 32 = 9 combinations of thickness values and rounding 

radii were generated and the 𝐾𝐼 𝑚𝑎𝑥 value for first crack propagation step was calculated by finite element 

method for each combination (Figure 7.11). 

 
 

Figure 7.10 Thickness of lug was varied along with the radius of the surface (highlighted) 
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Figure 7.11 Maximum 𝐾𝐼 (column D) and lug mass (column E) after crack opening 

 

The table presented in Figure 7.11shows that the decrease of the lug’s thickness (the values of -

5 in the C column) gives a very high 𝐾𝐼 𝑚𝑎𝑥 values, while, only with the increase of rounding radius (B 

column) the significant decrease in 𝐾𝐼 𝑚𝑎𝑥 values occurs. The lug’s mass in the E column varies from 58 

grams to 153 grams, and the only combination of 𝑟 = 19𝑚𝑚 and 𝑡 = 17𝑚𝑚 gives 𝐾𝐼 𝑚𝑎𝑥 values lower 

than 1400 𝑀𝑃𝑎√𝑚𝑚 (to be more specific 𝐾𝐼 𝑚𝑎𝑥 = 1250𝑀𝑃𝑎√𝑚𝑚). (It has to be mentioned that the 

software generates only manufacturable values, i.e. the accuracy of only one decimal place was required.) 

The previous statement is illustrated in Figure 7.12, as it is clearly seen that only an increase of thickness 

and radius leads to a decrease of 𝐾𝐼 𝑚𝑎𝑥. 

 

 
 

Figure 7.12 Response surface for different thicknesses and radii of lug 

 

The SIF values along the crack front for lug’s thickness of 17mm and rounding radius of 19mm 

are presented in Figure 7.13. The maximum value of 1256.8 𝑀𝑃𝑎√𝑚𝑚 is slightly higher than one in the 

table in Figure 7.11 because of the earlier mentioned reason (different node numbers in mesh around the 

crack front in two computations with the same geometry), but it is convincingly the minimum 𝐾𝐼 𝑚𝑎𝑥 

value, regarding two previous lug models. The lug’s mass, however, is significantly increased for 75.8% 



 

128 

 

(from 87 grams to 153 grams), so it became obvious that additional parameters should be included in the 

optimization in order to achieve mass reduction and fatigue life prolongation. 

 
 

Figure 7.13 SIF values along crack front after 1st step of propagation 

 

The SIF values when a crack reaches the extension of 6.75mm are shown in Figure 7.14, in 

which is also visible that there is still a lot of space for its further growth, unlike in two previous lug’s 

geometries where after reaching approximately 7mm, in the very next step complete fracture of the lug 

occurred. This was possible thanks to the increased rounding radius, which provides additional space for 

crack growth, and the fatigue life prolongation, accordingly. By comparing the 𝐾𝐼 𝑚𝑎𝑥 values in Figure 

7.14 with values in Figure 7.7 and Figure 7.3, it can be seen that this value is minimal for the case 

presented in Figure 7.14. With further crack growth the crack gains appearance displayed in Figure 7.15, 

just before the fracture. In Figure 7.16, the diagram of the crack growth as a function of the number of 

cycles to complete fracture for R=-1, is presented, with the highest fatigue life obtained in this analysis: 

Nmax=1933. 

 
 

Figure 7.14 SIF values after 14th step of propagation (total crack extension 6.75 mm) 
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Figure 7.15 SIF values after 23rd step of propagation (total crack extension 10.89 mm) 

 

 
 

Figure 7.16 Crack length vs Number of cycles for lug with t=17mm and r=19mm (Nmax=1933) 

 

 Model number 3: Three-parameter optimization of lug  

Optimization model 3 had three geometrical input optimization parameters: the lug’s thickness 

(Figure 7.17), the rounding radius and the radius of a pin hole (Figure 7.18). Besides them, one “non-

geometrical” input parameter was also selected: the initial position of the crack with respect to the surface 
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of the pin hole (Figure 7.19). This was necessary because in this case, with geometrical parameters 

varying, the size of the pin hole is changing, too. So, in order to keep the same initial size of the crack, 

the crack edge in the shape of the rectangle has to be “attached” to the newly generated pin hole surface 

(Figure 7.19). 

 
 

Figure 7.17 Thickness was varied by adding/removing material perpendicularly to the highlighted face 

 

  
 

Figure 7.18 Radii of highlighted surfaces were varied 
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Figure 7.19 Initial crack position was kept constant with respect to the yellow surface 

 

In the Design Exploration module of Ansys Workbench, the total number of  33 = 27  

combinations of thickness values and two radii were generated and the 𝐾𝐼 𝑚𝑎𝑥 value for the first crack 

propagation step, was calculated by finite element method for each combination (Figure 7.20). Some of 

those combinations gave very high 𝐾𝐼 𝑚𝑎𝑥 values or mass values, so they were eliminated from further 

calculations. In the end the number of the combinations, i.e. Design points (DP) was diminished to 14. 

As a representative combination DP 27 was selected (Figure 7.20), because this combination gave the 

𝐾𝐼 𝑚𝑎𝑥 = 1267.6 𝑀𝑃𝑎√𝑚𝑚 in the first step of crack propagation ( 

Figure 7.21) and the lug’s mass of 108 grams. 

 
 

Figure 7.20 Generated design points with selected parameters (r1=14.5mm, r2=7.5mm, t=17mm) 
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Figure 7.21 SIF values along crack front after 1st step of propagation 

 

Although the first value of 𝐾𝐼 𝑚𝑎𝑥 was promising that the fatigue life of model 3 would be 

comparable to the fatigue life obtained for model 2 (because the difference of the start values of 𝐾𝐼 𝑚𝑎𝑥 

was almost negligible), the crack under the applied load grew relatively fast and reached maximum 

extension (Figure 7.22) after Nmax=786 load cycles for R=-1 (Figure 7.23). It was obvious that the lack 

of the growth space (which existed in model 2), disabled the prolongation of fatigue life to at least 1000 

cycles, but compared to the initial shape of the lug, model 3 has for 52,6% longer fatigue life, while the 

mass is increased for 24.1%. 

 
 

Figure 7.22 SIF values after 15th step of propagation (total crack extension 7.03 mm) 
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Figure 7.23 Crack length vs Number of cycles for three-parameter lug model 1 (Nmax=786) 

 Model number 4: Different combination of three parameters  

Optimization model 4, as model 3, has the same three input optimization parameters (the lug’s 

thickness, the rounding radius and radius of a pin hole), but in this case, based on the table presented in  

Figure 7.24, other parameter values were selected. In this case, the initial lug’s thickness of 

12mm was kept (in the C column, the added value is 0), but the rounding radius was increased to 19mm 

(similar to model 2). As for model 3, the pin hole radius, in this case, was 7.5mm. For this lug, the mass 

was 105 grams and SIF values after the first crack propagation step are presented in Figure 7.25, and 

they are over 1400 𝑀𝑃𝑎√𝑚𝑚. The SIF values after crack extension of 7.09mm are given in Figure 7.26. 
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Figure 7.24 Generated design points with selected parameters (r1=19mm, r2=7.5mm, t=12mm) 

 

 

 
 

Figure 7.25 SIF values along crack front after 1st step of propagation 

 

 
 

Figure 7.26 SIF values after 15th step of propagation (total crack extension 7.09 mm) 

 

In Figure 7.26, it can be seen that in this lug model, the additional growth space exists (similar 

as for model 2), but maximum SIF values are significantly higher here than the SIF values for model 2 

given in Figure 7.14 ((2450 𝑀𝑃𝑎√𝑚𝑚 versus 1590 𝑀𝑃𝑎√𝑚𝑚) which is the consequence of lesser lug’s 

thickness in this model. This is the reason why the obtained number of cycles (Nmax=824, Figure 7.27) 

is significantly lower than for model 2, though the final length of the crack just before fracture is almost 

the same as in model 2. 
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Figure 7.27 Crack length vs Number of cycles for three-parameter lug model 2 (Nmax=824) 

 

 Comparison of results 

Figure 7.28 and Table 7.2 the complete results of all conducted analyses are presented. The 

number of cycles for all 5 models is given comparatively (the initial lug and 4 models, which are the 

optimisation product with different parameters). In some models, the crack length reached almost 11mm 

before fracture, but in  

Figure 7.28, only the lengths up to 7mm are shown for easier comparison. 

The longest fatigue life, without a doubt, was obtained for model 2 (M2: Two-parameter 

optimization), where the number of cycles was increased 3.75 times with respect to this number for the 

initial lug, but at the cost of a mass increase of 75.9% (Table 7.2). Considering that wing-fuselage 

attachment has two lugs per pin, its mass would be increased for 4 × (153𝑔 − 87𝑔) = 264𝑔, which in 

absolute numbers is not much, but in light aircraft design and production, every gram counts. On the 

other hand, model M4 has a mass increase of only 20.7% (a wing-fuselage attachment od 4 ×
(105𝑔 − 87𝑔) = 72𝑔) and provides for 60% longer fatigue life comparing to the initial lug’s, so it seems 

that this model is more acceptable than M2. Of course, if the safety of the aircraft is in the first place, 

then the advantage has model m2, because, with approximately 2000 cycles of ultimate loading, it enables 

that potential crack could be spotted in time during the inspection and thus catastrophic failures could be 

prevented. 
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Figure 7.28 Crack length vs Number of cycles for all five lug models (max extension 7mm) 

 

Table 7.2 Comparison of properties for five lug models 

 

 
Mass (grams) Initial  𝐾𝐼 𝑚𝑎𝑥 (MPa mm0,5) 

Total number of 

cycles 

Original lug 87 1880.0 515 

M1: Lug 17 mm 123 (+41.4%) 1391.2 1085 (+110.7%) 

M2: Two-parameter 153 (+75.9%) 1256.8 1933 (+275.4%) 

M3: Three-parameter 1 108 (+24.1%) 1267.6 786 (+52.6%) 

M4: Three-parameter 2 105 (+0.7%) 1498.5 824 (+60.0%) 
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DISCUSSION and CONCLUSION  
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 CONCLUSION   
Before repeating the most important findings of the research presented here and drawing 

final conclusions, it must be emphasized that work on this thesis was a part of wider research which 

included specialists in different areas (aerodynamics, flight mechanics, aeroelasticity, 

manufacturing, etc.) Since the evaluation of stresses and deformations of the wing (consequently its 

fatigue life, too) depends on results these specialists obtained in their work, their results were used 

as input data in some chapters of this thesis, while in some cases necessary data were obtained 

independently from their calculations. These calculations are usually very detailed and consist of a 

large number of output data; that is the reason why only the most important were presented in this 

thesis. Otherwise, if all data would have been presented, the thesis would have more than 500 pages. 

Also, the conclusions which were the result of research presented in some chapters have been 

presented in those chapters; as a consequence, here the most important of them will be repeated 

briefly. 

As showed in the thesis, the wing structure of the light aircraft was analyzed first and it was 

shown that it satisfies strength requirements according to standards CS23. Magnitudes and 

distribution of loads have been considered in detail and distribution of pressure loading was done 

according to the requirements of CS23. The inertial loading was modeled too, and all displacements 

(translations and rotations) are relatively small, which shows that structure has enough stiffness. 

Detailed analysis of the state of stresses, deformations, and strength of wing structure regarding the 

magnitude of limit loads shows the stresses at structural elements do not exceed the elastic limit. 

Experimental verification of analytical/numerical results was carried out on the full-scale wing and 

it was shown that the difference between deformations was satisfactory low. 

Then, the behavior and fatigue life of the damaged wing-fuselage attachment lug were 

analyzed. Due to the high loads attachment carries and its high impact on the overall aircraft 

integrity, the crack occurrence in it is not allowed. Still, some recent events in commercial aviation 

indicate that damages might occur quite unexpectedly. The cracking issues of some wing-fuselage 

attachments had led many airlines to check their airplanes, and as result 50 jets have been grounded 

worldwide in 2019, causing a significant profit loss.  

Thus, two types of the crack in the lug – the corner crack and through the crack – were 

analyzed using XFEM in the case of the maximum allowed load. Based on the SIF values obtained 

in simulations of the penny shaped corner crack growth it can be concluded that the damage 

propagates rapidly and that it takes a small number of cycles to reach the critical depth. In the case 

of through initial crack, the number of cycles is even smaller. The number of cycles for through 

crack was confirmed in classical FEM simulations carried out in Ansys Workbench. It was shown 

that differences in calculated mean values of stress intensity factors of mode I (SIF K_I) are not 

significant (XFEM based results are somewhat higher). It should be again pointed out that the cycles 

obtained in numerical simulations were evaluated on the basis of the action of the maximum allowed 

axial force (load factor n=6) and that in the case of significantly smaller force (n=1) the number of 

cycles would be much higher. However, considering that the purpose of the light aerobatic aircraft 

is doing aerobatics, the use of maximum load was justified. 

It is important to mention again that SIFs calculated can provide a wider picture of the 

possible crack paths once the damage was initiated and that finite element mesh type might influence 

results, but not dramatically. For example, SIF calculated for penny-shaped crack growth in the 

hexahedral mesh of lug showed significant oscillation along with the nodes on the newly formed 

crack fronts. The difference of about 25% indicated that crack was not growing uniformly; moreover, 

values in few nodes became negative signaling that three-dimensional crack can no longer propagate 

in some directions. This is important information for designers because knowing the directions in 

which cracks growth is highly unlikely might lead designers to define the optimized structure (from 
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the fatigue point of view) early in the design process. It was also shown that mode I is dominant 

meaning that cracks in the lug mostly grow in a single plane. 

In the case of tetrahedral mesh SIF values through steps were on average smaller than values 

obtained with hexahedral mesh, which can be explained by the fact that more nodes were generated 

around the crack front, and the fact that propagation was not restricted to a single plane: directions 

in which the crack has grown were determined by the calculated kink angle. This is why its final 

shape is irregular, in contrast to the almost circular shape obtained in the hexahedral mesh. Negative 

values of K_I also occurred at some nodes suggesting that three-dimensional crack propagation in 

some directions wasn’t possible. The crack didn’t reach the same length in two perpendicular 

directions which offers a clue about the direction in which the corner damage on the real lug will 

most likely grow faster: the crack path along the thickness (vertical direction) is longer than the path 

in a radial direction. This is an important finding because in periodic inspections portion of the crack 

in the radial direction is visible, while the portion in the vertical direction cannot be seen due to the 

presence of the pin. Thus, if a small crack exists in the radial direction, it is highly likely that its 

length in the vertical direction is greater. 

Though differences in SIF values are obvious, obtained number of cycles for both meshes 

was similar (difference was 9.8%). However, the difference of the order of magnitude 10% might 

be significant when number of cycles is measured in millions, and further research will focus on 

determination of the influence of the mesh quality on estimated fatigue life. Nevertheless, it was 

shown that XFEM based analyses could be very useful, not only for SIF values calculation, but also 

for three-dimensional cracks’ paths predictions in complex geometries. 

After analyzing possible crack paths and influences of the mesh type on SIF values, in the 

last phase of the research, the focus was on the optimization of the attachment lug’s geometry. 

Several strategies for the fatigue life extension were followed, including the easiest: to replace the 

material used in the design with other, fatigue resistant material. But, since the use of more fatigue-

resistant material increases costs significantly, geometry redesign was selected as an alternative 

approach. 

 To redesign the wing-fuselage attachment lug for the purpose of obtaining longer fatigue life with 

damage, the following assumptions were taken into account: 

 The average element mesh size was fixed throughout the optimization to avoid the influence of 

the mesh density on results (the number of cycles to catastrophic failure), 

 Boundary conditions, load value, and material property were kept constant, and Certain SIF value 

K_(I max) was used as the main criterion for redesign i.e. the goal was to achieve K_(I max) after 

the first propagation step. 

The initial mass of the attachment lug was 87 grams, and four different models were used in 

the study, with the respect to three different design parameters: the lug’s thickness, the rounding 

radius, and the radius of a pinhole. In model 1, the lug thickness was changing by adding the material 

in the normal direction to the surface. Using predefined criterion (K_(I max) value in the first step) 

as the goal, the mass of the lug with a new thickness value reached 123 grams, which represents an 

increase of 41.3%. In model 2, two parameters were changed simultaneously, the lug’s thickness and 

the rounding radius, and the required criterion was satisfied with the lug’s mass of 153 grams, which 

was an increase in mass by 75.8% (from 87 grams to 153 grams). It became obvious that additional 

parameters should be included in the redesign in order to achieve mass reduction and fatigue life 

prolongation. So, model 3 had three geometrical input optimization parameters: the lug’s thickness, 

the rounding radius, and the radius of a pin. Besides them, one “non-geometrical” input parameter 

was also selected: the initial position of the crack with respect to the surface of the pinhole. This was 

necessary because in this case, with geometrical parameters varying, the size of the pinhole was 

changing, too. 
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Achieving the required goal in model 3 led to mass of the lug equal to 108 grams. Compared 

to the initial shape of the lug, model 3 had approximately 52,6% longer fatigue life, while the mass 

was increased by 24.1%. Optimization model 4, as model 3, had the same three input redesign 

parameters (the lug’s thickness, the rounding radius and radius of a pin hole), but the initial lug’s 

thickness was kept constant, and with increased rounding radius (similar to model 2) obtained mass 

was 105 grams. Since geometry changed significantly, the additional space for crack growth exists 

in model 4, but maximum SIF values are significantly higher here than the SIF values for model 2 

which is the consequence of lesser lug’s thickness in this model.  

To conclude, the longest fatigue life was obtained for model 2 where the number of cycles 

was increased 3.75 times with respect to the number for the initial lug, but at the cost of a mass 

increase of 75.9%. Considering that wing-fuselage attachment has two lugs per pin, its mass would 

be increased by 264 grams. On the other hand, model 4 has a mass increase of only 20.7% (or 72 

grams) and provides around 60% longer fatigue life than the initial lug’s, and it looks more acceptable 

than model 2. However, if the safety of the aircraft is the priority, then model 2 is preferable since it 

can sustain approximately 2000 cycles of ultimate loading when damaged, providing the opportunity 

of the crack being spotted during the inspection thus reducing the possibility of catastrophic failure.  
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Appendix A 
 

Program WING_LOADING  

       DIMENSION Y(48),C(48),CLA(48),Q(48),QT(48),QM(48),CL(48),CCZ(48) 

       CHARACTER AAA*20,BBB*20 

       AAA="Lift (N)= " 

       BBB="Speed (m/s)=    " 

       WRITE(*,*)AAA 

       READ(*,*) RZ 

       WRITE(*,*) 

       WRITE(*,*)BBB 

       READ(*,*)V 

       OPEN(UNIT=6,FILE="Chords.txt") 

       OPEN(UNIT=7,FILE="Loads.txt") 

       RO=1.225                           ! Density 

       DIP=0.5*RO*(V**2)         ! Dynamic pressure 

       BE = 4.75                           !    One half of effective wing span 

       S=15.03                              !    Wing area 

       CZ=RZ/(DIP*S)                 !    Lift coefficient 

       PI=3.14159 

       CEL=4.0*S/(2.0*BE*PI) 

!      Calculation of wing chords 

        DO 22 I=1,48 

        Y(I)=0.1*(I-1) 

        IF(Y(I).GE.1.24)GOTO 10 

        C(I)=1.796*(1.0-(Y(I)/1.24))+1.55*(Y(I)/1.24) 

        GOTO 20 

10    C(I)=1.55 

!       Chords of equivalent elliptic wing  

20    CL(I)=CEL*SQRT(1.0-(Y(I)*Y(I))/(4.75**2)) 

!       Schrenk’s chords for distribution of aerodynamic load 

22    CLA(I)=0.5*(C(I)+CL(I)) 

!        Aerodynamic loading (forces) in cross-sections of wing 

         DO 30 I=1,48 

30     Q(I)=0.1*CLA(I)*(RZ/S) 

!       Transversal forces  

         QQ=0.0 

         DO 40 I=47,1,-1 

         QQ=QQ+Q(I+1) 

40     QT(I)=QQ 

!        Bending moments  

         DO 60 I=1,47 

         QFM=0.0 

         DO 50 J=I+1,48 

50     QM(I)=QFM+0.1*Q(J)*(J-I) 

60     CONTINUE 

!        Printing the results                                                                                         



 

 

        WRITE(6,65)RZ,V 

65    FORMAT("Lift (N) =",F10.3,"   Speed  (m/s)=      ",F10.2) 

        WRITE(6,66)RO,DIP 

66      FORMAT("Density (kg/m^3)=",F10.3,"   Dyn. pres.(N/m^2) =",F15.3) 

          WRITE(6,67)CZ 

67      FORMAT("Wing lift coefficient   = ",F10.3) 

          WRITE(*,*) 

          DO 70 I=1,48 

!         Position, chord, chord of elliptic wing, Schrenk’s chord  

          CCZ(I)=Q(I)/(0.1*DIP*C(I)) 

70      WRITE(6,75)Y(I),C(I),CL(I),CLA(I),CCZ(I) 

75      FORMAT(5F15.4) 

          CLOSE(6) 

!       Possition, Force, Shear force, Bending moment  

        DO 80 I=1,48 

80    WRITE(7,85)Y(I),Q(I),QT(I),QM(I) 

85    FORMAT(4F15.4) 

        CLOSE(7) 

        STOP 

        END 

Table 3.7 Load cases 

 Case: A_023 Case: A_028 

Y (m) q (N/m) FT (N) MF (Nm) q (N/m) FT (N) MF (Nm) 

0.000 7066.725 28023.346 61340.898 6947.933 27552.275 60309.770 

0.100 7029.104 27670.010 58573.918 6910.945 27204.879 57589.285 

0.200 6989.827 26967.100 55877.191 6872.328 26513.785 54937.895 

0.300 6948.888 26268.117 53250.375 6832.078 25826.553 52355.258 

0.400 6906.284 25573.229 50693.063 6790.189 25143.346 49840.914 

0.500 6862.007 24882.600 48204.813 6746.656 24464.326 47394.492 

0.600 6816.045 24196.398 45785.172 6701.467 23789.660 45015.520 

0.700 6768.387 23514.793 43433.688 6654.610 23119.514 42703.570 

0.800 6719.017 22837.955 41149.891 6606.070 22454.053 40458.164 

0.900 6667.918 22166.053 38933.293 6555.831 21793.445 38278.813 

1.000 6615.070 21499.262 36783.367 6503.871 21137.861 36165.027 

1.100 6560.450 20837.754 34699.582 6450.169 20487.475 34116.281 

1.200 6504.031 20181.709 32681.416 6394.698 19842.457 32132.043 

1.300 6467.858 19531.307 30728.281 6359.133 19202.986 30211.740 

1.400 6444.542 18884.521 28839.830 6336.209 18567.072 28355.031 

1.500 6419.329 18240.066 27015.822 6311.419 17933.451 26561.689 

1.600 6392.175 17598.133 25256.012 6284.723 17302.309 24831.459 

1.700 6363.039 16958.916 23560.119 6256.076 16673.836 23164.068 

1.800 6331.867 16322.611 21927.861 6225.428 16048.228 21559.252 

1.900 6298.606 15689.425 20358.918 6192.727 15425.685 20016.682 

2.000 6263.194 15059.564 18852.961 6157.910 14806.412 18536.041 

2.100 6225.563 14433.245 17409.633 6120.911 14190.621 17116.977 

2.200 6185.636 13810.688 16028.564 6081.655 13578.530 15759.127 

2.300 6143.330 13192.125 14709.354 6040.060 12970.365 14462.088 



 

 

2.400 6098.550 `12577.792 13451.572 5996.034 12366.359 13225.453 

2.500 6051.194 11967.937 12254.782 5949.473 11766.756 12048.777 

2.600 6001.143 11362.817 11118.497 5900.263 11171.809 10931.594 

2.700 5948.266 10762.703 10042.229 5848.275 10581.782 9873.419 

2.800 5892.413 10167.877 9025.441 5793.361 9996.955 8873.725 

2.900 5833.417 9578.636 8067.576 5735.357 9417.619 7931.960 

3.000 5771.086 8995.294 7168.049 5674.074 8844.083 7047.553 

3.100 5705.199 8418.186 6326.228 5609.295 8276.676 6219.884 

3.200 5635.503 7847.666 5541.463 5540.770 7715.747 5448.311 

3.300 5561.699 7284.116 4813.051 5468.207 7161.669 4732.144 

3.400 5483.440 6727.946 4140.256 5391.264 6614.849 4070.658 

3.500 5400.312 6179.602 3522.297 5309.532 6075.722 3463.087 

3.600 5311.816 5639.570 2958.339 5222.524 5544.769 2908.609 

3.700 5217.345 5108.389 2447.500 5129.642 5022.517 2406.358 

3.800 5116.143 4586.654 1988.835 5030.140 4509.552 1955.403 

3.900 5007.250 4075.040 1581.331 4923.079 4006.538 1554.749 

4.000 4889.423 3574.315 1223.900 4807.232 3514.230 1203.326 

4.100 4760.988 3085.373 915.363 4680.956 3033.507 899.976 

4.200 4619.601 2609.274 654.435 4541.945 2565.412 643.433 

4.300 4461.807 2147.314 439.703 4386.804 2111.217 432.312 

4.400 4282.099 1701.133 269.590 4210.117 1672.537 265.058 

4.500 4070.638 1272.923 142.298 4002.211 1251.525 139.906 

4.600 3806.045 865.859 55.712 3742.065 851.304 54.776 

4.700 3415.241 485.255 7.186 3357.831 477.098 7.066 

4.750 2874.612 143.731 0.000 2826.290 141.314 0.000 

 

Y (m) 
Case: D_023 Case: D_028 

q (N/m) FT (N) MF (Nm) q (N/m) FT (N) MF (Nm) 

0.000 7252.969 28761.908 62957.566 7134.177 28290.822 61926.410 

0.100 7214.357 28399.260 60117.633 7096.197 27934.113 59133.000 

0.200 7174.044 27677.824 57349.848 7056.544 27224.494 56410.555 

0.300 7132.027 26960.420 54653.805 7015.215 26518.840 53758.664 

0.400 7088.300 26247.217 52029.086 6972.205 25817.318 51176.922 

0.500 7042.856 25538.387 49475.242 6927.504 25120.098 48664.922 

0.600 6995.682 24834.102 46991.844 6881.104 24427.348 46222.176 

0.700 6946.769 24134.533 44578.410 6832.991 23739.238 43848.270 

0.800 6896.098 23439.855 42234.402 6783.150 23055.939 41542.660 

0.900 6843.652 22750.246 39959.379 6731.563 22377.625 39304.902 

1.000 6789.411 22065.881 37752.785 6678.211 21704.469 37134.453 

1.100 6733.352 21386.939 35614.090 6623.069 21036.648 35030.789 

1.200 6675.445 20713.604 33542.738 6566.111 20374.342 32993.359 

1.300 6638.319 20046.059 31538.133 6529.594 19717.730 31021.584 

1.400 6614.389 19382.227 29599.908 6506.055 19064.771 29115.107 

1.500 6588.511 18720.787 27727.834 6480.601 18414.166 27273.691 

1.600 6560.642 18061.936 25921.639 6453.188 17766.105 25497.082 

1.700 6530.737 17405.871 24181.053 6423.773 17120.787 23785.000 



 

 

1.800 6498.744 16752.797 22505.770 6392.305 16478.410 22137.158 

1.900 6464.606 16102.922 20895.479 6358.726 15839.181 20553.242 

2.000 6428.261 15456.461 19349.828 6322.976 15203.308 19032.910 

2.100 6389.638 14813.635 17868.469 6284.985 14571.010 17575.811 

2.200 6348.659 14174.671 16451.000 6244.677 13942.511 16181.557 

2.300 6305.238 13539.805 15097.021 6201.968 13318.043 14849.753 

2.400 6259.278 12909.281 13806.094 6156.761 12697.846 13579.971 

2.500 6210.674 12283.354 12577.758 6108.952 12082.170 12371.752 

2.600 6159.303 11662.286 11411.525 6058.423 11471.274 11224.623 

2.700 6105.033 11046.355 10306.893 6005.042 10865.432 10138.082 

2.800 6047.708 10435.853 9263.310 5948.656 10264.928 9111.589 

2.900 5987.157 9831.082 8280.197 5889.097 9670.063 8144.582 

3.000 5923.184 9232.366 7356.963 5826.171 9081.153 7236.467 

3.100 5855.561 8640.048 6492.957 5759.655 8498.536 6386.612 

3.200 5784.027 8054.492 5687.508 5689.293 7922.571 5594.356 

3.300 5708.278 7476.089 4939.900 5614.785 7353.642 4858.992 

3.400 5627.957 6905.262 4249.373 5535.780 6792.163 4179.775 

3.500 5542.638 6342.466 3615.127 5451.857 6238.585 3555.917 

3.600 5451.810 5788.202 3036.306 5362.517 5693.399 2986.576 

3.700 5354.849 5243.021 2512.005 5267.145 5157.148 2470.862 

3.800 5250.979 4707.536 2041.251 5164.976 4630.434 2007.819 

3.900 5139.217 4182.438 1623.007 5055.044 4113.936 1596.425 

4.000 5018.285 3668.516 1256.156 4936.093 3608.431 1235.582 

4.100 4886.464 3166.688 939.487 4806.431 3114.822 924.100 

4.200 4741.351 2678.042 671.682 4663.694 2634.179 660.681 

4.300 4579.398 2203.906 451.292 4504.395 2167.810 443.900 

4.400 4394.954 1745.967 276.695 4322.971 1717.370 272.163 

4.500 4177.920 1306.471 146.048 4109.492 1285.073 143.656 

4.600 3906.353 888.679 57.180 3842.373 874.124 56.244 

4.700 3505.250 498.044 7.376 3447.840 489.886 7.255 

4.750 2950.373 147.519 0.000 2902.050 145.103 0.000 

 

Y (m) 
Case: E_023 Case: E_028 

q (N/m) FT (N) MF (Nm) q (N/m) FT (N) MF (Nm) 

0.000 3779.315 14987.009 32805.383 3753.143 14883.220 32578.203 

0.100 3759.195 14798.043 31325.574 3733.162 14695.563 31108.641 

0.200 3738.189 14422.123 29883.369 3712.302 14322.246 29676.422 

0.300 3716.295 14048.304 28478.539 3690.559 13951.016 28281.318 

0.400 3693.510 13676.674 27110.871 3667.932 13581.960 26923.125 

0.500 3669.831 13307.323 25780.139 3644.417 13215.167 25601.609 

0.600 3645.250 12940.340 24486.100 3620.006 12850.726 24316.533 

0.700 3619.762 12575.814 23228.521 3594.695 12488.725 23067.662 

0.800 3593.359 12213.838 22007.137 3568.475 12129.255 21854.734 

0.900 3566.031 11854.502 20821.684 3541.336 11772.407 20677.496 

1.000 3537.768 11497.898 19671.898 3513.268 11418.273 19535.668 

1.100 3508.557 11144.122 18557.486 3484.260 11066.946 18428.977 



 

 

1.200 3478.384 10793.267 17478.160 3454.295 10718.521 17357.123 

1.300 3459.038 10445.429 16433.617 3435.084 10373.091 16319.813 

1.400 3446.569 10099.524 15423.666 3422.701 10029.582 15316.856 

1.500 3433.084 9754.867 14448.178 3409.310 9687.312 14348.122 

1.600 3418.563 9411.559 13507.023 3394.889 9346.381 13413.481 

1.700 3402.980 9069.702 12600.055 3379.414 9006.892 12512.797 

1.800 3386.310 8729.404 11727.109 3362.859 8668.950 11645.901 

1.900 3368.521 8390.773 10888.034 3345.194 8332.664 10812.634 

2.000 3349.583 8053.921 10082.644 3326.387 7998.145 10012.821 

2.100 3329.457 7718.962 9310.746 3306.400 7665.506 9246.268 

2.200 3308.104 7386.017 8572.145 3285.195 7334.866 8512.783 

2.300 3285.479 7055.206 7866.626 3262.727 7006.346 7812.148 

2.400 3261.531 6726.658 7193.959 3238.944 6680.074 7144.141 

2.500 3236.204 6400.505 6553.909 3213.793 6356.179 6508.523 

2.600 3209.437 6076.884 5946.220 3187.211 6034.800 5905.042 

2.700 3181.158 5755.940 5370.626 3159.128 5716.079 5333.435 

2.800 3151.288 5437.825 4826.845 3129.465 5400.166 4793.418 

2.900 3119.736 5122.696 4314.574 3098.132 5087.220 4284.695 

3.000 3086.402 4810.722 3833.503 3065.028 4777.407 3806.955 

3.100 3051.165 4502.082 3383.294 3030.035 4470.904 3359.864 

3.200 3013.891 4196.965 2963.598 2993.020 4167.900 2943.074 

3.300 2974.420 3895.576 2574.041 2953.822 3868.599 2556.215 

3.400 2932.567 3598.134 2214.227 2912.259 3573.216 2198.893 

3.500 2888.110 3304.877 1883.739 2868.109 3281.990 1870.694 

3.600 2840.782 3016.066 1582.132 2821.109 2995.179 1571.176 

3.700 2790.259 2731.988 1308.934 2770.936 2713.069 1299.869 

3.800 2736.135 2452.962 1063.638 2717.187 2435.975 1056.272 

3.900 2677.899 2179.349 845.702 2659.354 2164.256 839.846 

4.000 2614.885 1911.559 654.547 2596.776 1898.321 650.014 

4.100 2546.197 1650.070 489.540 2528.564 1638.643 486.150 

4.200 2470.582 1395.451 349.994 2453.473 1385.787 347.571 

4.300 2386.193 1148.392 235.155 2369.669 1140.440 233.527 

4.400 2290.085 909.773 144.178 2274.226 903.473 143.180 

4.500 2176.995 680.765 76.102 2161.919 676.050 75.575 

4.600 2035.489 463.065 29.795 2021.393 459.858 29.589 

4.700 1826.486 259.516 3.843 1813.837 257.719 3.817 

4.750 1537.355 76.868 0.000 1526.708 76.335 0.000 

 

Y (m) 
Case:G _023 Case: G_028 

q (N/m) FT (N) MF (Nm) q (N/m) FT (N) MF (Nm) 

0.000 3593.052 14248.374 31188.576 3566.900 14144.665 30961.568 

0.100 3573.924 14068.722 29781.703 3547.911 13966.320 29564.934 

0.200 3553.953 13711.329 28410.574 3528.085 13611.529 28203.783 

0.300 3533.138 13355.934 27074.975 3507.422 13258.721 26877.912 

0.400 3511.476 13002.620 25774.711 3485.918 12907.979 25587.109 

0.500 3488.964 12651.473 24509.572 3463.569 12559.387 24331.180 



 

 

0.600 3465.594 12302.576 23279.316 3440.370 12213.030 23109.869 

0.700 3441.363 11956.017 22083.711 3416.315 11868.993 21922.979 

0.800 3416.261 11611.880 20922.518 3391.396 11527.361 20770.232 

0.900 3390.280 11270.254 19795.498 3365.604 11188.222 19651.414 

1.000 3363.410 10931.226 18702.367 3338.929 10851.661 18566.246 

1.100 3335.638 10594.885 17642.887 3311.360 10517.769 17514.469 

1.200 3306.952 10261.321 16616.752 3282.882 10186.633 16495.807 

1.300 3288.560 9930.626 15623.688 3264.624 9858.345 15509.971 

1.400 3276.705 9601.770 14663.514 3252.855 9531.882 14556.785 

1.500 3263.885 9274.099 13736.102 3240.129 9206.597 13636.125 

1.600 3250.080 8947.710 12841.331 3226.424 8882.584 12747.867 

1.700 3235.265 8622.702 11979.063 3211.717 8559.941 11891.871 

1.800 3219.416 8299.176 11149.143 3195.983 8238.770 11067.993 

1.900 3202.505 7977.234 10351.420 3179.195 7919.171 10276.078 

2.000 3184.500 7656.983 9585.722 3161.321 7601.252 9515.950 

2.100 3165.366 7338.533 8851.868 3142.326 7285.120 8787.439 

2.200 3145.065 7021.997 8149.669 3122.173 6970.888 8090.352 

2.300 3123.555 6707.490 7478.921 3100.820 6658.670 7424.486 

2.400 3100.787 6395.135 6839.406 3078.218 6348.588 6789.625 

2.500 3076.709 6085.056 6230.901 3054.314 6040.767 6185.550 

2.600 3051.260 5777.385 5653.162 3029.052 5735.335 5612.015 

2.700 3024.375 5472.259 5105.938- 3002.362 5432.430 5068.772 

2.800 2995.977 5169.822 4588.955 2974.171 5132.193 4555.553 

2.900 2965.981 4870.224 4101.932 2944.393 4834.776 4072.075 

3.000 2934.289 4573.626 3644.569 2912.931 4540.337 3618.042 

3.100 2900.789 4280.197 3216.549 2879.675 4249.044 3193.137 

3.200 2865.352 3990.118 2817.538 2844.496 3961.076 2797.030 

3.300 2827.827 3703.583 2447.180 2807.244 3676.626 2429.368 

3.400 2788.036 3420.801 2105.099 2767.743 3395.902 2089.777 

3.500 2745.770 3141.997 1790.900 2725.785 3119.128 1777.864 

3.600 2700.775 2867.420 1504.157 2681.117 2846.549 1493.209 

3.700 2652.741 2597.343 1244.423 2633.433 2578.438 1235.365 

3.800 2601.285 2332.068 1011.216 2582.351 2315.094 1003.856 

3.900 2545.919 2071.940 804.022 2527.389 2056.859 798.170 

4.000 2486.010 1817.348 622.288 2467.916 1804.120 617.758 

4.100 2420.708 1568.747 465.413 2403.088 1557.329 462.026 

4.200 2348.820 1326.676 332.745 2331.724 1317.020 330.323 

4.300 2268.590 1091.794 223.566 2252.078 1083.847 221.938 

4.400 2177.219 864.935 137.072 2161.371 858.640 136.074 

4.500 2069.702 647.213 72.351 2054.637 642.503 71.824 

4.600 1935.170 440.243 28.327 1921.085 437.039 28.120 

4.700 1736.468 246.726 3.654 1723.829 244.930 3.627 

4.750 1461.587 73.079 0.000 1450.948 72.547 0.000 

  



 

 

Appendix B 
       PROGRAM WING_FORCES 

       DIMENSION XA(26),XR(26),CZR(11),YY(11),FR(11),PA(26),DDX(27), 

     # DX(25),FEC(26) 

       OPEN(UNIT=4,FILE="Input Data D_0.23.txt") 

       OPEN(UNIT=5,FILE="CXYFr D_0.23.txt") 

       OPEN(UNIT=6,FILE="Force NodE D_0.23.txt") 

       OPEN(UNIT=7,FILE="Output D_0.23.txt") 

       READ(4,*)RHO 

       READ(4,*)V 

       READ(4,*)DY 

       READ(4,*)Ca 

       READ(4,*)RHO1 

       READ(4,*)V1 

 

!*********************************************************************** 

       !Ca=1.55                         ! Wing Chord (m) 

       !DY=0.32                        ! - Distance between Ribs (m) 

       !V=107.06                       ! - Speed (m/sec) 

       !RHO=1.225                   ! - density  (kg/m^3) 

       Pd=RHO*V**2/2.0        ! - dynamic pressure (N/m^2) 

       FAK=Pd*DY*Ca 

!*********************************************************************** 

       READ(5,*)NC 

       DO 10 I=1,26 

       READ(5,*)XA(I) 

 10    XR(I)=XA(I)/ Ca 

       DO 12 I=1,25 

 12     DX(I)=XA(I+1)-XA(I) 

       DO 14 I=2,25 

 14    DDX(I)=0.5*(DX(I-1)+DX(I)) 

       DDX(1)=0.5*DX(1) 

       DDX(26)=0.5*DX(25) 

       DDX(27)=0.4 

       READ(5,*)NP 

       DO 15 I=1,11 

       READ(5,*)YY(I),FR(I) 

 15    CZR(I)=FR(I)/FAK        ! - Lift coeficient 

       CMD=-0.066                    ! - Moment coefficient 

       TLK=0.258                       ! -ratio of cord of aileron or flap to total cord 

       BE=0.0                              ! - angle of deflection of aileron or flap (radians) 

       V1=107.6                          ! - Speed (m/sec) 

       RHO1=1.1225                   ! - density  (kg/m^3) 

       Pd1=RHO1*V1*V1/2.0    ! - dynamic pressure 

       BE=BE*3.14/180.             ! - angle (rad) 

       DO 100 J=1,11 

       CZ=CZR(J) 



 

 

       WRITE(6,117) 

 117   FORMAT("_________________________________________________") 

       WRITE(6,16)J,YY(J) 

 16    FORMAT(/,"Case D023 - Rib: ",I3,"   y = ",F8.3) 

       WRITE(6,*) 

       DO 60 I=1,26 

       X=XR(I) 

       TET=ACOS(1.0-2.0*X) 

       FI=ACOS(2.0*TLK-1.0) 

!      Functions fz i fm 

       IF(X.GE.0.03)THEN 

       FZ=0.716/TAN(TET/2.0) 

       FM=5.8*SIN(TET)-3.26/TAN(TET/2.0) 

       ELSE 

       FZ=4.07 

       FM=-17.43*(1.-X/0.03)-16.56*(X/0.03) 

       END IF 

!      Function fb 

       IF(X.GE.0.03)GOTO 20 

!*********************************************************************** 

       TETB=ACOS(0.94) 

       FB=1.3*LOG10((1.0-COS(TET+FI))/(1.0-COS(TET-FI)))+ 

     # (0.024-1.273*SIN(FI))/TAN(TETB/2.0) 

       GOTO 50 

 20    IF(X.GT.0.985-TLK.AND.X.LT.1.015-TLK)GOTO 30 

       FB=1.3*LOG10((1.0-COS(TET+FI))/(1.0-COS(TET-FI)))+ 

     # (0.024-1.273*SIN(FI))/TAN(TET/2.0) 

       GOTO 50 

!*********************************************************************** 

 30    X1=0.985-TLK 

       X2=1.015-TLK 

       TET1=ACOS(1.0-2*X1) 

       TET2=ACOS(1.0-2*X2) 

       FB1=1.3*LOG10((1.0-COS(TET1+FI))/(1.0-COS(TET1-FI)))+ 

     # (0.024-1.273*SIN(FI))/TAN(TET1/2.0) 

       FB2=1.3*LOG10((1.0-COS(TET2+FI))/(1.0-COS(TET2-FI)))+ 

     # (0.024-1.273*SIN(FI))/TAN(TET2/2.0) 

       FB=FB1*(1.0-(X-X1)/(X2-X1))+FB2*(X-X1)/(X2-X1) 

 50     PA(I)=Pd1*(CZ*FZ+CMD*FM+BE*FB) 

 60     CONTINUE 

       DO 70 I=1,26 

 70    FEC(I)=PA(I)*DDX(I)*DY 

       FREZ=0.0 

       REZM=0.0 

       DO 80 I=1,26 

       FREZ=FREZ+FEC(I) 

 80    REZM=REZM+FEC(I)*XA(I) 

!*********************************************************************** 

       WRITE(6,85) 



 

 

  85  FORMAT(8X,'  XA(m)         FEC(N)      PA(N./m^2) ',/) 

 

       DO 90 I=1,26 

 90    WRITE(6,65)XA(I),FEC(I),PA(I) 

 65    FORMAT(3F15.3) 

100    CONTINUE 

       WRITE(7,*)"Distribution of forces and pressure" 

       WRITE(7,*) 

       WRITE(7,105)Ca 

 105   FORMAT("   Wing Chord(m)       Ca   =",F10.3) 

       WRITE(7,106)V 

 106   FORMAT("   Speed (m/s)          V   =",F10.3) 

       WRITE(7,110)RHO 

 110   FORMAT("   Density (kg/m^3)    RHO  = ",F10.4) 

       WRITE(7,111)Pd 

 111   FORMAT("   Dyn. pres.(N/m^2)    Pd  = ",F10.4) 

       WRITE(7,115)V1 

 115   FORMAT("   Speed (m/s)          V1 = ",F10.3) 

       WRITE(7,116)RHO1 

 116   FORMAT("   Dyn. pres.(N/m^2)   RHO1 = ",F10.4) 

       WRITE(7,112)Pd1 

 112   FORMAT("   Dyn. pres.(N/m^2)    Pd  = ",F10.4) 

       WRITE(7,113)FAK 

 113   FORMAT("   Force. (m)          FAK  = ",F10.4) 

        CLOSE(4) 

        CLOSE(5) 

        CLOSE(6) 

        CLOSE(7) 

        STOP 

        END 

 

Results PROGRAM WING_FORCES 

 
Table 3.5 Load distribution of forces and pressure case D0.23 

Case  D023 - Rib:1   y =1.240 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 109.295 25299.693 

2 0.027 284.943 25083.045 

3 0.071 279.855 19652.740 

4 0.116 224.744 14631.761 

5 0.167 187.757 11504.725 

6 0.218 154.672 9477.436 

7 0.269 130.718 8009.709 

8 0.320 113.303 6875.150 



 

 

9 0.372 96.044 5943.311 

10 0.421 82.554 5211.774 

11 0.471 72.454 4574.140 

12 0.520 63.866 4031.958 

13 0.570 56.736 3546.001 

14 0.620 47.856 3115.594 

15 0.666 41.079 2760.689 

16 0.713 36.200 2432.807 

17 0.759 31.866 2141.502 

18 0.806 27.833 1 870.507 

19 0.852 27.620 1628.538 

20 0.912 25.586 1343.814 

21 0.971 18.737 1094.439 

22 1.019 12.110 911.898 

23 1.054 8.969 789.514 

24 1.090 7.748 672.600 

25 1.126 5.419 564.434 

26 1.150 1.909 497.046 

 

Case D023 - Rib:2   y =1.596 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 106.770 24715.313 

2 0.027 278.305 24498.664 

3 0.071 273.173 19183.529 

4 0.116 219.192 14270.302 

5 0.167 182.929 11208.878 

6 0.218 150.525 9223.316 

7 0.269 127.057 7785.366 

8 0.320 109.981 6673.603 

9 0.372 93.088 5760.368 

10 0.421 79.888 5043.421 

11 0.471 69.990 4418.538 

12 0.520 61.574 3887.271 



 

 

13 0.570 54.579 3411.201 

14 0.620 45.922 2989.684 

15 0.666 39.317 2642.248 

16 0.713 34.543 2321.420 

17 0.759 30.304 2036.552 

18 0.806 26.363 1771.735 

19 0.852 26.042 1535.487 

20 0.912 23.949 1257.828 

21 0.971 17.378 1015.053 

22 1.019 11.124 837.686 

23 1.054 8.168 718.990 

24 1.090 6.979 605.814 

25 1.126 4.813 501.349 

26 1.150 1.676 436.415 

 

Case D023 - Rib:3   y =1.922 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 101.041 23389.025 

2 0.027 263.238 23172.379 

3 0.071 258.009 18118.625 

4 0.116 206.591 13449.947 

5 0.167 171.971 10537.436 

6 0.218 141.112 8646.577 

7 0.269 118.748 7276.206 

8 0.320 102.442 6216.164 

9 0.372 86.378 5345.168 

10 0.421 73.836 4661.334 

11 0.471 64.396 4065.390 

12 0.520 56.373 3558.894 



 

 

13 0.570 49.684 3105.264 

14 0.620 41.532 2703.924 

15 0.666 35.317 2373.438 

16 0.713 30.781 2068.622 

17 0.759 26.760 1798.362 

18 0.806 23.028 1547.567 

19 0.852 22.460 1324.302 

20 0.912 20.233 1062.678 

21 0.971 14.293 834.882 

22 1.019 8.888 669.257 

23 1.054 6.349 558.933 

24 1.090 5.233 454.242 

25 1.126 3.438 358.173 

26 1.150 1.147 298.809 

 

Case D023 - Rib:4   y =2.247 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 99.441 23018.789 

2 0.027 259.032 22802.141 

3 0.071 253.776 17821.352 

4 0.116 203.074 13220.942 

5 0.167 168.912 10350.000 

6 0.218 138.485 8485.578 

7 0.269 116.428 7134.072 

8 0.320 100.338 6088.468 

9 0.372 84.505 5229.264 

10 0.421 72.146 4554.673 

11 0.471 62.834 3966.808 

12 0.520 54.921 3467.226 



 

 

13 0.570 48.318 3019.861 

14 0.620 40.307 2624.153 

15 0.666 34.200 2298.399 

16 0.713 29.731 1998.053 

17 0.759 25.770 1731.871 

18 0.806 22.097 1484.989 

19 0.852 21.460 1265.349 

20 0.912 19.196 1008.201 

21 0.971 13.432 784.587 

22 1.019 8.263 622.240 

23 1.054 5.842 514.252 

24 1.090 4.745 411.929 

25 1.126 3.055 318.205 

26 1.150 1.000 260.396 

 

Case D023 - Rib:5   y =2.573 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 97.609 22594.715 

2 0.027 254.215 22378.068 

3 0.071 248.927 17480.855 

4 0.116 199.045 12958.639 

5 0.167 165.408 10135.310 

6 0.218 135.475 8301.169 

7 0.269 113.771 6971.271 

8 0.320 97.928 5942.204 

9 0.372 82.360 5096.506 

10 0.421 70.211 4432.503 

11 0.471 61.046 3853.891 

12 0.520 53.258 3362.229 



 

 

13 0.570 46.753 2922.039 

14 0.620 38.904 2532.782 

15 0.666 32.921 2212.448 

16 0.713 28.528 1917.222 

17 0.759 24.637 1655.711 

18 0.806 21.030 1413.312 

19 0.852 20.315 1197.823 

20 0.912 18.008 945.803 

21 0.971 12.446 726.978 

22 1.019 7.548 568.385 

23 1.054 5.261 463.074 

24 1.090 4.187 363.465 

25 1.126 2.615 272.425 

26 1.150 0.831 216.398 

 

Case D023 - Rib:6   y =2.895 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 97.726 22621.777 

2 0.027 254.522 22405.129 

3 0.071 249.237 17502.582 

4 0.116 199.302 12975.377 

5 0.167 165.632 10149.010 

6 0.218 135.667 8312.937 

7 0.269 113.941 6981.660 

8 0.320 98.081 5951.538 

9 0.372 82.496 5104.978 

10 0.421 70.334 4440.299 

11 0.471 61.160 3861.097 

12 0.520 53.364 3368.930 



 

 

13 0.570 46.853 2928.282 

14 0.620 38.993 2538.613 

15 0.666 33.003 2217.933 

16 0.713 28.605 1922.380 

17 0.759 24.709 1660.571 

18 0.806 21.098 1417.886 

19 0.852 20.388 1202.132 

20 0.912 18.084 949.784 

21 0.971 12.509 730.654 

22 1.019 7.594 571.822 

23 1.054 5.298 466.340 

24 1.090 4.223 366.558 

25 1.126 2.643 275.347 

26 1.150 0.842 219.205 

 

Case D023 - Rib:7   y =3.230 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 95.152 22025.904 

2 0.027 247.753 21809.258 

3 0.071 242.424 17024.145 

4 0.116 193.641 12606.810 

5 0.167 160.709 9847.346 

6 0.218 131.438 8053.820 

7 0.269 110.207 6752.905 

8 0.320 94.694 5746.020 

9 0.372 79.482 4918.438 

10 0.421 67.615 4268.636 

11 0.471 58.647 3702.435 

12 0.520 51.027 3221.397 



 

 

13 0.570 44.653 2790.831 

14 0.620 37.021 2410.227 

15 0.666 31.206 2097.163 

16 0.713 26.915 1808.803 

17 0.759 23.117 1553.557 

18 0.806 19.600 1317.172 

10 0.852 18.779 1107.251 

20 0.912 16.415 862.108 

21 0.971 11.123 649.707 

22 1.019 6.589 496.151 

23 1.054 4.481 394.430 

24 1.090 3.438 298.459 

25 1.126 2.026 211.021 

26 1.150 0.604 157.382 

 

Case D023 - Rib:8   y =3.565 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 91.823 21255.223 

2 0.027 238.998 21038.574 

3 0.071 233.612 16405.346 

4 0.116 186.319 12130.115 

5 0.167 154.341 9457.182 

6 0.218 125.969 7718.686 

7 0.269 105.379 6457.041 

8 0.320 90.314 5480.210 

9 0.372 75.583 4677.172 

10 0.421 64.098 4046.612 

11 0.471 55.396 3497.227 

12 0.520 48.004 3030.583 



 

 

13 0.570 41.809 2613.056 

14 0.620 34.471 2244.177 

15 0.666 28.882 1940.962 

16 0.713 24.729 1661.906 

17 0.759 21.057 1415.149 

18 0.806 17.661 1186.912 

19 0.852 16.698 984.535 

20 0.912 14.255 748.709 

21 0.971 9.331 545.013 

22 1.019 5.289 398.280 

23 1.054 3.424 301.423 

24 1.090 2.424 210.383 

25 1.126 1.227 127.824 

26 1.150 0.297 77.421 

 

Case D023 - Rib:9   y =3.899 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 89.781 20782.664 

2 0.027 233.630 20566.016 

3 0.071 228.209 16025.918 

4 0.116 181.829 11837.821 

5 0.167 150.437 9217.944 

6 0.218 122.615 7513.192 

7 0.269 102.418 6275.626 

8 0.320 87.628 5317.223 

9 0.372 73.192 4529.235 

10 0.421 61.942 3910.474 

11 0.471 53.403 3371.400 

12 0.520 46.151 2913.581 



 

 

13 0.570 40.065 2504.050 

14 0.620 32.907 2142.360 

15 0.666 27.456 1845.184 

16 0.713 23.389 1571.834 

17 0.759 19.795 1330.281 

18 0.806 16.473 1107.040 

19 0.852 15.422 909.289 

20 0.912 12.932 679.177 

21 0.971 8.232 480.817 

22 1.019 4.492 338.268 

23 1.054 2.776 244.394 

24 1.090 1.801 156.377 

25 1.126 0.737 76.810 

26 1.150 0.109 28.392 

 

Case D023 - Rib: 10   y =4.235 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 73.109 16923.316 

2 0.027 189.788 16706.668 

3 0.071 184.083 12927.162 

4 0.116 145.162 9450.681 

5 0.167 118.550 7264.122 

6 0.218 95.226 5834.944 

7 0.269 78.239 4794.026 

8 0.320 65.691 3986.125 

9 0.372 53.668 3321.050 

10 0.421 44.331 2798.644 

11 0.471 37.125 2343.779 

12 0.520 31.015 1958.040 



 

 

13 0.570 25.821 1613.808 

14 0.620 20.134 1310.830 

15 0.666 15.817 1062.978 

16 0.713 12.443 836.219 

17 0.759 9.481 637.175 

18 0.806 6.766 454.734 

19 0.852 4.999 294.763 

20 0.912 2.119 111.311 

21 0.971 0.744 43.461 

22 1.019 0.216 12.841 

23 1.054 -0.215 -12.356 

24 1.090 -0.328 -18.684 

25 1.126 -0.326 -18.816 

26 1.150 -0.429 -24.026 

 

Case D023 - Rib:11   y =4.560 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 92.316 21369.416 

2 0.027 240.295 21152.768 

3 0.071 234.918 16497.035 

4 0.116 187.403 12200.748 

5 0.167 155.285 9514.993 

6 0.218 126.779 7768.343 

7 0.269 106.094 6500.880 

8 0.320 90.963 5519.595 

9 0.372 76.161 4712.921 

10 0.421 64.619 4079.510 

11 0.471 55.878 3527.633 

12 0.520 48.452 3058.856 

13 0.570 42.230 2639.397 

14 0.620 34.848 2268.781 

15 0.666 29.226 1964.107 

16 0.713 25.053 1683.672 

17 0.759 21.363 1435.657 

18 0.806 17.948 1206.212 

19 0.852 17.006 1002.718 

20 0.912 14.575 765.512 

21 0.971 9.596 560.525 



 

 

22 1.019 5.482 412.781 

23 1.054 3.581 315.204 

24 1.090 2.574 223.433 

25 1.126 1.345 140.151 

26 1.150 0.343 89.269 

 

Table 3.6 Load distribution of forces and pressure case E0.23. 

Case E023 - Rib:   1   y =    1.240 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 72.416 16762.863 

2 0.027 187.965 16546.215 

3 0.071 182.248 12798.330 

4 0.116 143.638 9351.435 

5 0.167 117.225 7182.891 

6 0.218 94.088 5765.170 

7 0.269 77.233 4732.428 

8 0.320 64.779 3930.784 

9 0.372 52.856 3270.819 

10 0.421 43.598 2752.419 

11 0.471 36.449 2301.056 

12 0.520 30.386 1918.313 

13 0.570 25.229 1576.796 

14 0.620 19.603 1276.259 

15 0.666 15.333 1030.457 

16 0.713 11.988 805.636 

17 0.759 9.052 608.359 

18 0.806 6.363 427.614 

19 0.852 4.566 269.214 

20 0.912 1.670 87.702 

21 0.971 -1.117 -65.258 

22 1.019 -2.287 -172.217 

23 1.054 -2.735 -240.720 

24 1.090 -3.491 -303.021 

25 1.126 -3.429 -357.137 

26 1.150 -1.493 -388.673 

 

Case E023 -Rib:   2   y =    1.596 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 71.101 16458.564 

2 0.027 184.508 16241.917 

3 0.071 178.769 12554.003 

4 0.116 140.747 9163.216 

5 0.167 114.711 7028.838 

6 0.218 91.928 5632.845 

7 0.269 75.327 4615.609 

8 0.320 63.050 3825.831 

9 0.372 51.317 3175.558 



 

 

10 0.421 42.210 2664.755 

11 0.471 35.165 2220.031 

12 0.520 29.193 1842.971 

13 0.570 24.106 1506.603 

14 0.620 18.596 1210.695 

15 0.666 14.415 968.783 

16 0.713 11.125 747.635 

17 0.759 8.239 553.710 

18 0.806 5.598 376.182 

19 0.852 3.744 220.760 

20 0.912 0.817 42.928 

21 0.971 -1.825 -106.596 

22 1.019 -2.800 -210.861 

23 1.054 -3.152 -277.443 

24 1.090 -3.891 -337.797 

25 1.126 -3.744 -389.987 

26 1.150 -1.614 -420.245 

 

Case E023 - Rib:   3   y =    1.922 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 68.115 15767.404 

2 0.027 176.657 15550.756 

3 0.071 170.867 11999.055 

4 0.116 134.180 8735.708 

5 0.167 109.000 6678.932 

6 0.218 87.023 5332.292 

7 0.269 70.996 4350.273 

8 0.320 59.121 3587.448 

9 0.372 47.820 2959.187 

10 0.421 39.056 2465.640 

11 0.471 32.250 2035.997 

12 0.520 26.482 1671.846 

13 0.570 21.555 1347.172 

14 0.620 16.309 1061.778 

15 0.666 12.331 828.699 

16 0.713 9.165 615.895 

17 0.759 6.392 429.583 

18 0.806 3.859 259.362 

19 0.852 1.878 110.706 

20 0.912 -1.119 -58.770 

21 0.971 -3.432 -200.488 

22 1.019 -3.966 -298.633 

23 1.054 -4.099 -360.853 

24 1.090 -4.801 -416.785 

25 1.126 -4.460 -464.599 

26 1.150 -1.889 -491.955 

 



 

 

Case E023 - Rib:   4   y =    2.247 

Rib X(m) Fz(N) p(N/m2) 

1 0.000 67.282 15574.558 

2 0.027 174.466 15357.909 

3 0.071 168.662 11844.214 

4 0.116 132.348 8616.426 

5 0.167 107.407 6581.302 

6 0.218 85.654 5248.432 

7 0.269 69.788 4276.239 

8 0.320 58.025 3520.935 

9 0.372 46.845 2898.815 

10 0.421 38.176 2410.083 

11 0.471 31.437 1984.648 

12 0.520 25.726 1624.099 

13 0.570 20.843 1302.688 

14 0.620 15.671 1020.228 

15 0.666 11.749 789.614 

16 0.713 8.618 579.138 

17 0.759 5.877 394.950 

18 0.806 3.374 226.767 

19 0.852 1.357 79.999 

20 0.912 -1.659 -87.145 

21 0.971 -3.881 -226.685 

22 1.019 -4.291 -323.123 

23 1.054 -4.364 -384.126 

24 1.090 -5.055 -438.825 

25 1.126 -4.660 -485.418 

26 1.150 -1.966 -511.963 

 

Case  E023 - Rib:   5   y =    2.573 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 66.327 15353.511 

2 0.027 171.955 15136.862 

3 0.071 166.134 11666.730 

4 0.116 130.248 8479.700 

5 0.167 105.581 6469.395 

6 0.218 84.086 5152.309 

7 0.269 68.403 4191.379 

8 0.320 56.769 3444.695 

9 0.372 45.727 2829.615 

10 0.421 37.167 2346.402 

11 0.471 30.505 1925.790 

12 0.520 24.859 1569.369 

13 0.570 20.027 1251.698 

14 0.620 14.939 972.601 



 

 

15 0.666 11.083 744.812 

16 0.713 7.991 537.005 

17 0.759 5.286 355.251 

18 0.806 2.818 189.405 

19 0.852 0.760 44.802 

20 0.912 -2.279 -119.670 

21 0.971 -4.395 -256.714 

22 1.019 -4.664 -351.195 

23 1.054 -4.667 -410.802 

24 1.090 -5.346 -464.087 

25 1.126 -4.889 -509.280 

26 1.150 -2.054 -534.898 

 

Case E023 - Rib:   6   y =    2.895 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 66.552 15405.560 

2 0.027 172.546 15188.911 

3 0.071 166.729 11708.521 

4 0.116 130.743 8511.895 

5 0.167 106.011 6495.746 

6 0.218 84.455 5174.942 

7 0.269 68.729 4211.361 

8 0.320 57.064 3462.647 

9 0.372 45.990 2845.910 

10 0.421 37.405 2361.397 

11 0.471 30.724 1939.649 

12 0.520 25.063 1582.256 

13 0.570 20.219 1263.705 

14 0.620 15.111 983.816 

15 0.666 11.240 755.361 

16 0.713 8.138 546.925 

17 0.759 5.425 364.599 

18 0.806 2.949 198.203 

19 0.852 0.900 53.090 

20 0.912 -2.133 -112.012 

21 0.971 -4.274 -249.643 

22 1.019 -4.576 -344.585 

23 1.054 -4.595 -404.521 

24 1.090 -5.278 -458.138 

25 1.126 -4.835 -503.661 

26 1.150 -2.033 -529.497 

 

Case E023 - Rib:   7   y =    3.230 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 65.012 15049.129 

2 0.027 168.497 14832.481 

3 0.071 162.654 11422.336 



 

 

4 0.116 127.356 8291.431 

5 0.167 103.066 6315.300 

6 0.218 81.926 5019.948 

7 0.269 66.496 4074.528 

8 0.320 55.038 3339.713 

9 0.372 44.187 2734.328 

10 0.421 35.778 2258.714 

11 0.471 29.221 1844.743 

12 0.520 23.665 1494.007 

13 0.570 18.904 1181.486 

14 0.620 13.932 907.020 

15 0.666 10.165 683.121 

16 0.713 7.127 478.988 

17 0.759 4.473 300.587 

18 0.806 2.053 137.959 

19 0.852 -0.062 -3.665 

20 0.912 -3.131 -164.457 

21 0.971 -5.103 -298.063 

22 1.019 -5.177 -389.849 

23 1.054 -5.084 -447.535 

24 1.090 -5.747 -498.873 

25 1.126 -5.205 -542.139 

26 1.150 -2.175 -566.478 

 

Case E023 - Rib:   8   y =    3.565 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 63.183 14625.672 

2 0.027 163.687 14409.023 

3 0.071 157.812 11082.332 

4 0.116 123.333 8029.507 

5 0.167 99.567 6100.921 

6 0.218 78.920 4835.806 

7 0.269 63.843 3911.963 

8 0.320 52.632 3193.662 

9 0.372 42.044 2601.762 

10 0.421 33.846 2136.721 

11 0.471 27.435 1731.990 

12 0.520 22.004 1389.163 

13 0.570 17.341 1083.807 

14 0.620 12.530 815.782 

15 0.666 8.888 597.295 

16 0.713 5.926 398.274 

17 0.759 3.341 224.538 

18 0.806 0.988 66.386 

19 0.852 -1.206 -71.092 

20 0.912 -4.318 -226.765 

21 0.971 -6.088 -355.588 



 

 

22 1.019 -5.891 -443.625 

23 1.054 -5.665 -498.638 

24 1.090 -6.305 -547.267 

25 1.126 -5.643 -587.852 

26 1.150 -2.344 -610.413 

 

Case E023 - Rib:   9   y =    3.899 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 62.248 14409.342 

2 0.027 161.229 14192.693 

3 0.071 155.339 10908.636 

4 0.116 121.278 7895.699 

5 0.167 97.780 5991.403 

6 0.218 77.385 4741.734 

7 0.269 62.488 3828.914 

8 0.320 51.402 3119.049 

9 0.372 40.950 2534.039 

10 0.421 32.858 2074.399 

11 0.471 26.522 1674.388 

12 0.520 21.156 1335.601 

13 0.570 16.542 1033.906 

14 0.620 11.814 769.172 

15 0.666 8.235 553.449 

16 0.713 5.313 357.040 

17 0.759 2.763 185.687 

18 0.806 0.444 29.822 

19 0.852 -1.790 -105.539 

20 0.912 -4.924 -258.595 

21 0.971 -6.591 -384.976 

22 1.019 -6.256 -471.097 

23 1.054 -5.961 -524.745 

24 1.090 -6.589 -571.990 

25 1.126 -5.868 -611.205 

26 1.150 -2.430 -632.858 

 

Case E023 - Rib:  10   y =    4.235 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 53.561 12398.343 

2 0.027 138.384 12181.695 

3 0.071 132.346 9293.961 

4 0.116 102.172 6651.827 

5 0.167 81.165 4973.320 

6 0.218 63.113 3867.245 

7 0.269 49.889 3056.894 

8 0.320 39.971 2425.451 

9 0.372 30.777 1904.487 

10 0.421 23.682 1495.055 



 

 

11 0.471 18.041 1138.924 

12 0.520 13.269 837.695 

13 0.570 9.120 570.025 

14 0.620 5.159 335.884 

15 0.666 2.170 145.863 

16 0.713 -0.391 -26.268 

17 0.759 -2.611 -175.472 

18 0.806 -4.614 -310.076 

19 0.852 -7.221 -425.751 

20 0.912 -10.558 -554.494 

21 0.971 -11.268 -658.163 

22 1.019 -9.648 -726.479 

23 1.054 -8.718 -767.435 

24 1.090 -9.237 -801.814 

25 1.126 -7.952 -828.297 

26 1.150 -3.231 -841.504 

 

 

Case E023 - Rib:  11   y =    4.560 

Rib X (m) Fz (N) p (N/m2) 

1 0.000 63.569 14715.066 

2 0.027 164.702 14498.418 

3 0.071 158.835 11154.109 

4 0.116 124.183 8084.801 

5 0.167 100.306 6146.178 

6 0.218 79.555 4874.680 

7 0.269 64.403 3946.281 

8 0.320 53.140 3224.494 

9 0.372 42.497 2629.748 

10 0.421 34.254 2162.474 

11 0.471 27.812 1755.793 

12 0.520 22.355 1411.296 

13 0.570 17.671 1104.427 

14 0.620 12.826 835.043 

15 0.666 9.157 615.413 

16 0.713 6.180 415.313 

17 0.759 3.580 240.592 

18 0.806 1.213 81.496 

19 0.852 -0.964 -56.858 

20 0.912 -4.067 -213.611 

21 0.971 -5.880 -343.444 



 

 

22 1.019 -5.741 -432.272 

23 1.054 -5.542 -487.850 

24 1.090 -6.187 -537.050 

25 1.126 -5.551 -578.202 

26 1.150 -2.308 -601.138 

  



 

 

Appendix C 
 

 

Table 4.6 Table 4.16 shown  in Appendix C. 

Table 4.6 Aerodynamic Parameters at Envelope Point AA+ (δF = 0o, δA = 15o, n = 4.0, V = 66.87m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.6485 -0.2227 0.6901 2.04 -6.33 3.34 

2 687.4 -0.016 0.6485 -0.2166 0.6889 2.03 -6.20 3.33 

3 727.4 0.049 0.6863 -0.1640 0.7168 2.22 -5.38 3.68 

4 827.4 0.068 0.7853 -0.1404 0.8115 2.86 -5.56 4.87 

5 932.4 0.063 0.8797 -0.1389 0.9056 3.49 -6.17 6.05 

6 932.4 0.045 0.8797 -0.1568 0.9089 3.52 -6.54 6.09 

7 892.4 -0.005 0.8419 -0.2095 0.8810 3.33 -7.36 5.74 

8 792.4 -0.019 0.7429 -0.2212 0.7841 2.68 -6.93 4.53 

 

 

Table 4.7 Aerodynamic Parameters at Envelope Point AA- (δF = 0o, δA = -23o, n = 4.0, V = 66.87m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.64853 -0.0151 0.6514 1.78 -2.07 9.73 

2 687.4 -0.016 0.64853 -0.0089 0.6502 1.77 -1.95 9.72 

3 727.4 0.049 0.68627 0.0437 0.6781 1.96 -1.12 10.07 

4 827.4 0.068 0.78533 0.0672 0.7728 2.60 -1.31 11.26 

5 932.4 0.063 0.87967 0.0688 0.8669 3.23 -1.91 12.44 

6 932.4 0.045 0.87967 0.0508 0.8702 3.26 -2.28 12.48 

7 892.4 -0.005 0.84193 -0.0018 0.8423 3.07 -3.10 12.13 

8 792.4 -0.019 0.74287 -0.0136 0.7454 2.41 -2.68 10.92 

 

Table 4.8 Aerodynamic Parameters at Envelope Point DA+ (δF = 0o, δA = 5.0o, n = 4.0, V = 107.22m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.2522 -0.1569 0.28145 -0.71 -2.31 0.02 

2 687.4 -0.016 0.2522 -0.1545 0.28100 -0.72 -2.26 0.02 

3 727.4 0.049 0.2669 -0.1341 0.29186 -0.64 -1.94 0.15 

4 827.4 0.068 0.3054 -0.1249 0.32867 -0.39 -2.01 0.61 

5 932.4 0.063 0.3421 -0.1243 0.36525 -0.15 -2.24 1.07 

6 932.4 0.045 0.3421 -0.1313 0.36655 -0.14 -2.39 1.09 

7 892.4 -0.005 0.3274 -0.1517 0.35569 -0.21 -2.71 0.95 

8 792.4 -0.019 0.2889 -0.1563 0.31802 -0.47 -2.54 0.48 



 

 

 

 

Table 4.9 Aerodynamic Parameters at Envelope Point DA- (δF = 0o, δA =-7.7o, n = 4.0, V = 107.22m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.2522 0.2685 -0.0875 0.76 -2.45 2.16 

2 687.4 -0.016 0.2522 0.2681 -0.0851 0.76 -2.40 2.15 

3 727.4 0.049 0.2669 0.2789 -0.0647 0.89 -2.14 2.29 

4 827.4 0.068 0.3054 0.3157 -0.0555 1.36 -2.42 2.75 

5 932.4 0.063 0.3421 0.3523 -0.0549 1.82 -2.87 3.21 

6 932.4 0.045 0.3421 0.3536 -0.0619 1.83 -3.02 3.23 

7 892.4 -0.005 0.3274 0.3428 -0.0824 1.70 -3.28 3.09 

8 792.4 -0.019 0.2889 0.3051 -0.0869 1.22 -2.90 2.62 

 

Table 4.10 Aerodynamic Parameters at Envelope Point AF (δF = 30o, δA =0.0o, n = 2.0, V = 33.5m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 1.2917 -0.3180 1.3510 0.92 -7.04 3.60 

2 687.4 -0.016 1.2917 -0.3057 1.3487 0.91 -6.79 3.58 

3 727.4 0.049 1.3669 -0.2010 1.4044 1.21 -5.08 4.20 

4 827.4 0.068 1.5642 -0.1540 1.5929 2.23 -5.20 6.33 

5 932.4 0.063 1.7521 -0.1510 1.7802 3.25 -6.16 8.43 

6 932.4 0.045 1.7521 -0.1868 1.7869 3.29 -6.88 8.51 

7 892.4 -0.005 1.6769 -0.2916 1.7313 2.99 -8.60 7.88 

8 792.4 -0.019 1.4796 -0.3150 1.5384 1.94 -8.00 5.71 

 

Table 4.11 Aerodynamic Parameters at Envelope Point AFA+ (δF = 30o, δA =15o, n = 2.0, V = 33.5m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 1.2917 -0.4000 1.3663 1.00 -8.70 1.06 

2 687.4 -0.016 1.2917 -0.3877 1.3640 0.99 -8.45 1.04 

3 727.4 0.049 1.3669 -0.2829 1.4196 1.29 -6.74 1.66 

4 827.4 0.068 1.5642 -0.2360 1.6082 2.32 -6.86 3.78 

5 932.4 0.063 1.7521 -0.2329 1.7955 3.33 -7.82 5.89 

6 932.4 0.045 1.7521 -0.2688 1.8022 3.37 -8.54 5.97 

7 892.4 -0.005 1.6769 -0.3735 1.7466 3.07 -10.26 5.34 

8 792.4 -0.019 1.4796 -0.3969 1.5536 2.02 -9.66 3.17 

 

 

 

 



 

 

 

 

Table 4.12 Aerodynamic Parameters at Envelope Point AFA- (δF = 30o, δA =-23o, n = 2.0, V = 33.5m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 1.29173 -0.1924 1.3276 0.79 -4.50 7.50 

2 687.4 -0.016 1.29173 -0.1801 1.3253 0.78 -4.25 7.48 

3 727.4 0.049 1.36689 -0.0753 1.3809 1.08 -2.53 8.10 

4 827.4 0.068 1.56419 -0.0284 1.5695 2.11 -2.65 10.22 

5 932.4 0.063 1.7521 -0.0253 1.7568 3.12 -3.61 12.33 

6 932.4 0.045 1.7521 -0.0612 1.7635 3.16 -4.34 12.41 

7 892.4 -0.005 1.67694 -0.1659 1.7079 2.86 -6.05 11.78 

8 792.4 -0.019 1.47963 -0.1893 1.5149 1.81 -5.46 9.61 

 

Table 4.13 Aerodynamic Parameters at Envelope Point DFA+ (δF = 30o, δA =5.0o, n = 2.0, V=49.14m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.6003 -0.3258 0.6611 -2.82 -3.45 -5.06 

2 687.4 -0.016 0.6003 -0.3201 0.6600 -6.93 0.77 -5.07 

3 727.4 0.049 0.6353 -0.2714 0.6859 -6.96 1.74 -4.78 

4 827.4 0.068 0.7270 -0.2496 0.7735 -7.07 2.27 -3.80 

5 932.4 0.063 0.8143 -0.2482 0.8606 -7.18 2.41 -2.82 

6 932.4 0.045 0.8143 -0.2648 0.8637 -7.19 2.09 -2.78 

7 892.4 -0.005 0.7794 -0.3135 0.8378 -7.15 1.12 -3.07 

8 792.4 -0.019 0.6877 -0.3244 0.7481 -7.04 0.80 -4.08 

 

Table 4.14 Aerodynamic Parameters at Envelope Point DFA- (δF = 30o, δA =-7.7o, n = 2.0, V=49.14m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.6003 -0.2565 0.6481 -2.89 -2.04 -2.91 

2 687.4 -0.016 0.6003 -0.2507 0.6471 -2.90 -1.93 -2.92 

3 727.4 0.049 0.6353 -0.2020 0.6729 -2.76 -1.13 -2.63 

4 827.4 0.068 0.7270 -0.1802 0.7606 -2.28 -1.19 -1.64 

5 932.4 0.063 0.8143 -0.1788 0.8476 -1.81 -1.63 -0.66 

6 932.4 0.045 0.8143 -0.1955 0.8507 -1.79 -1.97 -0.63 

7 892.4 -0.005 0.7794 -0.2442 0.8249 -1.93 -2.77 -0.92 

8 792.4 -0.019 0.6877 -0.2550 0.7352 -2.42 -2.49 -1.93 

 

 

 

 



 

 

 

 

 

Table 4.15 Aerodynamic Parameters at Envelope Point AH (δF = 0o, δA =0.0o, n = 1.0, V=66.87m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.1621 -0.1270 0.1858 -1.36 -1.09 -0.28 

2 687.4 -0.016 0.1621 -0.1255 0.1855 -1.36 -1.06 -0.28 

3 727.4 0.049 0.1716 -0.1124 0.1925 -1.31 -0.85 -0.19 

4 827.4 0.068 0.1963 -0.1065 0.2162 -1.15 -0.90 0.11 

5 932.4 0.063 0.2199 -0.1061 0.2397 -0.99 -1.05 0.40 

6 932.4 0.045 0.2199 -0.1106 0.2405 -0.99 -1.14 0.41 

7 892.4 -0.005 0.2105 -0.1237 0.2335 -1.04 -1.35 0.32 

8 792.4 -0.019 0.1857 -0.1267 0.2093 -1.20 -1.24 0.02 

 

Table 4.16 Aerodynamic Parameters at Envelope Point DH (δF = 0o, δA =0.0o, n = 1.0, V=102.22m/s) 

 

No. Mass (kg) xcg (m) CL CLH CLW H (o) H (o) (o) 

1 687.4 -0.024 0.0630 -0.1243 0.0862 -2.03 -0.36 -1.53 

2 687.4 -0.016 0.0630 -0.1237 0.0861 -2.03 -0.35 -1.53 

3 727.4 0.049 0.0667 -0.1185 0.0888 -2.01 -0.27 -1.49 

4 827.4 0.068 0.0763 -0.1162 0.0980 -1.95 -0.29 -1.38 

5 932.4 0.063 0.0855 -0.1161 0.1072 -1.89 -0.35 -1.26 

6 932.4 0.045 0.0855 -0.1178 0.1075 -1.89 -0.38 -1.26 

7 892.4 -0.005 0.0819 -0.1230 0.1048 -1.90 -0.46 -1.29 

8 792.4 -0.019 0.0722 -0.1241 0.0954 -1.97 -0.42 -1.41 

 

 

 

 

 

 

 

 


