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Podaci o doktorskoj disertaciji

Naslov doktorske disertacije

”ISTRAŽIVANJE SUPERPROVODNOSTI U GRAFENU I SLIČNIM MATERI-

JALIMA KORIŠĆENJEM AB-INITIO METODA”

Rezime

Disertacija istražuje superprovodnost u dopiranom grafenu i monosloju magnezijum-

diborida, novog superprovodnog 2D materijala. Za sve proračune su korǐsćenje

ab-initio tehnike zasnovane na teoriji funkcionala gustine. Pokazano je da pri-

menom dvo-osovinskog istezanja elektron-fononska interkacija se može prilagodjavati

u grafenu dopiranom litijumom tako da se kritična temperatura može povećati do 29

K. Vibracione osobine grafena dopiranog litijumom i drugim alkalnim metalima (Ba

i Ca) su detaljno proučavane da bi se bolje razumelo elektron-fononsko kuplovanje

i poreklo superprovodnosti u grafenu. Takodje slika o grafenu dopiranom litijumom

je kompletirana istraživanjem optičkih osobina ovog materiala.

Inspirisani strukturnom i elektronskom sličnošću sa grafitom i grafenom, niskodi-

menzioni limit magnezijum-diborida je proučavan. Njegove elektronske i fononske

osobine su detaljno diskutovane. Pokazano je da je MgB2 u monosloju superprovo-

dan na 18 K i da isto kao kod grafena, na elektron-fononsku interakciju se može uti-

cati primenom dvo-osovinskog naprezanja, cime se povećava kritična temperatura do

31 K. Rezultati prikazani u ovoj disertciji ne samo da izučavaju superprovodnost u

grafenu i grafenu-sličnim materijalima vec opštije izučavaju pitanja i perspektive is-

traživanja superprovodnosti u nisko-dimenzionim materijalima korǐsćenjem ab-initio

metoda.

U disertaciji uz ab-initio izučavanje materijala, tehničko pitanje proračuna se

takodje diskutuje. Testirano je korǐsćenje hardverskog ubrzanja, grafičkih proce-

sora, sa posebnim fokusom na proračune nisko-dimensionih materijala.

Dodatno je predstavljena sinteza dvo-dimenzionih materijala primenom tehnike

mikromehaničke eksfolijacije. Prikazano je kako uzorci dobijeni na ovaj način mogu

se koristiti za različite primene, a demonstrirano je kako se grafen moze koristiti kao

zaštitni sloj za organske nanostrukture. Uzorci dobijeni mikromehaničkom eksfoli-
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jacijom su najvǐseg kvaliteta i ne samo da mogu da se koriste za aplikacije, već i za

fundamentalna istraživanja (npr superprovodnost).

Ključne reči:

grafen, superprovodnost, elektron-fononska interakcija, grafenu slični materijali, DFT,

magnezijum-diborid, nisko-dimenzioni materijali, GPU ubrzanje, GPGPU
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Information about the thesis

Title of the thesis

”INVESTIGATION OF SUPERCONDUCTIVITY IN GRAPHENE AND RELATED

MATERIALS USING AB-INITIO METHODS”

Abstract

The dissertation investigates the superconductivity in doped graphene and magne-

sium-diboride monolayer as a novel two-dimensional superconducting material. The

ab-initio techniques based on the density functional theory were employed for all the

studies. It is demonstrated that by application of equibiaxial strain the electron-

phonon interaction in graphene doped with Lithium can be tuned and the critical

temperature can be significantly enhanced, up to 29K. The extensive focus is de-

voted to vibrational properties Li and other alkali metal (Ba and Ca) doped graphene

in order to get better understanding of electron-phonon coupling and origin of su-

perconductivity in graphene. Furthermore, the study of optical properties of the

Li-doped graphene completes the detailed picture of this material.

Inspired with the structural and electronic similarity with graphite and graphene,

low-dimensional limit of magnesium-diboride has been investigated. Its electron and

phonon properties are thoroughly discussed. It is demonstrated MgB2 in monolayer

is superconducting at 18K and, same as in graphene, the electron-phonon interaction

can be tuned by application of the biaxial strain, increasing the critical temperature

up 31K. The results presented in this dissertation not only discuss superconductiv-

ity in graphene and related materials but more general issues and perspectives of

superconductivity in low-dimensional materials studied with ab-intio methods.

In the dissertation along with ab-initio study of material, the more technical issue

of calculations is addressed. The use of hardware acceleration, namely the graphic

processors, is tested with the focus on the specificities of low-dimensional materials

study.

In addition, the synthesis of two-dimensional materials using micromechanical ex-

foliation technique is presented in the dissertation. It is also demonstrated how the

samples produced this way can be further used in various applications, namely it is

viii



demonstrated how graphene can be used as the protective coating for the organic

nanostructures. Samples obtained from micromechanical exfoliation have the high-

est possible quality and can be used, not only for applications, but for fundamental

research (i.e. superconductivity).

Keywords:

graphene, superconductivity, electron-phonon interaction, graphene-related materi-

als, ab-initio, DFT, magnesium-diboride, low-dimensional materials, GPU accelera-

tion, GPGPU

Scientific field: Physics

Subfield: Condensed Matter Physics

UDK number: - 538.9
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PREFACE

This thesis describes work done on superconductivity in graphene and the graphene

related materials using the first principle techniques. However interest of this re-

search is wider, it considers doped monolayer graphene and the magnesium-diboride

monolayer in the context of superconducting materials and superconductivity in

two-dimensions. Interest in the two-dimensional materials has rapidly accelerated

in the past decade, mainly as a result of the discovery of graphene [1] and its re-

markable properties. Promptly after the first isolation of graphene interest in super-

conductivity in it, has grown rapidly. In the world obsessed with miniaturization,

low-dimensional superconductors are acquiring great relevance and graphene as an

ultimately low-dimensional material earned an important place under the spotlight

of modern material science.

Superconductivity and the electron-phonon interaction has been studied, described

and discussed for almost a century by plethora of theoretical methods. However,

predictive non-empirical technique have become available only during the past two

decades, invigorated by the development of computational resources. Today there

are broadly accessible techniques to calculate from the first principles many mate-

rials properties related to the electron-phonon interaction, including the electron-

phonon coupling strength and the critical temperature of conventional superconduc-

tors. Some of these techniques have been employed in this dissertation, namely the

density functional theory and the density functional perturbation theory (DFT and

DPFT, respectively).

The presented research covers study of the superconductivity in the graphene-

monolayer doped by alkali-metals and suggests methods for an enhancement of the

electron-phonon coupling in order to achieve higher critical temperatures, and pro-

poses new two-dimensional materials, the magnesium-diboride monolayer and in-

vestigates its properties. Nonetheless the ultimate goal of this dissertation is in a

better understanding of superconductivity in low-dimensional materials and using

predictive powers of the ab-initio techniques to find new superconductive materials.
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Contents

The dissertation comprises of seven chapters, covering this topic. The first chapter

represents an introduction to graphene and its unique properties with an additional

focus on other two-dimensional materials that followed discovery of graphene. The

second chapter covers basic concepts and theories of superconductivity, concentrat-

ing on superconductivity in low-dimensions, especially in graphene and magnesium-

diboride. Methodology used in research is presented in the third and fourth chapter.

Namely, the theoretical basics of DFT and DPFT in the third chapter and compu-

tational tools used for research in the fourth one. The main chapter is the fifth

one, it presents the conclusions of the theoretical and computational study, pre-

senting several important results (an enhancement of critical temperature in the

Li-doped graphene monolayer and presenting magnesium-diboride as superconduct-

ing monolayer material). In this chapter is presented an additional technical study

of usage of hardware acceleration in low-dimensional materials study as an integral

part of computational science research. The experimental techniques for production

of high-quality monolayer samples of graphene and other two-dimensional materials

are presented in the sixth chapter. In this chapter is given a brief demonstration of

the graphene’s remarkable properties and possibilities for application as protective

coatings for complex organic nanostructures. The seventh chapter is the conclusion

presenting both results and general remarks on using the ab-initio techniques in the

study of superconductivity in low-dimensions, and as well as the possible directions

for the future work.
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1. GRAPHENE AND RELATED

MATERIALS

1.1. Introduction to Graphene

The isolation of graphene in 2004, as a true two-dimensional material (2D) opened

the way for investigation of a new class of materials in low-dimensional physics.

Graphene, a novel nanomaterial, was isolated by K.S. Novoselov, A. Geim [1] and

their co-workers at the University of Manchester. Although this was not first isola-

tion of graphene ever, there were several prior reports, such are [5, 6], the discovery

of Geim and Novoselov was revolutionary since they were the first to study ex-

traordinary properties of graphene. They were awarded the Nobel prize ”for the

groundbreaking experiments regarding the two-dimensional material graphene” in

2010. Soon after its discovery, graphene became one of the most studied topics

both by the material science and condensed matter physic community. The im-

portance of the graphene arises from its unique physical properties. Graphene is a

single atomic layer of graphite, with the carbon atoms arranged in the hexagonal

(or honeycomb) lattice. It is considered as a first truly two-dimensional material,

with the thickness of only one atomic layer, 3.4Å. After the discovery of graphene,

the new field of two-dimensional materials research has emerged and explored not

only graphene but many more Van der Waals’ materials, crystal structures where,

just like in graphene, cells connected in at least one direction by the Van der Waals’

forces [2, 3, 4]

Uniqueness of graphene properties arises from its very simple crystal structure. The

hexagonal unit cell consisting of two carbon atoms is the origin for many interesting

phenomena that draw an attention both of the scientific community and the indus-

try. The press given name ”wonder material” [3] originates in plethora of unique

properties. The graphene’s incredibly high strength-to-weight ratio and the Young’s

3



1. GRAPHENE AND RELATED MATERIALS

modulus of 1 TPa [7](five times higher than steel) comes from the in-plane σ-bonds

between the carbon atoms, while the defect-free lattice structure allows it to be

impermeable to all gases, even with a monolayer thickness [8].

The main property that initially made graphene so tempting for research was the

high charge carrier mobility [9] achievable in defect-free samples produced through

the process of the micro-mechanical exfoliation, reaching the theoretical limit

(∼2x105cm2V −1s−1). Due to its unique band structure and dispersion relation,

charge carriers in graphene behave as massless Dirac fermions [2], allowing for the

first time an experimental insight into new areas of physics previously only confined

to theoretical calculations.

The long list of graphene’s amazing properties [10, 11, 12, 13] has promoted graphene

as a material of the future, and one of the most popular materials for research and

development in recent years. Graphene exhibits excellent crystalline uniformity and

transport properties which make it a promising material for future nanoelectronic

devices and spintronics. Other unique properties (mechanical, thermal) imply it

could have a wide array of other practical uses.

1.2. Structure and Electronic Properties of Graphene

Graphene is a member of the carbon allotrope family (Figure 1.2), each with their

own dimensionality. Graphite is a three-dimensional form of carbon, while carbon

nanotubes are one dimensional and fullerenes are a 0-D carbon allotrope. Although

theoretically predicted, it took more than a half of century for its experimental

realization. Its stability under ambient conditions [75] was an amazing discovery.

According to the Mermin-Wagner theorem [76], whenever an ordering corresponds

to a breaking of a continuous symmetry (like crystal lattice), there is no long range

order in one-dimensional and two-dimensional cases at any nonzero temperature.

This theorem is connected with the Goldstone theorem (which states when there

is a broken continuous symmetry at a phase transition, in the ordered state of the

system (without the long-range interaction) there should exist a collective mode, an

excitation with a gapless energy spectrum, called Goldstone modes.)

In the standard description [77] of the atomic motion in solids it is assumed that

amplitudes of atomic vibrations near their equilibrium positions are much smaller

than interatomic distances. In a crystal the average vibration amplitude 〈u2〉 is

4



1. GRAPHENE AND RELATED MATERIALS

〈u2〉 =
∑
k

~
Mωk

(
〈b†kbk〉+

1

2

)
=
∑
k

~
Mωk

(
nk +

1

2

)
=

∫
ddk

(2π)d
~

Mωk

(
1

eωk/T − 1
+

1

2

) (1.1)

For finite temperatures, k→0 is critical. We considered acoustic phonons (s is

sound velocity) for the region ωk=sk<T .This part of the spectrum exists if the

spectrum is gapless and in this region:

nk =
1

eωk/T − 1
∼=

1

ωk/T
=

T

sk
(1.2)

which makes:

〈u2〉 ∼
∫
ddk

ωk

(
T

ωk
+

1

2

)
(1.3)

And in 2D case

〈u2〉 ∼
∫
k · dk · T

ωk
∼ T

∫
k · dk
s2k2

(1.4)

Namely 〈u2〉 is logarithmically divergent at any finite T. Thus when T is being a

finite temperature there is no long range order in 2D systems. In graphene the exis-

tence of ripples (that give rise to roughness fluctuations) stabilize structure but play

an important role in its electronic properties as well [78]. Another important issue

and contribution for thermodynamic instability of graphene (and 2D materials in

general) is the role of defects. Finite concentrations of dislocations and disclinations

would destroy the long-range transitional and the orientational order, respectively.

However in graphene and other strongly bonded two-dimensional crystals, density of

dislocations in the equilibrium is exponentially small. It is important to emphasize

that in the first successful isolation of graphene, Novoselov and Geim started from

the stable allotrope of carbon, graphite, and transfered graphene to a substrate,

making it stable for a certain amount of time. Graphene in general is considered

meta-stabile and after a certain amount of time, samples made on substrates begin

to wrinkle, break and fold.

The bonding in graphene takes the form of the sp2 hybridisation, where 2s, 2px

and 2py orbitals rearrange themselves to create three equivalent orbitals, separated

by 120◦ in the plane, as shown in Figure 1.3. There is a superposition of 2s and two

2p-orbitals:

5



1. GRAPHENE AND RELATED MATERIALS

Figure 1.1.: Hybridization of bonds in graphene. Carbon’s 2s2, px, py becomes in

graphene σ bond from 1s px py and π from pz filled with one electron.

|sp2
1〉 =

1√
3
|2s〉 −

√
2

3
|2py〉

|sp2
2〉 =

1√
3
|2s〉+

√
2

3

(√
3

2
|2px〉+

1

2
|2py〉

)

|sp2
3〉 = − 1√

3
|2s〉+

√
2

3

(
−
√

3

2
|2px〉+

1

2
|2py〉

) (1.5)

This allows each carbon atom to make covalent σ-bonds with three other carbon

atoms, forming a honeycomb lattice made out of hexagons. The free 2pz orbital

forms out of plane π-bonds, and the π-electrons are mainly responsible for the in-

credible electronic properties of graphene, and the near-relativistic mobility observed

in high quality samples. As each p-orbital contains one electron, the overall π-band

is half filled [14]. In graphite, there are no covalent bonds between layers but only

in-plane because of the great interlayer distance for orbitals to overlap. π-orbitals

are weakly attracted by the Van der Waal’s force, binding layers in bulk. In the

process of exfoliation these bonds are broken and graphene can be isolated.

We can discuss graphene as a hexagonal Bravis lattice with two atoms per unit

cell and we can describe characteristic lattice vectors a1 and a2 as function of bond

length, which is in graphene a = 1.42Å.

It is often said that graphene’s hexagonal structure consists of two trigonal sublat-

tices each with one carbon atom (blue and black in Figure 1.4), related to each other

by inversion symmetry.

The real space unit vectors of the hexagonal lattice are:

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−
√

3
)

The three high symmetry points Γ, K and M have the following definitions: Γ is

the zone centre, K is the zone corner and M is the centre of the edge of the first

6



1. GRAPHENE AND RELATED MATERIALS

Figure 1.2.: Carbon allotropes. Graphene can be seen as a parent to the other

allotropes of carbon with sp2 hybridisation. From left to right, fullerenes

(0-D), nanotubes (1D) and graphite (3D).

Figure 1.3.: Bonding in graphene. (a) The orbitals of carbon atoms undergoing sp2

hybridisation, facilitating the formation of the hexagonal lattice (b),

present in graphite and graphene.

7



1. GRAPHENE AND RELATED MATERIALS

Figure 1.4.: Graphene lattice structure (a) consisting of two overlapping triangular

lattices represented by black and blue positions respectively. Each lat-

tice is formed by the vectors a1 and a2 (b) Graphene’s Brillouin zone

plotted in reciprocal space. The high symmetry points Γ, M, K and K’

are represented in the first Brillouin zone.

Brillouin zone. The two points, K and K’, named ”Dirac points”, are of particular

importance for the physics of graphene are the reciprocal lattice vectors:

b1 =
2π

3a

(
1,
√

3
)
, b2 =

2π

3a

(
1,−
√

3
)

From the reciprocal lattice, the two inequivalent corners of the hexagonal Brillouin

Zone are labelled K and K’ and positioned in reciprocal space at the points.

K =

(
2π

3a
,

2π

3
√

3a

)
, K ′ =

(
2π

3a
,− 2π

3
√

3a

)
It is very important to emphasize that there is no combination of the reciprocal

lattice vectors that can connect K and K’ points. This means K and K’ points are

not equivalent, they are chiral, and connected by a reflection operation. This mirror

plane lies perpendicular to graphene’s plane, in the Γ-M direction.

As discussed above , there are two types of bonds in graphene. The σ-bonds,

that are strong and contribute to structural stability of graphene. The electrons

in the σ-bonds are very tightly bound and localized. The other type of bonds

are delocalized π-bands that cross the Fermi energy and determine the low energy

electronic properties of graphene. The band structure of graphene as a single layer

of graphite was calculated long before the actual realization of graphene. Wallace

[15, 16] in 1946 calculated the band structure of graphene using the tight binding

method.

To discuss the band structure, we start from a tight-binding model with nearest-

neighbour hopping. The relevant atomic orbital is the carbon π orbital which is left

8



1. GRAPHENE AND RELATED MATERIALS

Figure 1.5.: Bands structure of graphene

unfilled by the bonding electrons, and which is oriented normal to the plane of the

lattice: as usual, this orbital can accommodate two electrons with spin projection

±1. We denote the orbital on atom i with spin σ by (i, σ), and corresponding

creation operator by a†iσ(b†iσ) (H.C. Hermitian conjugate) for an atom on the A (B)

sublattice, then the nearest-neighbour tight-binding Hamiltonian has the simple

form [15]:

ĤTB,n.n. = −t
∑

ij=n.n.,σ

(a†iσbjσ +H.C.) (1.6)

The numerical value of the nearest-neighbour hopping matrix element t, which

sets the overall scale of the π -derived energy band, is determined to be about 2.8

eV. It is convenient to write the tight-binding (TB) eigenfunctions in the form of

a spinor, whose components correspond to the amplitudes on the A and B atoms

respectively within the unit cell labelled by a reference point R0
i .

For an A-sublattice atom, the three nearest neighbour vectors in real space are

given by:

While those for the B-sublattice are the same as this one but with a minus sign.

Now we chose that A and B are separated by δ1 (as in the right panel of Figure1.6)

and then the TB eigenfunctions have the form:

(
αk

βk

)
=
∑
i

exp ik ·R0
i

(
a†ie
−ik·δ1/2

b†ie
ik·δ1/2

)
(1.7)

9



1. GRAPHENE AND RELATED MATERIALS

Figure 1.6.: Hexagonal lattice consists of two triangular lattices

Where b†icreates an electron on the B atom in cell i. The resulting Hamiltonian

in the k-representation is off-diagonal.

Ĥk =

(
0 ∆k

∆∗k 0

)
∆k ≡ −t

3∑
l=1

exp ik · δl (1.8)

For explicit values of nearest neighbour vectors δl we get:

∆k = −t exp−ikxa

(
1 + 2 exp(i · 3kxa

2
cos

√
3

2
kya)

)
(1.9)

Eigenvalues of H, εk are given by:

εk = ±|∆k| = ±t

(
1 + 4 cos

3kxa

2
cos
√

3
kya

2
+ 4 cos2

√
3

2
kya

)1/2

(1.10)

Here the plus sign applies to the upper (π*) and the minus sign the lower (π)

band. Detailed derivation is presented in the Appendix A.1.1. We are interested in

the case for which values of k, ∆k (hence εk) is zero. For this to happen, the next

condition must be satisfied:

3kxa

2
= 2πn, cos

√
3

2
kya = −1

2

or
3kxa

2
= (2n+ 1)π, cos

√
3

2
kya = +

1

2

(1.11)

The first condition will take ky outside the first Brilluin zone, but the second (for

n=0) is satisfied exactly at the points K and K’, the Dirac points. Since the energy

bands are exactly symmetric about the point Ek=0, and this condition is met only

10
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at the two Dirac points, implying that for exactly half filling of the band, the DOS

at the Fermi level is exactly zero. In the absence of doping, graphene has exactly

one electron per ”spin” per atom (2 per unit cell) so the band is exactly half filled.

So, indeed, graphene is a perfect semimetal. Since the two sublattices are physically

equivalent, when the state is an energy eigenfunction then (apart possibly from

trivial phase factors involved in the precise definition of the ai and bi) the behaviour

must be either symmetric or antisymmetric with respect to the exchange of A and

B.

This dispersion relation is depicted in Figure 1.7. The energy spectrum of this

relation results in a large gap in the Brillouin zone (BZ) center which smoothly closes

at the corners of the BZ (K and K’). Linear part is described by the E± = ~vF |k−K|
As stated above, each carbon atom contributes exactly one electron to the π-bands,

each band is exactly half filled with the Fermi energy EF positioned in the overlap

regions of the π and π* bands, the K points.

Around this point the dispersion relation is defined by two equivalent linear re-

gions, the so-called Dirac cones with its singular overlapping point, the Dirac point.

As the Fermi surface in this point is infinitely small, graphene can be defined as

a zero band-gap semiconductor. We have two distinguished regions of Fermi sur-

face (Figure1.7 (c)), low-energy and high-energy region and here they will be briefly

discussed.

If we want to discuss the peculiar low energy properties of graphene, we rewrite

the Hamiltonian in different basis. We use wave-function amplitudes on the A and B

lattice sites near K and K’ points ψK,A, ψK,B, ψK′,B, ψK′,A [17, 18] and we expand the

Hamiltonian for low energies around K-points with κ=k-K and the Fermi velocity

is vF = 3ta
2} ≈ 0.833 · 106 m/s

H =


0 ivF |κ|e−iΘ 0 0

−ivF |κ|eiΘ 0 0 0

0 0 0 ivF |κ|eiΘ

0 0 −ivF |κ|e−iΘ 0

 = vF

(
σ̂ · κ 0

0 −σ̂ · κ

)

(1.12)

where σ=(σx, σy) is the Pauli matrix operator:

σx =

(
0 i

−i 0

)
σy =

(
0 1

1 0

)
(1.13)
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1. GRAPHENE AND RELATED MATERIALS

Figure 1.7.: π-bands of graphene from the tight-binding approximation. At zero

doping the bands are half-filled with the Fermi energy sitting exactly

at the touching points of the Dirac cones, the so-called Dirac points.

(b) Low energy spectrum with the two linear Dirac cones in the BZ

corner sites K and K’. Hexagonal Brillouin zone of honeycomb lattice,

showing intersecting conical electron bands. The linear bands and the

two ”valleys” at K and K’ give unusual electronic properties to graphene.

In a pure sample, the lower cones are filled with electrons and the upper

cones are empty. (c) Fermi surface for different values of the Fermi

energy εF . At high energies the two separated valleys merge together

in the M-point and form a large single Fermi surface. The electronic

properties at these energies are no longer defined by the relativistic

Dirac equation.
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Two decoupled valleys in the corners of BZ are obtained this way, with each valley

having a linear energy dispersion relation:

ε(−→κ ) = ±vF |
−→
κ|

Hamiltonian equation is identical to the Dirac Hamiltonian of zero-mass relativis-

tic particles (like photons etc.), but speed of light is replaced by the Fermi velocity,

hence we have a linear dispersion relation. As shown above, the velocity of elec-

trons in graphene is about three orders of magnitude smaller than speed of light in

vacuum. Carriers in graphene do not travel at relativistic speed, but they are de-

scribed by the Weyl-Dirac equation [19]. Such unique behaviour of graphene carrier

enabled several quantum electrodynamics (QED) effects to be observed experimen-

tally. The electron transport in graphene is described by the Weyl-Dirac equation,

which made possible to use graphene as an effective medium for experimental test-

ing of relativistic quantum tunnelling described by the Klein paradox [20] and other

QED phenomena [21] among which is the half-integer quantum Hall effect [2, 74]

which in 2005 initiated an avalanche of graphene research papers. In condensed-

matter physics, electrons and phonons are described by separate Schrödinger equa-

tions but in graphene, they are interconnected exhibiting properties analogous to

the charge-conjugation symmetry in QED.

One of the properties of the Weyl-Dirac equation is that it connects the direction

of spin of the particle with its momentum, a concept known as chirality. Two-

component wavefunction that describes graphene is very similar to spinor wave-

function in QED but in graphene since we do not have spin index, it is replaced

with index that describes belonging to sub-lattice, thus it is usually referred to as a

pseudospin σ.

Helicity of a particle is a Hermitian and unitary operator and it is defined as the

projection of its pseudospin onto the direction of propagation [22]

η =
−→q −→σ
|q| and [η, H ] = 0

where −→σ is a spin of the particle. The helicity operator commutes with the Dirac

Hamiltonian (due to the absence of the mass term) and represents a good quantum

number.

In graphene, we have the same definition for helicity but the Pauli matrices now

represent a sublattice pseudo spin. For graphene chirality and helicity are the same.

The helicity is a conserved quantum number in elastic scattering processes induced

13
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Figure 1.8.: Helicity is a conserved quantum number in elastic scattering on impurity

potentials that vary smoothly on the lattice scale

by impurities (when impurity potentials vary smoothly on the lattice scale), caus-

ing inter-valley scattering to be suppressed and helicity is conserved. This effect

is the origin in ballistic transport in graphene, the Klein tunnelling (transmission

probability of a relativistic particle incident on a potential barrier is increasingly

higher the higher the barrier becomes, reaching perfect transmission for infinitely

high barriers) [22] ergo absence of the backscattering in graphene [23] (Figure 1.8).

At high energies, the Fermi surface alters dramatically from the low energy case

as is demonstrated in Figure1.8. Instead of the two small circular Fermi surfaces

around the K and K’ points and a linear dispersion relation around them, the two

valleys are merged together at around ε ˜3 eV to form a single Fermi surface spanning

the entire BZ. The dispersion relation around these energies is not linear and results

in flat band regions. In particular in the M-points, the band exhibits a saddle point

behaviour with an extremely high density of states (DOS), resulting in the van Hove

singularities [24, 26]. In this area, graphene can be better described as a good metal

rather than a zero band-gap semiconductor.
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Figure 1.9.: Calculated phonon dispersion relation of graphene. [28] LO, iTO, oTO,

LA, iTA and oTO are phonon modes at the Γ point. The green circles

are Xray scattering measurements from Ref. [31]. On the right is the

DOS of the phonons.

1.3. Phonons and Electron-Phonon Interaction in

Graphene

Since the unit cell of monolayer graphene contains two carbon atoms, A and B,

six phonon dispersion bands can be distinguished in phonon spectra [27] (Figure

1.9 of which three are acoustic (A) and other three are optic (O) phonon modes.

For one acoustic (A) and one optic (O) phonon branches, the atomic vibrations are

perpendicular to the graphene plane, and they correspond to the out-of-plane (o)

phonon modes.

For two acoustic and two optic phonon branches, the vibrations are in-plane (i). The

directions of the vibrations are considered with respect to the direction of the nearest

carbon-carbon atoms so they are classified as longitudinal (L) and transverse (T)

according to vibrations parallel or perpendicular, respectively, to the A-B carbon-

carbon direction.

In Figure1.9, phonon dispersion is depicted along the high symmetry ΓM and ΓK

directions, and the six phonon dispersion curves are assigned to LO, iTO, oTO, LA,

iTA, and oTA phonon modes. The symmetry group of graphene is Dg80 = T ∧D6h

[29, 30].

At the Γ point, the group of the wave vector is D6h and phonon modes are classified
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Figure 1.10.: Raman spectra of mechanically exfoliated graphene sample for mono

and bilayer graphene (optical image of samples depicted in the inset)

Figure 1.11.: Raman map of mechanically exfoliated graphene sample for mono and

the few-layer
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according to [30]:

out-of-plane︷ ︸︸ ︷
ΓB1g +

in-plane︷ ︸︸ ︷
ΓE2g +

acoustic︷ ︸︸ ︷
out-of-plane︷ ︸︸ ︷

ΓA2u +

in-plane︷ ︸︸ ︷
ΓE1u (1.14)

For the K point, the group of the wave vector is D3h. Phonon modes at this point

are classified as [30]:

KA′1 +KA′2 +KE ′ +KE” (1.15)

The in-plane iTO and iLO optic modes correspond to the vibrations of the sub-

lattice A against the sublattice B as shown in Figure 1.12 and these modes are

degenerate at the Γ point. According to group theory, the degenerate zone-center

iLO and iTO phonon modes belong to the two-dimensional E2g representation. They

are Raman active modes [27, 32] and very important for identification of experimen-

tal samples. The degeneracy of the iLO and iTO phonons disappears for general

points inside the first Brillouin zone of graphene. At the K-point, the phonon which

comes from the iTO branch is non-degenerate and belongs to the A′1 irreducible rep-

resentation of the point group D3h, and the eigenvectors of all modes are represented

in Figure1.12. The iLO and iLA phonon branches meet each other at the K point

giving rise to a double degenerate phonon, with the E’ symmetry [31, 33]. This

mode is important in identification of graphene samples using Raman spectroscopy.

As discussed, there are two optic modes in graphene:

Γopt = E2g + B2g

E2g is Raman active and B2g is silent mode. There is no infra-red active mode as

in graphite where we have:

Γopt = A2u + E1u + 2B2g + 2E2g

E2g modes are Raman active and A2u and E1u are infra-red active (B2g is also silent).

In graphene, we can see two distinct modes, G (E2g mode) and 2D (E’ ) in the

Raman spectra of the graphene. The phonon vibrations for G and 2D mode are

presented in Figure 1.13.

Typical Raman spectra for graphene is presented in Figure 1.10. The intensity

of peaks is directly connected to the number of layers and the amount of defects in

17



1. GRAPHENE AND RELATED MATERIALS

Figure 1.12.: The eigenvectors for the in-plane phonons relevant to the high sym-

metry Γ point and K points of the Brillouin zone. Each of these twelve

modes is labelled and their atomic displacements are indicated. The

symbols ellipse, triangle and hexagon, represent the rotation axes C2 ,

C3 and C6, respectively, [27]

Figure 1.13.: Sketch of the phonon vibrations contributing to the main Raman

bands in graphene. a) G band vibration modes for the iTO and iLO

phonons at the -point. b) D vibration mode for the iTO phonon at the

K-point. Figure taken from [25]
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Figure 1.14.: Feynman diagram for the second-order process that changes phonon

self-energy. The first node shows the decay of a phonon into an

electron-hole pair, and the second node shows the recombination of

the electron hole and the emission of a phonon.

the graphene samples. In graphene, electron-phonon interaction is very significant.

In the first approximation, the lattice vibrations, phonons, are determined by the

vibration of the ions with respect to their equilibrium positions. In graphene, the

electronic cloud affects the movement of the ions. When the local density of electrons

is increased, an extra kinetic energy should appear due to the exclusion principle, and

thus the electronic cloud screens the atomic vibrations [34]. The electron-phonon

interaction affects the phonon spectrum and to calculate this change, perturbation

theory must be used for the electron-phonon Hamiltonian. The corrected phonon

energy due to interaction is:

~ω(p)
q = ~ωq +

∑
k

|Mkk′ |2
2〈nk〉(εk − εk′)

(εk − εk′)2 − (~ωq)2
(1.16)

where 〈nk〉 and 〈nq〉 are occupation numbers from electrons and phonons, respec-

tively. k and k’ mark the electron before and after scattering and q=k-k’ is phonon

that is being absorbed. This equation describes the phonon frequency change due to

the electron-phonon interaction and in Figure1.14 it is represented using the Feyn-

man diagrams. An electron in the valence band is first excited to the conduction

band by absorbing a phonon, thus creating an electron-hole pair. The electron and

hole then recombine, thus emitting a phonon. Both the frequency and lifetime of

the phonon are significantly affected by this second-order process [36].

In general, atomic vibrations are partially screened by filled electronic states. In a

metal, this screening is determined by the shape of the Fermi surface and can change

rapidly from one point to another in the Brillouin zone . The consequent anomalous

behavior of the phonon dispersion is called a Kohn anomaly [37]. Kohn anomalies

may occur only for phonon wavevectors q such that there are two electronic states

k1 and k2 on the Fermi surface, where k2 = k1 +q [37]. In graphene, the gap between
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Figure 1.15.: Phonon dispersion of graphene from Ref. [38] showing the Kohn

anomaly at the Γ and K points. The lines of the top part of Figure are

the theoretical calculated curve and the symbols are the experimental

data. The both bottom figures are a close-up of the phonon dispersion

near the Γ and K points. The different lines show different parameters

for the theoretical calculation done in Ref [38].

occupied and empty electronic states is zero at the six corners of the Brilouin zone,

namely K and K’ points. These points are connected by a vector of length K. Thus,

Kohn anomalies [37] can occur for q = 0(Γ) or q = K (Figure 1.15 [38]). For a given

value of q, the Kohn anomalies are present only in the highest optical branches. It

can be observed as a kink in the phonon spectrum for q=2kF . [39]

In the phononic spectrum of a metal, the Kohn anomaly is a discontinuity in the

derivative of the dispersion relation that occurs at certain high symmetry points of

the first Brillouin zone, produced by the abrupt change in the screening of lattice

vibrations by conduction electrons.

It can be generalized that the Kohn anomaly will happen when k1-k2+b=0, where

k1 and k2 are the electron state at the Fermi surface and b is a reciprocal lattice

vector, that brings the phonon wavevector q back into the first BZ [37].

Piscanec at al. [38] first reported the Kohn anomaly in graphene. In graphene, the

Kohn Anomaly is present at high symmetry points, Γ and K, for certain modes. This

is because, as previously discussed, the Fermi surface in graphene corresponds to the

K and K’ points and Fermi wavevectors k1 and k2 are at the corners of the first BZ

(K and K’ vectors). Picsanes and his co-workers observed divergent characteristic
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of the Kohn anomaly near the Γ point for the iLO mode and at K point for the iTO

mode and showed the relation between slopes of the phonon dispersion at Γ and K

and the electron-phonon coupling parameter λe−p [38].

The influence of electron and phonon coupling in graphene is visible in one

more important phenomenon. Namely it is the breakdown of Adiabatic Born-

Oppenheimer approximation (ABO). In the Section 3.2.1 a detail discussion about

the ABO approximation will be presented. Here, we’ll just say it assumes that the

lighter electrons adjust adiabatically to the motion of the heavier nuclei, remaining

in their instantaneous ground states. In graphene this approximation fails and, elec-

trons do not have time to relax their momenta to reach the instantaneous adiabatic

ground state. For monolayer graphene we assume the linear electronic dispersion

(E(k) = vFk), and then the frequency shift for the phonon at q = 0 in units of the

electron-phonon coupling as a function of the Fermi energy (EF ) can be calculated

in the framework of non-adiabatic second order perturbation theory [35]. Within

ABO, the energy of a zone-centre phonon is determined by two contributions: the

distortion of the electronic bands, associated with the phonon displacement, and the

adiabatic rearrangement of the Fermi surface [41]. In graphene, these two contri-

butions cancel out exactly because of the peculiar rigid motion of the Dirac cones,

associated with the E2g phonon. The E2g phonon in graphene consists of an in-plane

displacement of the carbon atoms by a vector ±1/
√

2 as shown in Figure 1.16. In

the presence of such atomic displacements, the bands are still described by a cone

with the Dirac point shifted from K by a vector s (Figure 1.16 b) and c))

As shown in Figure 1.16 a) without any distortion, in the perfect crystal the Dirac

point is at K, the electronic states are filled up to the Fermi energy εF and the Fermi

surface is a circle centred at K. If we observe bands in the presence of an E2g lattice

distortion we can see the Dirac points are displaced from K by ±s. Within ABO,

the electrons remain in the instantaneous ground state: the bands are filled up to

εF and the Fermi surface follows the Dirac-point displacement. The total electron

energy does not depend on s. However in the non-adiabatic case, the electrons

do not have time to relax their momenta (through impurity, electronelectron and

electronphonon scattering) to follow the instantaneous ground state. In the absence

of scattering, the electron momentum is conserved and a state with momentum k

is occupied if the state with the same k is occupied in the unperturbed case. As

a consequence, the Fermi surface is the same as in the unperturbed case and does

not follow the Dirac-cone displacement. The total electron energy increases with s2,
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Figure 1.16.: Schematic π band structure of doped graphene near the high-symmetry

K point of the Brillouin zone. The filled electronic states are shown

in green. a) Electronic bands of the crystal. b) Bands in the pres-

ence of E2g lattice distortion within ABO. c)Bands in the presence of

E2g lattice distortion in non-adiabatic case. d) Atomic pattern of E2g

phonon. Figure taken from [41]

.
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resulting in the observed E2g-phonon stiffening. [41]

The renormalization of the phonon energy is strongly dependent on the Fermi level

position, which can be tuned by doping graphene with electrons or holes. Theoretical

models for the phonon self-energy [40, 35, 36] and time-dependent second order

perturbation theory have predicted the same logarithmic dependence for the phonon

softening on the Fermi level change for graphene. This anomalous phonon behaviour

has been experimentally observed by Raman spectroscopy of doped graphene [41,

42, 43].

Existence of strong electron-phonon interaction in graphene can be observed using

spectroscopic methods (like infrared and Raman spectroscopy and ellipsometry).

Distinct Fano resonant profile is commonly used to parameterize an asymmetrically

shaped spectral line that arises from coupling between the band continuum (electron

bands) and discrete state (phonons) [44, 45, 46].

1.4. Other 2D Materials

The discovery of graphene changed materials science in many ways, not only by

amazing insight into the relativistic effects at table top and variety of applications

of the ”wonder material” ranging from everyday to almost science-fiction ones, but

in the opening of a whole new field of research of other, low-dimensional layered ma-

terials with plethora of interesting properties. We call ”layered materials” those that

are characterized by extended crystalline planar structures held together by strong

in-plane covalent bond and the weak out-of-plane Van der Waals forces. Reduction

of dimensionality of the system is related to the amazing properties because the

reduction of available phase space and decreased screening lead to enhancement of

quantum effects and increased correlations. Even before first experimental realiza-

tion of 2D materials, there was a significant interest in quasi-2D system, including

cuprate high-temperature superconductors, whose superconductivity is confined to

planar CuO2 layers and semiconductor interfaces that host the fractional Hall Effect.

Soon after graphene, a semi-conductor with zero gap, came other 2D materials

(Figure 1.17), insulators like hexagonal boron-nitride, phosphorene, 2D counterpart

of black phosphorus which drives its properties out of its inherent in-plane anisotropy

[64] and great family of materials ranging from semiconductors to superconductors,

known as transitional metal dichalcogenides (TMDs). With common formula, MX2,

they consist of a one layer of transition metal M, such as molybdenum or wolfram,
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Figure 1.17.: Two-dimensional materials including graphene, its analogues hexago-

nal boron nitride, black phosphorous, and III-IV family of semicon-

ductors; and transitional-metal dichalcogenides (TMDs)[79]

.

sandwiched between two layers of chalcogen, such as sulphur, selenium or tellurium

X, making it unit cell made out of those three atomic layers, with 6-8 Å thickness

[65]. The TDMs do not have an inversion symmetry, they have variety of physical

and electronic properties, non-zero band gap and complicated band structure due

to the strong spin-orbit coupling, and very interesting optical properties due to

the quantum confinement and the lack of bulk dielectric screening. 2H-NbSe2 is a

conventional superconductor with critical temperature of 7.2K, highly anisotropic

layered TMD and a single crystal can be obtained in process of mechanical exfoliation

[66, 67]. Due to the 2D nature, there is an occurrence of electronic instabilities

driven by Fermi surface nesting and this generates the formation of charge density

waves (CDW). Although in 2H-NbSe2 both superconductivity (at 7.2K) and CDW

(at 32K) are observed and studied, there is still little agreement on properties and

coexistence and competition between these two ground states [68, 69].

The rise of Van der Waals materials opens the possibility of new types of quantum

hetrostructures [70], consisting of layers of various 2D materials. Stacking of two

or more atomic layers of different Van der Waals materials allows designing and

creating a novel material systems with rich variety of new properties.

One of the most surprising findings in the world of 2D materials as well as 2D

superconductors, is a strong enhancement of critical temperature in one unit cell
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1. GRAPHENE AND RELATED MATERIALS

Figure 1.18.: Structure of MgB2crystal. Graphene like hexagonal layers of boron

atoms alternate with hexagonal layers of magnesium sitting on top of

the centre of the boron hexagons.

thick FeSe layer epitaxially grown on SrTiO3 substrates, reaching 40-100 K [71, 72]

which is in great contrast with critical temperature of one unit cell thick FeSe grown

on graphene/SiC of 2K [73]. Mechanism of this enhancement is still unknown and

under heavy debate but most authors are certain that the effect is based on the

atomic-scale film thinning and a strong interaction with a substrate.

Another very interesting material that can easily be placed among ”other graphene

2D related materials” is MgB2, a metallic superconductor with quasi-two dimen-

sional character. Magnesium diboride MgB2 (Figure 1.18) has been known for a

long time [80, 81] but interest in it grew in 2001 with the discovery of superconduc-

tivity with critical temperature (Tc=39K) [82].

MgB2 has graphene-like hexagonal layers of boron atoms that alternate with

hexagonal layers of magnesium atoms sitting on top of the boron hexagons as shown

in Figure 1.18. Theoretical studies offered insight in the very interesting nature of

this material, proposing that superconductivity originates in the boron px, py bands

[83] and suggesting the possibility of the two-gap superconductivity [84]. Exper-

imental studies by STM tunnelling spectroscopy [87], point-contact spectroscopy

[88, 89, 90], specific heat measurement [91] and Raman spectroscopy [92] supported

two-band superconductivity. Today we know that there are two distinct supercon-

ductivity energy gaps at ∆1=2.3meV and ∆2=7.1meV [93, 94].

The electronic structure of MgB2 has been studied and discussed in literature

thoroughly, especially after 2001 and discovery of superconductivity [82, 95, 96,

97]. In Figure 1.19 a), the band structure of MgB2 is represented along with high

symmetry points of reciprocal hexagonal lattice. The very specific shape of the
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Figure 1.19.: a) band structure of MgB2, blue circles correspond to boron px, py

character and red to boron pz character (G, M, K A are high symmetry

points of reciprocal hexagonal lattice vectors) b) DOS near the Fermi

level, with contributions from boron and magnesium orbitals

Fermi surface (Figure 1.20), consisting of two coaxial cylinders parallel to the c-

direction centred around Γ and a complicated tubular three-dimensional structure,

is a consequence of specificity of MgB2 band structure. Namely, as it can be seen

in Figure 1.19 a), there are three partially filled bands. Two are based on boron

px and py orbitals (blue circles) and they are associated with the σ bonds of the

boron layers. Due to the lack of interaction with magnesium orbitals, they have a

two-dimensional character. Other partially filled band (red circles) which is built

from the boron pz orbitals, exhibits dispersion along both the plane of the boron

layers (because of their π-type interaction along boron-layers) and the interlayer

direction (because of good overlap between the out-of the plane pointing boron pz

and magnesium orbitals).

Having observed the shape of the Fermi surface in Figure 1.20, we can attribute two

cylinders to boron px and py orbitals (namely σ bonding bands) and other structure

to boron pz orbitals (namely, the π bonding and antibonding bands) [98, 344, 328].It

is very interesting to notice that DOS at Fermi level for the boron (px , py) and

boron pz are almost identical (as depicted in Figure 1.19 b) ). Boron s contribution

of the Fermi surface cylinder is quite small.

The superconductivity is caused by the E2g phonon mode at 75meV that couples

strongly to the two-dimensional σ-bands, and more weakly to the π-bands, leading

to two different gaps.
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Figure 1.20.: The superconducting energy gap of MgB2, calculated at T∼10 K,

mapped on the Fermi surface. The Fermi surface consists of two σ

sheets along the Γ-Γ lines, and two π sheets along the K-M and the

H-L lines (figure from [98], figure generated by [427])

Significance of discovery of superconductivity is not only in the fact that it is a

metallic superconductor with the highest critical temperature, but in the fact that

superconductivity originates at quasi two-dimensional boron planes [87, 99] and then

extends through magnesium layers forming an anisotropic 3D superconducting state

at the material.

In this thesis, the motivation for the study of MgB2 originates both from the in-

terest for quasi-two dimensionality in this material and effects on superconductivity

and from the structural similarity of MgB2 with the intercalated graphite and all

implications coming from it. This will be comprehensively discussed in Chapter 5.

The study of 2D superconductors became one of the most pursued topics of the

superconductivity research, promising answers both to fundamental physics and ma-

terial science. The next chapter of this thesis will briefly discuss superconductivity

in general and then in more detail, approach the superconductivity in 2D materials

and low dimensions.
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2. SUPERCONDUCTIVITY IN 2D

MATERIALS

2.1. Brief History of Superconductivity

For the material science, the beginning of the 20thcentury was an exciting time for

many reasons. In the 1908 Kamerlingh Onnes liquefied helium for the first time

allowing him to measure the resistance of different materials at low temperatures

down to 4.2K. Onnes achieved a big breakthrough in 1911 by discovering supercon-

ductivity in mercury at temperature of 4.15 K above absolute zero [102], accidentally

while he was trying to measure resistivity at low temperatures. Having discovered

that at 4.15 K the resistivity of mercury abruptly drops to zero, he repeated the

same measurements for other elements and alloys and noticed the same behavior

with several different materials. He concluded that the superconducting behavior of

material depends on the nature of the material itself and that critical temperature,

when material transitions from normal to superconducting state, is not same for

every material but unique for each. Onnes also found that breakdown of SC occurs

with very high currents and at high magnetic fields [103].

After Onnes’ discovering, numerous theories attempted to explain this zero resis-

tance transition, and an interest in this new behavior of materials upsurged and in

1933 experiments on superconducting materials resulted in one more interesting find-

ing. Walther Meissner and Robert Ochsenfeld discovered that complete expulsion of

the magnetic field from the interior of the superconductor occurs at T < Tc(H). In

1953, Fritz and Heinz London published an article that for the first time correctly

explained the Meissner effect [104]. Their contribution is not only the development

of their equation but in the introduction of characteristic parameter, the London

penetration depth λL that defines the depth to which a magnetic field is able to

penetrate the sample.
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2. SUPERCONDUCTIVITY IN 2D MATERIALS

Figure 2.1.: The timeline of discovery of superconducting materials[100]

The milestone in the history of condensed matter physics represented by the work

of J. Bardeen, L. Cooper and J.R. Schieffer [85, 86], the new theory from 1957,

where they described the mechanism of superconductivity based on Cooper pairing.

A discovery that came in a 1962, Josephson effect, introduced the possibility of the

flow of Coper pairs between two superconductors connected by a weak link. The DC

Josephson effect is obtained when Cooper pair supercurrent flows in the absence of

an applied voltage, while the AC Josephson effect [105] is exhibited when the flow

of Cooper pairs occurs with an applied voltage between the two superconductors.

Although superconductivity was very fascinating at the time, the limittaion of SCs

applications concerns their low critical temperatures. In the year 1986, the discov-

ery of high-temperature superconductors (high-Tc) brought a change. Bednorz and

Muller [106] published the paper ”Possible High Tc Superconductivity in the Ba-

La-CuO system” where they discussed the synthesis of a metallic oxygen-deficient

compound BaxLa5−xCu5O5(3−y) with the critical temperature above 30K. This dis-

covery opened a new era in the field and interest in the new group of materials, the

so-called cuprates. Next big step was the discovery of superconducting materials

with critical temperature well above the boiling point of liquid nitrogen (77 K) en-

abling condensed matter physicists all over the world to be part of the race. Maeda

et al. [107] first reported the existence of superconductivity with a Tc of around

105 K in the BiSrCaCuO system. The highest critical temperature is achieved by
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HgBaCaCuO system [108] with 130K, and after exposure to high-pressure Tc it can

be increased up to 150K. In 1991, potassium-doped C60 with Tc of 18 K [109, 110]

begun entirely a new area of sc in carbon based materials. A great surprise came

in 2001 when sc was discovered in a material that has been known for a long time,

MgB2, with the critical temperature of 39K [84].

A new family of high Tc materials called iron-based pnctides was introduced in 2008

[111]. A pnictide is an element from group V of the periodic table. Oxypnictides

generally contain oxygen and rare earth elements and they are layered tetragonal

compounds. Oxypnictide materials are similar to high Tc cuprate materials as both

of them have conduction layers and spacer layers (charge reservoirs). At the end of

2015 [112], the discovery of superconductivity at 200 K in sulfur hydrides under pres-

sure opened exciting perspectives in the search for new superconducting materials at

even higher temperatures streaming toward room-temperature superconductivity.

For little more than a century, some fascinating discoveries took place in the field of

condensed matter physics and material science. Enormous progress has been made

in most of the physical and engineering aspects of superconductivity and there is

still a tremendous scope to do more and try to resolve some of the very intricate

unsolved problems. However, great discoveries are yet to happen, paving the way

for application of these properties in everydays life.

2.2. BCS Theory and Eliashberg Formalism

2.2.1. BCS theory

In 1957, J. Bardeen, L. Cooper and J.R. Schieffer published the first comprehensive

theory of superconductivity [85, 86]. A Nobel Prize was awarded ”for their jointly

developed theory of superconductivity, usually called the BCS-theory” in 1972. BCS

theory explains that attraction between electrons leads to an instability of the normal

electronic state (namely instability of the Fermi surface) and to the formation of a

coherent many-body state. The attractive potential binds two electrons of opposite

spin together forming Cooper pairs with zero total spin, that condensate to a single

state and form a condensate. In BCS ground state, a fraction of electrons are

condensed into a coherent superfluid while the remaining electrons exist in a normal

state. As the temperature is raised through the critical temperature, Tc, the fraction

of electrons in the superfluid state condensate, and the system, as a whole, undergoes
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a second-order phase transition.

BCS theory ([85, 86, 114] discusses the emerging of this bound state in the presence

of many electrons and it is important to emphasize the approximation made in the

theory:

1. Pairing interaction is weak

2. The density of state is not varying too fast near the Fermi surface

3. The pairing interaction is constant and independent of momentum (Vqk = Vo)

4. The pairing interaction occurs within the cut-offs ±hωDnear the Fermi surface,

where ωD is the Debye frequency, and zero otherwise.

The Cooper problem [85] deals with the case of two electrons near the Fermi surface.

To begin with, the ground state of a free electron gas corresponds to complete

filling of the one-electron energy levels of wavevectors k and energy ~2k2/2m up to

certain energy EF = ~2k2
F/2m (the Fermi energy). However, in the presence of any

attractive interaction, no matter how weak, this state becomes unstable. This is the

main setting of Cooper problem [101].

We take two-electron wave function Ψ(r1,r2). Expanding Ψ in plane waves:

ψ(r1 − r2) =
∑
k

g(k)eik·(r1−r2) (2.1)

g(k) is the probability amplitude for finding one electron in the plane-wave state

of momentum ~k and other electron (-~k). Since states k < kF are already occupied,

the Pauli exclusion principle imposes: g(k)=0 for k<kF , and Schrodinger equation

is:

− ~
2m

(O2
1 + O2

2)ψ(r1, r2) + V (r1, r2)ψ = (E +
~2k2

F

m
)ψ (2.2)

When we solve this, we find the equation for g(k):

~2

m
k2g(k) +

∑
k′

g(k′)Vkk′ = (E + 2EF )g(k) (2.3)

Vkk′ =
1

L3

∫
V (r)e−i(k−k

′)·rdr (2.4)

Vkk′ is the matrix element of the interaction between the electronic states k and

k’. This equation is known by the name the Bethe-Goldstone equation for two-

electron problem. For E>0, it has a continuous spectrum describing collisions of
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two electrons from initial state (k, -k) to final (k’,-k’) of the same energy. However,

if interaction V is attractive, the bound state solution could occur for E<2EF .We can

take the simplified expression for Vkk′ , making interaction attractive and constant

in an energy band hωDabove the Fermi level:

Vkk′ =

−
V
L3 ,

~2k2F
2m

< EF + ~ωD and
~2k′2F
2m

< EF + ~ωD

0, otherwise
(2.5)

Self-consistency condition is:

1 =
V

L3

∑
k′

1

−E + ~2k′2
m
− 2EF

(2.6)

EF <
~2k

′2

2m
< EF + ωD (2.7)

We set:

ξ′ =
~2k

′2

2m
− EF (2.8)

And introduce the density of states per unit of energy interval:

N(ξ′) = (2π)−34πk
′2dk

′

dξ′
(2.9)

Assuming hωD<< EF ,we can consider DOS constant and replace it with N(0) mak-

ing the condition after integration:

1 =
1

2
N(0)V ln

E − 2~ωD
E

(2.10)

In limit of weak interaction N(0)V<<1, energy is:

E = −2~ωDe
2

N(0)V (2.11)

So we can conclude that there is a bound state of two-electrons and generalize it to

case of many electrons. For present interaction V in free electron gas, electrons will

group in pairs and normal state becomes unstable. It is important to emphasize that

the instability persists even for very weak V as long as it is attractive (in contrast

to 3D systems where attractive interaction has to exceed a certain threshold, for 1D

and 2D there is no threshold). Another remark is about binding energy. As shown,

binding energy is proportional to e−2/NV . The great algebraic difficulty is that it

cannot be expanded in powers of V for V→0. This represent a general problem in

development of theory of superconductivity.
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Figure 2.2.: Diagrammatic representation of the effective electron–electron interac-

tion through the exchange of a virtual phonon of momentum hq. In

process (a) the electron k emits a phonon of wave-vector -q. The phonon

is absorbed later by the second electron. In process (b) the second elec-

tron in state (-k) emits a phonon q, and later it is absorbed by the first

electron.

Let’s generalize this discussion since simple electron gas (where we only have Coulomb

repulsion) is not favourable for the Cooper problem. We need to have an attrac-

tive interaction and to obtain matrix element Vkk′ , the electrons interact with one

another, exchanging virtual particles.

The mechanism behind the weak attractive force that binds Cooper pairs was first

suggested by Fröhlich [113], where he proposed that the electron-phonon interaction

leads to superconductivity.

The matrix element Vkk′ of the electron-electron interaction between initial and final

state, (k,-k) and (k’, -k’) respectively, contains two terms:

1. Coulomb repulsion Uc(r1-r2) between two electrons

< I|Hc|II >=

∫
Uc(ρ)dρeiqρ = Uq q = k′ − k (2.12)

2. One electron may emit a phonon that will be later reabsorbed by the other

electron, as shown in Figure 2.2.

The initial state has energy EI=2ξk and the final state EI I=2ξk ′ . By the law of

momentum conservation, there are two intermediate states with the same energy:

Ei1 = Ei2 = ξk′ + ξk + ~ωq (2.13)
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The second-order matrix element, coupling states I and II, is:

< I|Hindirect|II >=
∑
i

< I|Hep|i >
1

2
(

1

EII − Ei
+

1

EI − Ei
) < i|Hep|II > (2.14)

Sum is performed over all allowed intermediate states and Hep is electron-phonon

coupling. The matrix element of electron-phonon coupling is Wq (for emission or

absorption of a phonon of wave vector q):

< I|Hindirect|II >
|Wq|2

~
(

1

ω − ωq
− 1

ω + ωq
) (2.15)

Where we defined ω as:

~ω = ξk′ − ξk (2.16)

Total matrix element is:

< I|H |II >= Uq +
2|Wq|2

~
ωq

ω2 − ω2
q

(2.17)

and we see when ω<ωq, theinteraction is attractive. But when this interaction is

attractive, it is a special issue that has to be analyzed.

In the cas of a bare Coulomb interaction V(r)= 1
4πε0

e2/r and if we look for V(q), we

find it is always positive.

V (q) = V (k − k′) = Vkk′ = Ω−1

∫
V (r)eiq·rdr V (q) =

4πe2

Ωq2
=

4πe2

q2
(2.18)

If we take into account the dielectric function of a medium, we reduce V(q) for

ε−1(q,ω) factor. This introduces screening effect of conduction electrons and screen-

ing length as parameters. Now we have an expression for V(q), where the divergence

at q=0 is eliminated but Vkk′ is still positive:

V (q)) =
4πe2

q2 + k2
s

(2.19)

Negative terms come in only when one takes the motion of the ion cores into account

[163]. Electron first polarizes the medium by attracting positive ions. The ion

attracts the second electron, giving an effective attractive interaction between the

electrons. If this attraction is strong enough, it overrides the Coulomb repulsion

and it gives rise to a net attractive interaction, as depicted in Figure 2.3.

The Pines [116] was the first to systematically test through the periodic system

for superconductive materials. He used ”jellium” model (solid is approximated by a

fluid of electrons and point ions) and it leads to simplified expression for interaction:

V (q, ω) =
4πe2

q2 + k2
s

+
4πe2

q2 + k2
s

ω2
q

ω2 − ω2
q

(2.20)
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Figure 2.3.: Illustration of the mechanism Cooper pair formation as a result of lattice

polarization

The first term is the screened Coulomb repulsion and second is phonon mediated

interaction which is attractive for ω< ωq. Although this expression is very approxi-

mate and it reduces to zero for ω=0 while always being negative for ω< ωq,regardless

of the properties of material, it is important to illustrate that phonon-mediated in-

teraction is of the same order of magnitude as the direct one.

So we concluded that the Fermi sea is unstable (ie. the Fermi surface is unstable)

against the formation of a bound Cooper pair for an attractive interaction and it is

expected that pairs will condense until an equilibrium point is reached. To handle

this complicated state, a new formalism had to be introduced and it is known by the

name, BCS wavefunction. To avoid the problem of handling the antisymmetry of

more than two electrons scheme of N ×N , the Slater determinant is used to specify

N-electron antisymmetryzed product functions. In terms of second quantization,

the singlet wavefunction is:

|ψ0〉 =
∑
k>kF

gkc
∗
k↑c
∗
−k↓|F 〉 (2.21)

, where |F 〉 represents the Fermi sea with all states filled up to kF and c∗k↑ creates

an electron of momentum k and spin up and ck↓ is an annihilation operator which

empties the corresponding state. Then the BCS ground state is set as:

|ψG〉 =
∏

k=k1....kM

(uk + vkc
∗
k↑c
∗
−k↓)|φ0〉 (2.22)

where |uk|2 + |vk|2 = 1. This form implies that the probability of the pair (k↑,
-k↓) being occupied is |vk|2 and probability that it is unoccupied is |uk|2 = 1−|vk|2.
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Figure 2.4.: In the BCS picture, only the electrons within the thin layer near the

Fermi surface (gray circle) interact via phonons.

The uk and vk differ by the phase factor eiφ, where φ is independent of k and it is

the phase of the macroscopic condensate wavefunction [160].

|ψϕ〉 =
∏
k

(|uk|+ |vk|eiϕc∗k↑c∗−k↓)|φ0〉 (2.23)

BCS ground state function can be expressed as sum:

|ψG〉 =
∑
N

λN |ψN〉 (2.24)

Where members of |ψN> term are identified by a common phase factor eiNφ where

N/2 is the number of pairs in an N-particle state. (for simpler notation in this

part we’ll switch from k, k’ used in two electron problem to k, l. The cutoff energy

hωC of Cooper’s attractive matrix element is expected to be of the order of the

Debye energy ~ωD = kΘD, which characterizes the cutoff of the phonon spectrum,

so although in this part ωC will be used, ωD could be equally utilized in description.

Using the vibrational method, as in original BCS paper, the explicit values of ukand

vk are found. Calculations start with the so-called pairing Hamiltonian.

H =
∑
kσ

εknkσ +
∑
kl

Vklc
∗
k↑c
∗
−k↓c−l↓cl↑ (2.25)

To regulate mean number of particles, there has to be an included term -µNop, where

µ is the chemical potential (or Fermi energy) and Nop is a particle-number operator.
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Inclusion of this term is mathematically equivalent to taking the zero of kinetic

energy to be µ or (EF )

δ〈ψG|H − µNop|ψG〉 = 0 (2.26)

δ〈ψG|
∑
kσ

ξknkσ +
∑
kl

Vklc
∗
k↑c
∗
−k↓c−l↓cl↑|ψG〉 = 0 (2.27)

, where ξk=εk-µ is a single-particle energy relative to the Fermi energy. Solving

above expression we get:

〈ψG|H − µNop|ψG〉 = 2
∑
k

ξkv
2
k +

∑
kl

Vklukvkulvl (2.28)

We define quantities:

∆k = −
∑
l

Vklulvl (2.29)

Ek = (∆2
k + ξ2

k)
1/2 (2.30)

Ek is excitation energy of a quasi-particle of momentum ~k, while ∆k is minimum

excitation energy or energy gap.

By solving the equations we get:

∆k = −1

2

∑
l

∆l

(∆2
l + ξ2

l )
1/2
Vkl (2.31)

BCS model states:

Vkl =

−V if |ξk| and |ξl| ≤ ~ωc

0 othervise
, (2.32)

and we get

∆k =

∆ for |ξk| < ~ωc

0 for |ξk| > ~ωc
(2.33)

So, by changing the sum to integral we get:

∆ =
~ωc

sinh [1/N(0)V ]
≈ 2~ωce−1/N(0)V (2.34)

This last step is justified in the weak-coupling limit N(0)V<<1. After ∆ is found,

uk and vk can be easily calculated:

v2
k =

1

2
(1− ξk

Ek
) =

1

2

[
1− ξk

(∆2 + ξ2
k)

1/2

]
(2.35)
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u2
k =

1

2
(1 +

ξk
Ek

) = 1− v2
k (2.36)

By outlining the work of Fröhlich [113] and Bardeen and Pinnes [116], we can con-

clude: Ek is defined as the excitation energy of a fermion quasi-particle and it must

be a positive quantity ≥∆. The probability that is excited in thermal equilibrium

is the Fermi function:

f(Ek) = (eβEk + 1)−1 (2.37)

, where β=1/kT. For Ek > ∆f (Ek) goes to zero at T=0 for all k, including |k|<kF .

We can generalize:

∆k = −
∑
l

Vkl
∆l

2El
tanh

βEl
2

(2.38)

In BCS approximation, Vkl=-V and ∆k=∆l=∆ and self-consistency condition

becomes:
1

V
=

1

2

∑
k

tanh(βEk/2)

Ek
(2.39)

This equation determines the temperature dependence of energy gap ∆(T). For

critical temperature Tc, ∆(T)→0 and Ek=|ξk| and applying this we get:

1

N(0)V
=

∫ βc~ωc/2

0

tanh x

x
dx (2.40)

Both Tc and ∆ depend on material properties such as the phonon spectrum, the

electronic structure and the electron-ion coupling strength. However, it is possible to

form various thermodynamic ratios, which are independent of material parameters.

In the weak coupling we obtain:

kTc = β−1
c = 1.13~ωce−1/N(0)V (2.41)

2∆

kBTc
= 3.53 (2.42)

This ratio is universal and independent of the material. Yet deviations from these

universal values (and other similar that can be derived within this theory) imply

the need for improved formulation of BCS theory. For example, this ratio of su-

perconducting Pb was closer to 4.5 (this is understood with the Eliasherg theory).

Extending BCS theory to the strong coupling limit results again in a universal con-

stant being 4, which is the maximum value attainable within BCS theory [119].

This clearly was not enough to describe certain materials and theory demanded im-

provement. In the ’60s years of 20th century, the first discrepancies between the ex-

perimental results and theoretical predictions within BCS became obvious, making
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BCS theory inadequate for superconductors with strong electron-phonon interac-

tions. There is a significant difference in a strong coupling regime, but this is much

more than just different equations for SC gap and critical temperature. In strong

coupling regime, perturbation theory in the electron-phonon coupling strength no

longer holds, and many aspects of physic differ.

Lastly, we can introduce a new parameter λ ≡ N (Ek)V , the electron-phonon cou-

pling constant. Now we can define the excitation gap and critical temperature:

in weak coupling (λ < 1)

∆ = 2ωDexp(−1/λ) (2.43)

While in strong coupling (λ≥1):

∆ = 2ωDλ (2.44)

In the weak coupling Tc:

Tc = 1.13ωDexp(−1/λ) (2.45)

And in strong coupling:

Tc = ωDλ/2 (2.46)

(Both of these results at zero temperature [117, 118] are within the range of BCS

theory.) We can conclude finally: We have phonon-mediated net attractive inter-

action between electrons. An electron in a state k1 (in momentum space) emits a

phonon, and is scattered into a state k’1 = k1 − q. The electron in a state k2 absorbs

this phonon, and is scattered into k’2 = k2 + q. To enable an electron to scatter

from the state k1 into the state k’1, the latter must be free (in accordance with the

Pauli’s exclusion principle). This is possible only in the vicinity of the Fermi surface

which is represented in momentum space by a sphere of radius kF , (as shown in

Figure 2.4).

Electrons with energies that differ from the Fermi energy by no more than ~ωD
are attracted to each other. In the BCS model, only those electrons that occupy

the states within a narrow spherical layer near the Fermi surface experience mutual

attraction. The thickness of the layer 2∆k is determined by the Debye energy as

∆(k) ∼ ωD. The electron-electron attraction mediated by the background crystal

lattice can crudely be pictured as follows; An electron tends to create a slight dis-

tortion of the elastic lattice as it moves because of the Coulomb attraction between

the negatively charged electron and the positively charged lattice, as illustrated in

Figure 2.3. If the distortion persists for a brief time (retardation), a second passing
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electron will feel the distortion and will be affected by it. Under certain circum-

stances, this can give rise to a weak indirect attractive interaction between the two

electrons which may more than compensate their Coulomb repulsion. Thus, as

shown in Figure 2.3, the process of electron pairing in conventional superconductors

is local in space, but non-local in time.

We can conclude that in BCS, we have pairing in k space i.e. in 2D space on

the Fermi surface. Any attractive interaction, no matter how small it is, in 1D and

2D leads to bound state. In 3D case, there is a certain threshold that has to be

overcome. Essentially this is one of the reason for 2D systems are favourable for

superconductivity.

All the above discussion in this sub-chapter is for superconductors with weak

coupling between electrons. For the phonon mechanism, Eliashberg [120] general-

ized BCS theory to a strong coupling electron-phonon model and later extended

by Scalapino, Schieffer and Wilkins [121] into the theory we call today the strong

coupling Midgal-Elishberg theory [120, 122]. The primary restriction for the appli-

cability of the Eliashberg theory is in the fact it is local in space and retarded in

time. Also, when the impact of the Coulomb interaction is great, which usually

manifests itself in magnetic behaviour, no justifiable theory of superconductivity

exists. In this dissertation, all studied systems are strongly within applicability of

the Eliashberg theory.

2.2.2. The Migdal-Eliashberg Theory, BCS Limit and the

Allen-Dynes-McMillan Formula

As introduction to changes that the Eliashberg theory made, a short digression to

first signs of unsuitableness of BCS theory will be made. The instantaneous nature

of the BCS interaction did not include enough of the physics of the electron-phonon

system. The most prominent example can be seen in specific heat and in a finite

lifetime of electron quasi-particle states, namely the electron-phonon interaction

which causes a mass enhancement of electron-state near the Fermi level. In many

materials these effects are very strong and well-defined quasi-particles no longer

exist.

The following important issue was the prediction of superconducting properties such

as the critical temperature, superconducing gap etc. and deficiency of the BCS

was apparent there. However, starting from it, first-principles Green’s function
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method, within Migdal-Eliashberg formalism provided a very accurate description

of the superconducting state.

The electron-electron coupling provided by the Eliashberg theory is local in space

and retarded in time, reflecting the delay in the development of lattice over-screening.

In contrast to instantaneous nature of BCS model interaction, this interaction is

attractive for any pair of electrons both within ωD of the Fermi surface. An-

other limitation of this theory is that the Eliashberg theory is valid only when
λωD

EF

(
∼=
√

m∗

M

)
� 1 , where EF is the Fermi level. This is the range of validity of

the Migdal’s theorem [123]. It argues that only single phonon scattering terms will

contribute to electron self-energy (that comes from the claim that all the vertex

corrections are O(
√
m∗/M) (m* is the electron effective mass and M is an ion mass)

compared to bare vertex and they can be ignored.

At the beginning of the 2.2.1 sub-chapter, we demonstrated the Fröhlich Hamil-

tonian. The Fröhlich interaction can be observed as very similar to the electron-

electron interaction via Coulomb forces, so the mutual scattering of two electrons

can be explained through the electron-phonon-electron interaction in the same way.

However, the problem appears with the phase transition to the superconducting

state, which prevents application of the perturbation theory developed for a metal

in the normal state. Due to the existence of essential singularity at the function

exp −1
λ

. Solution for this problem can be found in the 1960 by Nambu [124] who

showed how the formalism used for normal state can be rewritten in such a way that

the diagrams used for normal state can be applicable also to the superconducting

state. The inclusion of Coulomb interaction causes the electron-phonon interaction

to be screened and this causes a significant reduction. Although there is a strong

electron-phonon coupling, and phonons’ correction to the electron-phonon vertex

are small. Moreover, the Coulombic correction is not necessarily small, but con-

stant factors, so they can be included in the coupling constant. Detail derivation of

Eliashberg equations is given in the Appendix of this dissertation in section A.2.1.

Here discussion will be continued stating that the equilibrium superconducting prop-

erties of any material can be derived from the knowledge of the spectral function

or the Eliashberg function α2F [131, 125] where α is the average electronphonon

interaction and F is the phonon density of states :

α2F (ω) = N(0)
∑
q,ν

g2
q,νδ(ω − ωq,ν) =

1

N(0)

∑
k,k′

∑
ν

|gk,k′,ν |2δ(εk′)δ(εk)δ(ω − ωq,ν)

(2.47)
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This function measures the contribution of phonons with frequency ω to scat-

tering processes of electrons at the Fermi level and is related to the dimensionless

electronphonon coupling parameter λ:

λ = 2

∫ ω

0

α2F (ω)

ω
=
∑
q,ν

λq,ν (2.48)

Within the Elliasberg theory, the superconducting gap is given by:

∆ = 2~ωcexp
(
λ− µ∗

λ+ 1

)
(2.49)

and

Tc = 1.14~ωcexp
(
λ− µ∗

λ+ 1

)
(2.50)

where ~ωc is a cutoff frequency related to the phonon density of states and µ∗ is

the Coulomb pseudopotential which is the reduced Coulomb repulsion experienced

by a Cooper pair. This equation has essentially summarized all the detailed informa-

tion contained in the electron-phonon spectral function α2F into two parameters,

λ and ωc. However depending on the material, µ∗ can have important effect on

λ. The Coulomb effects [133] is hidden in the µ∗. Problem with inserting of the

repulsive term in the Eliashberg equation is in fact that the Coulomb interaction

cannot be introduced with same accuracy of the electron-phonon interaction (there

is no natural cut-off to ensure a convergent sum as in the Matsubara’s formalism).

The electron-electron interaction is large in energy scale and short interaction time,

comparing to electron-phonon interaction. The timescale difference is handled by

the usage of an energy window ωC with a renormalized electron-electron interaction

called the Morel-Anderson pseudopotential:

µ∗ =
µ

1 + µ ln(EF/ωC)
(2.51)

Here µ is an average electron-electron matrix element times the DOS at the Fermi

level.

From the presented discussion it is beyond doubt that solving of the Eliashberg

equations, even for simple systems is a complex and demanding task. McMillan

suggested a simpler approach, that today we know under the name the McMillan

formula [135]. It is obtained through a fit of a large set of results obtained considering

the spectral function of a lead and solving the Eliashberg equation in a certain range

of the parameters (λ<2 and µ*<0.15).
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Figure 2.5.: Plotted Tc/(〈ω2〉)1/2 vs λ. The solid curves are calculated for the various

shapes of α2F with µ∗=0.1, dashed form the McMillan equation with

the same µ∗, and experimental results are given as points. (Figure taken

from [135])

Tc =
ΘD

1.45
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
(2.52)

θD is the Debye temperature and λ is the electron-phonon coupling constant that

can be derived from the Eliashberg function.

Allen and Dynes [127] redefined this equation, switching the θD/1.45 with ωlog/1.2

ωlog = exp

[
2

λ

∫
dω logΩ

α2F (Ω)

Ω

]
(2.53)

Ωln is weighted on average of the phonon frequencies. Both parameters λ and ωln

are related to the moments of the Eliashberg function α2F . Although the McMillan

formula predicts the upper limit of Tc even for very large λ, this is actually not

true. The McMillan equation was not derived analytically, but obtained through

numerical calculations in a fixed range of coupling constants so it is not possible to
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Figure 2.6.: The gap ratio 2∆0/(kBTc) as a function of Tc = ωln. The black circles

indicate theoretical calculations, with some of the elements and a couple

of binary alloys indicated. The unmarked circles refer various binary

alloys. Note the excellent agreement of theory with experiment in the

case of Sn, Pb and Hg. Figure taken from [136].
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consider it for λ→∞. For λ>>1, Tc can be obtained in an analytical way as:

Tc = 0.183ωD
√
λ (2.54)

To conclude, there is no upper limit for the critical temperature in the Eliashberg

theory. The McMillan equation for the superconducting critical temperature giving

an excellent agreement with the experimental data for lambda up to 1.5 [57, 135, 131]

(As shown in Figure 2.5 and Figure 2.6)

2.3. Superconductivity in 2D Materials

In the past sub-chapters, the theory of superconductivity was discussed with a brief

historical recapitulation and a short introduction to the BCS and the Eliashberg

theory. This sub-chapter will be devoted to particularities of the superconductivity

in 2D materials. As discussed, the Cooper pair formation leads to a superconduct-

ing state and since there is an order-disorder phase transition, the dimensionality

of the system can have crucial influence on its characteristics [137, 138, 139]. In

low dimensional systems, it appears that phase transition would be more difficult

to achieve, due to the fact that interaction between electrons becomes spatially lim-

ited and fewer number of particles is available for the interaction with a particular

constituent. The question of reduction of dimensionality to its limit to the truly

atomic-scale 2D system and its consequences are highly relevant not only to funda-

mental science but to nanotechnology and it will be crucial for the production of

superconducting devices in the future [140, 141, 142]. However, this is not a new

issue that appeared with the development of technology. In the 1938, Shalnikov first

reported superconductivity in thin Pb and Sn films [143]. After this discovery, many

investigated all kinds of thin films made of soft metals and alloys [144, 145, 146, 147].

The improvement of fabrication techniques lead to the production of highly ordered

crystalline structures of just a few nm in thickness. The evolution of the thickness

of 2D superconductors since 1980 is presented in Figure 2.7.

There are many more questions regarding the 2D superconducting systems. If we

exclude the Mermin-Wagner theorem we discussed in the first chapter, several ques-

tions emerge: a question of localization of electrons and/or Cooper pairs [148],

transition-temperature oscillations caused by quantum size effects [149, 150, 151],

excess conductivity originating from superconducting fluctuations [152, 153, 154],

Berezinskii-Kosterliz-Thouless (BKT) transition [155, 156, 157] and quantum phase
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Figure 2.7.: In the past century, most 2D superconductors were fabricated by de-

positing metallic thin films, which led to strongly disordered, amorphous

or granular samples. More recently, atomic layers grown by molecu-

lar beam epitaxy (MBE; orange), interfacial superconductors (green),

exfoliated atomic layers (purple) and electric double-layer transistors

(EDLT; blue) have been fabricated. The deposited films are of three

kinds: InOx, MoGe and Ta are sputtered thin films; Sn, Ga, Al, In,

Pb and Bi are MBE-grown thin films; and YBa2Cu3Oy (YBCO) was

deposited by reactive evaporation. Bi2212, Bi2Sr2CaCu2O8 + x; LAO,

LaAlO3; LCO, La2CuO4; LSCO, La2−xSrxCuO4; STO, SrTiO3. [194])
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transitions at zero temperature [158, 159] between the superconducting and the insu-

lating phase. The BKT transition occurs in 2D systems and allows the establishment

of a quasi-long range correlation of order parameter. Even without the BKT transi-

tion, the Cooper pairs can condense at the mean-field level. A system is considered

to be superconducting if there exists a certain the order parameter at low temper-

atures however, the 2D superconductivity is a very fragile state. The introduction

of disorder into a 2D superconductor can induce superconductor-insulator transi-

tion easily, compared to a 3D material where superconductivity is robust against

disorders [161]. Experimental and theoretical studies demonstrated that supercon-

ductivity vanishes when the thickness of a metal film approaches 1-2nm and disorder

becomes significant [162].

For 2D superconductors, the BKT transition is an important phenomenon. In 2016,

A Nobel prize was awarded to John Kosterlitz, David Thouless and Duncan Haldane

for ”theoretical discoveries of topological phase transitions and topological phases

of matter” recognizing the great importance of their work that represents a set

of mathematical insights in superfluids and superconductors, but it can be also

applied to semiconductors as well. The late Vadim Berezinskii did not get a proper

recognition on this occasion, but his name stands equally with names of Kosterlitz

and Touless in acronym BKT showing respect to Soviet scientists who came to the

same discovery a year before.

As discussed before, the Mermin-Wagner theory prohibits the emergence of the su-

perconducting phase transition in 2D systems in a strict sense, i.e. the establishment

of a long range correlation at a finite temperature. In 2D superconductors, there are

phase fluctuations of order parameter Ψ due to the thermally excited free vortices,

even if the amplitude of Ψ is well developed below a Cooper pair condensation tem-

perature Tc0. Vortex can be defined as an object that exists in a superfluid which

has zero atomic density at its centre and a 2π phase winding around it. When these

vortices are moved by an external current in the transverse direction, the motion

causes a voltage drop in the longitudinal direction, resulting in finite energy dissipa-

tion. This inhibits the realization of the true zero-resistance state [163]. However, a

vortex in a 2D superconductor can form a bound state with an antivortex (a vortex

with the opposite supercurrent circulation) to form a ‘neutral’ pair. If a vortices

interact logarithmically as a function of the distance between them, all vortices and

antivortices form pairs below a certain temperature, thus leaving no free vortices.

This temperature where transition occurs is denoted as TBKT . For T> TBKT (and
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T< Tc0), the average separation ξ between free vortices diverges in a following

ξ ∝ |T − TBKT |−1/2 (2.55)

as T approaches TBKT and the zero-bias sheet resistance Rsheet decreases to zero

according to a relation:

Rsheet ∝ exp

{
−
(

Tc0 − T
T − TBKT

)1/2
}

(2.56)

Since no free vortices exist for T< TBKT ,the true zero resistance state can be

realized. The vortex-antivortex pair can unbound under the finite external current.

This unbinding occurs progressively as the current is increased with a characteristic

as

V ∝ Ia (2.57)

As the temperature is lowering, a changes from 1 to 3 at T=TBKT and keeps in-

creasing at lower temperatures. This BKT transition is unique because it does not

lead to true long-range order but to rather a quasi-long-range order. The spatial

correlation of order decreases as a function of distance with a power-law. [163, 164].

Superconductivity is not just possible in 2D, but we can even say 2D is favourable

for superconductivity. The first important reason lies in the density of states. In the

previous sub-chapter, we emphasized the necessary prerequisites for superconduc-

tivity, and the density of states on the Fermi level was shown to be crucial. In 2D

with normal quadratic dispersion, DOS N(E) is a step function near a band edge.

This means that even small doping leads to a large, metallic value of N(0), unlike in

3D semimetals, where N(0) increases monotonically with the carrier concentration

[203]. Another point is that, due to the 2D character, the Fermi surfaces are closed

curves compared to closed surfaces that occur in 3D. Near band edge, these will be

circles (or close to circles) making their algebraic description possible and even that

of the complex generalized susceptibility χ(Q, ω) [180]. Thus the underlying mean-

field, static lattice electronic structure and the linear response is straightforward,

even simple, to model [203]. In section 2.2.1, it was stated that pairing occurs in

k space i.e. in 2D space at the Fermi surface.Threfore there is no threshold for the

attractive interaction that forms a bound state.

All these arguments speak in favour of the presence of superconductivity in 2D ma-

terials. Contrary to the general belief that superconductivity must be suppressed as

a material thickness approaches the atomic-scale limit, many 2D systems exhibited
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Figure 2.8.: Data relating to the main classes of high temperature superconductors

[203]

robust superconductivity at low temperatures as long as the structural and compo-

sitional quality of the sample was sufficiently high. And it is not just 2D materials

in the sense discussed in the post-graphenic time. An overview of the main classes

of superconductors from 2006 is presented in Figure 2.8. Those superconducting

materials that exhibit 2D character (2D, quasi-2D and layered materials with 2D

character) are marked in red. We can see that most of the classes of HTSCs are

quasi-2D. Superconductivity in 2D is not only bound to 2D materials but also to

layered materials where superconductivity occurs in narrow space between layers

(such in cuprates).

In the past decade, owing to technological advances and new approaches in fabrica-

tion, a variety of new 2D superconductor emerged, including interfacial superconduc-

tors [165, 166, 167, 168], molecular-beam epitaxy-grown ordered metal atomic layers

[169, 170], exfoliated single layers [192, 171, 172], 2D systems showing electric-filed-

induced superconductivity [173, 174, 175], atomic layers grown by chemical vapour

deposition [176, 177] and intercalated graphene [178, 56, 179], to which this disser-

tation will a specially focus .

A very brief description and examples of several interesting 2D superconducting
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systems that emerged in the past decade will be presented here. Afterwards, as an

introduction for main results of this dissertation, more attention will be given to

superconductivity in intercalated graphite, and doped graphene and to MgB2 and

the importance of this material for the modern description of superconductivity.

Interfacial superconductivity was realized for the first time in 2007 in a 2D electron

system at the LaAlO3/SrTiO3(001) polarized interface, which was fabricated by

pulsed laser deposition [165]. This was a breakthrough in the history of 2D super-

conductivity, because LaAlO3/SrTiO3 heterostructures show high electron mobility

compared with conventional metallic films [181].

The ability to control the superconductor-metal-insulator transition electrostatically

using back-gating was demonstrated soon afterwards [182]. The superconducting

transition temperature of ∼= 200 millikelvin at the interface between two insulating

dielectric perovskite oxides, LaAlO3 and SrTiO3, inspired the search for other su-

perconductive materials like La1.55Sr0.45CuO4 and La2CuO4. Superconductivity at

the interface between a topological insulator and Fe chalcogenide was observed in a

Bi2Te3/ FeTe heterostructure [183]. Transport measurements confirmed that in this

system the superconductivity is 2D in nature, realized in a layer with a thickness of

∼7 nm, but the origin of the superconductive state remains to be understood.

A great surprise came in 2013 when superconductivity at almost 100K was reported

in a single layer FeSe grown on Nb doped SrTiO3 substrates [72] from in-situ mea-

surements. Although bulk FeSe grown was known to be superconductor with a

modest Tc of 8 K [71], this increase of the critical temperature was not expected, es-

pecially in the low dimensional limit. The ARPES measurements gave some insight

but a complete description is still a subject of the heavy debate. From the ARPES

measurements we know that there is a single band that crosses the Fermi level. The

Fermi surface consists of the electron pockets centred at the zone edges [184] and an

annealing process [185] and the suppression of spin-density waves [186] are neces-

sary for the rise of superconductivity. The theories explaining the superconducting

mechanism, range from modified BCS and forward scattering peak, to exotic ones

[187, 188, 189, 190, 191]. However, leaving the mechanism of this remarkable effect

aside, this discovery made important implications that high-Tc superconducting

materials should be searched for (or even engineered) in heterostructures of highly

crystalline 2D materials.

When discussing high crystallinity, we should definitely mention mechanically

exfoliated 2D superconductors. Exfoliation of graphene [1] inspired a search for
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Figure 2.9.: Atomically thin superconductors based on exfoliated 2D crystals. a)

Optical microscope image showing Bi2Sr2CaCu2O8+x (Bi2212) flakes

(top). Temperature (T)-dependent sheet resistance, Rsheet, for Bi2212

samples with various thicknesses, ranging from 270 unit cells to half a

unit cell (u.c.; bottom). b) Optical image of a bilayer NbSe2 device

capped by a thin hexagonal boron nitride (h-BN) layer for environ-

mental protection (top). Resistive superconducting transition of NbSe2

samples with different thicknesses, ranging from atomic thickness to

bulk (bottom). RN, onset resistance; Tc, superconducting transition

temperature. Figure from the [194]
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high crystalline 2D superconductors using the process of micromechanical cleav-

age. The advantage of this method comes from the process of cleavage of single-

crystal thin flakes from bulk single (and their transfer to desired substrate) crystal

without the need for the complicated process of crystal growth in vacuum cham-

bers. The first cuprate-superconductor produced by exfoliation was a single layer

of Bi2Sr2CaCu2O8+x(Bi2212) [192], Figure 2.9. What seemed interesting was a fact

that in the process of cleavage, flakes of different thickness were produced, one to

few layers in thickness but also the unit cell was halved in certain flakes, making this

a new structure. Due to the sensitivity on external conditions, graphene [192] and

hexagonal boron-nitride [193] layers were used as a protection layer. Particularly in-

teresting is the mechanically exfoliated 2D superconductor NbSe2 [67, 66, 2, 171, 172]

(Figure 2.9 b). Its critical temperature is dependent on the number of layers and

monolayer is superconducting although it must be protected with a layer of graphene

or h-BN.

One important issue in 2D superconductors must be addressed. It is the behaviour of

critical temperature with the lowering of dimensionality. As mentioned at the start

of this sub-chapter, it was believed that a decrease in thickness causes a decrease in

Tc, as in cases of Pb and In. However, in light of new discoveries , this statement no

longer represents a rule. Some materials, such as MoS2, ZrNCl and Bi2212 exhibit

Tc almost the same as their bulk counterparts and FeSe thin films and various

interfaces even have a much higher temperature. Even some materials that did

not exhibit superconductivity, in 2D limit they become superconductive, such as

KTaO3 [195]. For all these materials, the underlying superconducting mechanism is

still elusive but for now it seems to be a material-specific effect [194].

It is worth mentioning that the research of highly crystalline 2D or nanostructured

superconductors are well described by the first-principles calculations, which con-

trasts the conventional 2D superconductors. Their disordered nature usually do not

have realistic and precise band structures and are thus described by phenomenolog-

ical or very general theories. For highly crystalline structures, the realistic calcula-

tions can be performed. They will provide a powerful tool for explanation properties

and as well in the prediction of new materials.
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2.4. Superconductivity in Graphene and Related

Materials

Ever since graphene was isolated, the pursuit for superconductivity has been a con-

tinuous struggle and myriads of theoretical studies predicted unusual pairing mech-

anism originating in the chiral Dirac electrons and pseudo-spin [48, 49, 50], and yet

none of them got an experimental verification. As many graphene derived materials

show superconducting properties [51, 52, 53, 54, 55], it was expected to question if

graphene planes in those materials have crucial role in the occurrence of supercon-

ductivity and whether the same effect could be observed in low dimensional limit,

under the same conditions. Before a discussion on specific case of superconductivity

in doped graphene, it will be briefly reviewed why and how could graphene become

superconducting.

With a recent experimental verification of superconducting Li-doped graphene based

on angle-resolved photoemission spectroscopy (ARPES) measurements of its spectral

function 5.10 by the Damascelli group [56], it is safe to assume a conventional

electron-phonon interaction mediated superconductivity in a doped graphene.

If we recall the McMillan formula from the previous sub-chapter, Θd is the De-

bye temperature and V0 the electron-phonon coupling (EPC) potential figure. For

graphene, Θd is almost an order magnitude larger than in typical metals, which is

beneficial. And although V0 is not negligible (due to the strong electron-phonon

coupling term λ=0.2 [55]), the problem is caused by DOS which is zero in the

Dirac point and very small in its vicinity, which makes superconductivity not ob-

servable in graphene. Graphite intercalation compounds (GIC) are a well-studied

family of materials based on highly oriented pyrolitic graphite (HOPG) with layers

of (usually small alkali metal or rare earth) ions arranged between the graphene

layers in XC6 stoichiometry (or sometimes much larger ions in XC8 stoichiometry)

[51]. They are divided by the number of graphene layers intercalated in-between

two consecutive ionic layers and named stage 1, 2 (etc. stage 2 corresponds to two

graphene planes in-between two ionic planes). Many of GICs exhibit superconduc-

tivity which was established and measured several decades ago, researchers study

them with undiminished interest and debate whether the graphene derived π-bands

have a prominent role or whether it could be solely explained by the 3D spherically

symmetric electronic bands derived from the intercalated ions [52, 53, 54, 55]. KC8
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Figure 2.10.: a) Dirac dispersion from 3-minute Li-decorated graphene, exhibiting

kink anomalies due to electron-phonon coupling. b) Dirac-cone dis-

persion measured by ARPES at 8K after 3 minutes of Li-evaporation

[56]
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Figure 2.11.: Electronic band-structure of the stage 1 GIC CaC6 as measured by an-

gle resolved photon emission spectroscopy (ARPES). In contrast to the

band-structure of graphite, the dispersion relation of CaC6 is equiva-

lent to the band-structure of highly doped monolayer graphene. Figure

adapted from [55].

(Tc=0.5K), YbC6 (Tc=6K) and CaC6(Tc=11.5K) have been found to be supercon-

ductors [54, 55]. With development of the experimental techniques, mainly ARPES

and STM, these materials were again examined offering an insight that was unavail-

able several decades ago provided the clues for theories of graphene π-bands’ as an

origin of superconductivity.

Namely, the band structure of CaC6 is basically identical to the graphene mono-

layer’s band-structure with the strongly elevated Fermi level (Figure 2.11) and three

interesting conclusions about the intercalant layer could be derived from this:

1. The ionic planes increase the interlayer spacing between the graphene sheets,

for CaC6 from 3.35 Å to 4.52 Å. This results in their effective electronic decou-

pling and without a direct electronic hopping between the graphene planes,

the band-structure is equivalent to that of a monolayer graphene;

2. The positively charged Ca2+ ions dope the graphene planes and elevate their

Fermi energy to extremely high values in close proximity to the van Hove

singularities in the M-points with their high DOS. Here the charge transfer

per ion depends on the ion in various GIC’s (highest percentages of ∼ 60 −
70% obtained for CaC6);
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Intercalation

compound

Electron

Doping

Interlayer

Separation

(Å)

Interlayer

band occu-

pation

Tc(K)

Graphite 0 3.35 No -

LiC6 1/6 3.7 No -

LiC3 1/3 3.7 No -

LiC2 1/2 3.7 Yes 1.9

KC16 1/16 5.2 No -

KC8 1/8 5.2 Yes 0.14

CaC6 1/3 4.6 Yes 11.5

YbC6 1/3 4.7 Yes 6.5

BaC6 1/3 5.25 Yes -

Table 2.1.: The relation between the occupation of interlayer states and the obser-

vations of superconductivity. Adapted from [63]

3. As the intercalated layers arrange in crystallographic order, they give rise

to new phonon branches which in turn can couple to the π-band electrons.

ARPES data of CaC6 [55] confirms that these additional phonons lead to an

overall enhancement of the electron-phonon coupling parameter λ from ∼ 0.2

in pure graphite to ∼ 0.85 in CaC6.

However, not all GIC’s are superconducting. In the superconducting GIC at

the Fermi level, an interlayer band has been formed and it enhances the electron-

phonon coupling constant λ [58]. Therefore, due to the presence of the interlayer

band, the number of carriers is augmented, the coupling to carbon out-of-plane

vibrations is enhanced and there is coupling to the intercalant vibrations as well.

The electron-phonon coupling constant is proportional to the DOS at the Fermi

level and the deformational potential D and inversely proportional to the square of

phonon frequency of the mode coupled to electrons.

For the appearance of superconductivity, it is necessary to have the charge transfer

to graphene layer, but also the interlayer band must be formed on the Fermi level.

The electron-phonon coupling constant increases with the deformation potential

D which depends on the distance between adatoms and the graphene, h. The smaller

the distance is, the larger D becomes. The distance h cannot be decreased infinitely,

since a too small h will cause a complete charge transfer and an upshift of the inter-
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calant band, which then becomes empty and forms above the Fermi level. Another

important prerequisite for the introduction of superconductivity is the existence of

coupling between carbon out-of-plane vibrations and electrons (which is essential

since the coupling with in-plane vibration is not large enough and λ has a small

value). This is achieved by the transitions between the graphene π* states and the

interlayer band.

Not all types of intercalant atoms produce superconductivity or significantly increase

Tc. It seems that the charge transfer from the interlayer is crucial. Though charge

transfer is necessary, the completion of the charge transfer is deleterious for the en-

hancement of the superconductivity. In some of GICs, the charge transfer between

adatom and graphene layers in GIC is incomplete and they display a superconductiv-

ity, on the other hand, like Li-GIC, where the charge transfer is complete resulting in

low Tc(0.9 K) [59] (this is still under debate, some authors doubt Li-GIC is supercon-

ductive at all [54]). In the Li-GIC, there is a strong confinement for electrons along

the z-axis and it prevents the occupation of the interlayer state. After the discovery

of graphene, a logical question arose, whether we can use all those experiences and

conclusions from GICs to graphene and could monolayer graphene be treated with

same conditions to obtain superconductivity. An answer came in 2012 by Profeta

and co-workers showing graphene can be superconducting in a manner similar to Li-

GIC. In the Li-GIC, a strong confinement for electrons along the z-axis exists and it

prevents the occupation of the interlayer state. Because the quantum confinement

is removed in monolayer [60, 59], this results in the reduction of charge transfer

and it is beneficial for superconductivity. Thus the Li-doped graphene is shown to

be superconductive (8.1 K) with much higher Tc than in Ca-doped graphene (1.4

K). This topic will be more thoroughly discussed in Chapter 4 where the study of

possibility of enhancement EPC in Li doped graphene will be presented.

Recently metal-doped few layer graphene was reported to be superconductive

in variety of experiments. Li-intercalated few-layer graphene was found to have

Tc=7.4 K from magnetization measurements (yet transport measurements did not

show the evidence of resistance drop) [196]. The K-intercalated few-layer graphene

produced from liquid solution shown to have Tc=4.5K based on magnetic suscep-

tibility measurements [165]. Ca-intercalated multilayer graphene was produced in

UHV environment in process standard for graphite intercalation [198] and both the

transport and magnetic measurement showed a superconducting transition at 7 K

maximum. The Ca-intercalated bi-layer graphene (C6CaC6) was measured using a
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micro four-point probe technique under magnetic fields and revealed T
(onset)
c ≈4K

and Tc(zero)≈2K [179].

The analysis by high-energy electron diffraction showed that the intercalated Ca

atoms formed a(
√

3 ×
√

3)E30◦ structure against the C(1×1) surface of the host

graphene and that this structural ordering was crucial for having a clear supercon-

ducting transition. However what was unforeseen was the result of a similar study on

the Li-intercalated bilayer graphene (C6LiC6) that did not observe a superconduct-

ing transition and the ARPES measurements on the monolayer samples produced

similarly indicated emergence of superconductivity at Tc ∼5.9K [56], just as the

theoretical studies predicted [59].

Superconductivity in graphene laminates was recently studied as well [199]. This

is a layered material, similar to bulk graphite but the coupling between layers is

weaker due to the presence of the rotational disorder. A laminate with Ca showed

a superconducting transition at ∼6 K but it was strongly dependent on sample

conditions.

Superconductivity with a surprisingly high critical temperature was also suggested

to be found in a so-called graphane after significant doping [61]. Graphane is a

name for fully hydrogenated graphene with sp3 carbon bonds [62], making it a two-

dimensional analog of the cubic diamond. P-dopping of graphane is proposed to

be a method for making graphene a high-temperature BCS theory superconductor

with a Tc above 90 K [61].

2.5. Superconductivity in Magnesium-diboride Family

Although we discussed about MgB2, its structure and properties in the first chapter,

here just a very brief look will be given on superconductivity in MgB2 and implica-

tions of its really surprising discovery. Superconductivity in MgB2 is well described

by the Eliashberg theory, within the multiband extension. Plenty of surprises came

with its discovery. It is an sp metal not d, it has strong 2D characteristic and it

becomes a HTS superconductor due to extremely strong coupling to extremely few

(3%) of the phonons, rather than having the strength spread rather uniformly over

the phonon spectrum. A better definition describes MgB2 not as a metal, but as

a self-doped semimetal [203] with crucial σ-bonding band nearly filled. The basic

aspects of the electronic structure and pairing is in extremely strong coupling of

high frequency B-B stretch modes to the strongly bonding B-B states at the Fermi

58



2. SUPERCONDUCTIVITY IN 2D MATERIALS

Figure 2.12.: Superconductivity of the Ca-intercalated bilayer graphene. (a)

Schematic view of the crystal structure of C6CaC6 on SiC. (b) Band

dispersions at the K point of pristine bilayer graphene obtained by

ARPES. (c) RHEED pattern showing (
√

3 ×
√

3)E30◦ spots and

streaks. (d) Schematic diagram of the four-point-probe measurement

setup. (e) Comparison of temperature dependence of sheet resistance

Rsheet between C6LiC6 and C6CaC6. Image from Ichinokura S et al

[179]
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surface. This inspired a ”recipe” for other materials in the same class that would

have much higher Tc. The idea was to change the Fermi surface to make use of cou-

pling to more phonon modes and provide larger electronic density of states, while

retaining the structure that gives a very strong bonding [203]. Several MgB2-like su-

perconductors were designed in this class. The first proposed was hole-doped LiBC.

It has the same structure as MgB2 (Lithium has one less electron than Magnesium,

Carbon has one more electron than Boron) but it is insulating and hole-doping (by

partial removal of Li) which were expected to make it superconducting at amazing

75K or even higher [200, 201]. It was expected that the stronger B-C bonding com-

pared to B-B bonding, MgB2 would give both larger matrix elements and a higher

phonon energy scale. However, experimental research proved that this system would

be very instable at lower pressures that 60GPa density functional calculations pre-

dicted that metallization in this structure would not occur until at least 345 GPa

[202]. At the same time, other methods were considered for obtaining MgB2-like

material. Pickett formulated this as ”MgB2 is, after all, graphite with an extra

three dimensional band in the background” [203]. The difference is in the potential

barrier between the honeycomb and Mg layer. Bonding σ-bonding band is present

in graphene but upper edge is 2eV below the Fermi level, which is determined by

the positioning of the π-bonding band at K point of the Brillouin zone. Lowering of

the Fermi level was intended to be done by intercalation with highly electronegative

ion, fluorine FC2 [203], however a great degree of charge transfer left Fermi level far

from the σ-bonding bands.

Search for superconductivity by MgB2 model went in two directions, hole-doped

ABC and AeB2C2 insulators (A stands for alkali and Ae for alkaline earth). Both

predicted high critical temperature but unfortunately experimental realization was

never successful. Our approach took a different turn. We were also motivated

by structural similarity of MgB2 and intercalated graphene but we went in low

dimensional limit where, after the determination of stability, we continued search

for superconductivity. Results of this research and our findings and conclusions are

presented in Chapter 4.2.
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3.1. Introduction to Ab-initio Methods

All results presented in this dissertation are based on the ”ab-initio” (or first-

principles) quantum-mechanical calculations. This means that no empirical param-

eters are used in order to compute the electronic structure properties of a system,

but only the atomic numbers and positions are the inputs to the calculation. The

increase in computer power in the last decades has made it possible to perform

ab-initio calculations on larger and more realistic systems, achieving a degree of

accuracy which enables direct comparison to experiments. However, despite having

powerful computational resources and elegant mathematical formalism, the compu-

tation of emergent behaviour in complex systems has remained a difficult task. Ma-

terials contain a large number of electrons and atomic cores, with plenty of degrees of

freedom making it almost impossible to be exactly described. While first-principles

calculations performed without any simplifying approximations are still beyond the

ability of current computational physics, with the use of a few important physical

approximations we are able to arrive at satisfying results to many important prob-

lems. The aim of this chapter is to give a brief overview of the theoretical methods

used in this thesis.

3.2. The Electronic Structure Problem

All properties of matter are in principle described by the Schrödinger equation.

Ĥψ = εψ (3.1)

Although for one electron this equation has rather simple form, depending on the

probability of finding the electron in some point of space, for systems containing

more than one electron it become much more complex. A many-body wavefunction
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Ψ has to be introduced to describe the position of all electrons and nuclei in the

system. The Schrödinger equation for many-body system has form

(− ~2

2me

n∑
i=1

O2
i −

m∑
I=1

~2

2MI

O2
I −

n,m∑
i,J=1

ZJe
2

|RJ − ri|
+

n∑
i<j

e2

|ri − rj|
+

m∑
I<J

ZIZJe
2

|RI − RJ |
)Ψ = EtotΨ

(3.2)

Any observable can be extracted from the many-body wavefunction Ψ and total

energy of the system ε. Ĥ is the Hamiltonian operator and it depends on both elec-

tronic and nuclear degrees of freedom. We are dealing with a quantum mechanical

problem with a huge number of variables and complex equations that cannot be

solved exactly. In the case of condensed matter, the Hamiltonian is given by:

Ĥ = − ~2

2me

n∑
i=1

O2
i −

m∑
I=1

~2

2MI

O2
I −

n,m∑
i,J=1

ZJe
2

|RJ − ri|
+

n∑
i<j

e2

|ri − rj|
+

m∑
I<J

ZIZJe
2

|RI − RJ |
+ Vext

= T̂e + T̂N + V̂Ne + V̂ee + V̂NN + Vext

(3.3)

The first two terms represent kinetic energy of the electrons and nuclei, the third

term is the interaction between the nuclei and the electrons, the fourth and fifth

terms are the electron-electron and nuclei-nuclei interaction, respectively and the

final term is any kind of external potential (i.e. from electric/magnetic field). Ac-

cordingly, Hamiltonian depends both on electronic and nuclear degrees of freedoms

making this very complicated.

3.2.1. The Born-Oppenheimer approximation

The Born-Oppenheimer (ABO) approximation [226] makes great simplification as it

allows decoupling of the electronic and nuclear dynamics due to the large difference

in their masses, me/Mn ≈ 10−3 − 10−5.

Ψ(r, R) = ϕ(R)Φi(r, R) (3.4)

This implies the motion of electrons to be considerably faster than the nuclear

motion. The ABO approximation consists of the two steps, first so-called clamped-

nuclei approximation, where nuclei are considered fixed. Though Coulomb repulsion
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is still present and accounted, kinetic energy of the nuclei is omitted. Now the

Schrödinger equation has form:[
− ~2

2me

n∑
i=1

O2
i −

∑
i

Vn(ri) +

n∑
i<j

e2

|ri − rj|
+

]
Ψ = EΨ (3.5)

The electron problem can be reduced to a N-electron Hamiltonian in which the

nuclei are assumed to be fixed in some given position RI . We consider that the

electrons are moving in a static external potential Eext(r) generated by the nuclei.

Then the Hamiltonian of the system is reduced to:

H =

T̂︷ ︸︸ ︷
− ~2

2me

∑
i

O2
i −

ˆVext︷ ︸︸ ︷∑
i,I

Zie
2

|RI − ri|
+

V̂︷ ︸︸ ︷∑
i<j

e2

|ri − rj|
(3.6)

The second step of ABO approximation introduces the nuclear kinetic energy

again and the Schrödinger equation can be solved as:[
H +

1

2

∑
I 6=J

ZIZJe
2

|RI − RJ |
+ E(R)

]
χ = Etotχ(R) (3.7)

The ABO approximation considerably simplifies many-body problem though there

are certain limitation where it can be used. There is well-known issue of ABO

approximation failure when electronic and nuclear dynamics are highly intertwined

and nuclei motion can not be considered significantly slower than electrons.

Solving electronic Hamiltonian is simpler than total Hamiltonian without ABO

approximation accounted but still it represents the fundamental challenge in the

theory of electronic structure of matter. Different levels of approximations have

been devised in order to solve it. For small molecules, wave-function based methods

(minimization of a suitable energy functional within the space of a chosen set of

approximations for the real wave-function) are feasible and give satisfying results,

but this method is ineffective for larger systems. The many-body perturbation the-

ory is good but extremely expensive numerical method for realistic systems just as a

quantum Monte Carlo simulations. The DFT made a different approach and became

the basis of the computational many-body physics in past years, offering optimal

compromise between accuracy and computational costs. DFT treats the electron

charge density instead of wave-function as fundamental variable to solve quantum

mechanical many-body problem. The concept of DFT was introduced by Thomas

and Fermi [204] in 1927 and in 1964 a firm theoretical foundation was given by the
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Hohenberg and Kohn [205], who proved that the properties of material are uniquely

determined by the ground state electron density. A year later, in 1965, Kohn and

Sham [206] devised a simple method for finding the electron density through the

use of an auxiliary system of non-interacting electrons, confining the many-body

effects in an exchange-correlation energy-functional. Although at the first time, this

approximation was crude but later in time it was progressively improved, allowing

DFT to reach high accuracy with relatively low computational cost. The Nobel

Prize in Chemistry was awarded in 1998 to Walter Kohn for his continual work on

development of DFT.

3.2.2. The Hartree Theory and Hartree-Fock Equation

As shown the Born-Oppenheimer approximation simplifies consideration but the

many-body problem is a complex one and the Hamiltonian derived in the Born-

Oppenheimer is still not suitable for calculations. There are further approxima-

tions that must be made to achieve better accuracy and minimize calculation time.

There are two distinct approaches, wave-function approach and density functional

approach. In this section a very brief description of wave-function approach will be

presented before focusing on the DFT approach, main in this dissertation.

Hartree proposed that the total wave function is the direct product of single par-

ticle wave functions [214], known as Hartree approximation. Therefore, the many-

body wave function can be written as:

Ψ(r1, r2, ...rN) = φ1(r1)φ2(r2)....φN(rN) (3.8)

from which it follows that the electrons are independent, and interact only via the

mean-field Coulomb potential. This yields one-electron Schrödinger equations as:(
− ~2

2m
O2 + V (r)

)
φi(r) = εφi(r) (3.9)

where V (r) is the potential in which the electron moves, this includes both the

nuclear-electron interaction and the mean field arising from the N-1 other electrons.

Vnuc(r) = − Ze
2

4πε0

∑
R

1

|r − R|
(3.10)

Vele(r) = − e2

4πε0

∫
dr′ρ(r′)

1

|r − r′|

ρ(r) =
∑
i

|φi(r)|2
(3.11)

64



3. AB-INITIO METHODS

However the antisymmetry of the electron wavefunction was not considered in

Hartree approximation. The improvement to Hartree’s theory and solution to this

was introduced by Fock, who including the particle interchange in approximation.

According to the Pauli exclusion principle, no two fermions can occupy the same

quantum state and the many-body wave function must be anti-symmetric with re-

spect to interchange of any two electrons. For problem of two electrons anti-symetric

wavefunction is:

Ψ(r1, r2) =
1√
2

[φ1(r1)φ2(r2)− φ1(r2)φ2(r1)] (3.12)

Generalizing to many electron system the antisymmetrised wavefunction is in the

form of the determinant (first introduced by Slater [215]):

Ψ(r1, r2...rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) . . . φN(r1)

φ1(r2) φ2(r2) . . . φN(r2)
...

...
...

φ1(rN) φ2(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣∣
(3.13)

This modification adds an extra term to the Hamiltonian which is known as ex-

change. This is very important term and later the DFT approach it will demon-

strate, it requires specific treatment in calculations.

The electronic charge density is given as the sum of probabilities of finding elec-

trons in every occupied state:

n(r) =
∑
i

|φi(r)|2 (3.14)

This charge density generated electrostatical potential (from the Poisson’s equation)

is known as the ”Hartree potential” and it accounts for the Coulomb repulsion in

this system. :

VH(r) =

∫
dr′

n(r′)

|r − r′|
(3.15)

From the Slater determinant a single-particle solution can be found and the single

particle Hartree-Fock (HF) equation is then written as:{
− ~

2m
O2 + Vnuc(r) + Vel(r)

}
φi(r)−

∑
j

dr′
φ∗j(r

′)φ∗i (r
′)φj(r)

|r − r′|
= εiφi(r) (3.16)

This equation has one extra term compared with the Hartree equation, which is

called the exchange term. The Fock exchange potential can be written as:

Vx(r
′, r) = −

∑
j

φ∗j(r
′)φj(r)

|r − r′|
(3.17)
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The complete derivation of Hartree-Fock equation is given in the appendix A.3.1.

The Hartree-Fock calculations have been carried out for the ground state energy

of atoms, but for solids these calculations are very complicated. Additionally his

scheme neglects screening of the exchange interaction, generally known as the cor-

relation effect which can have significant impact on calculated properties.

3.2.3. The Hohenberg-Kohn Theorems

The two Hohenberg-Kohn (HK) theorems make the core of DFT. They allow the

transformation of the many-body problem, in terms of many body wavefunction, to

one in terms of the electronic density. These theorems can be applied to any system

of interacting particles in an external potential [205]:

First HK Theorem: The ground state particle density n0(r) of a system of in-

teracting particles in an external potential Vext(r) uniquely determines the external

potential Vext(r), except for a constant.

In other words, there is a one-to-one mapping between the ground state density

n0(r) and the external potential Vext(r). This means that the ground state particle

density determines the full Hamiltonian, except for a constant shift of the energy,

and then, at least in principle, ground states of the many-body wavefunctions can

be calculated. Therefore, all properties of the system are completely determined

given only the ground state density. The proof is given in the appendix A.3.2.

Second HK Theorem: There exists a universal functional F [n(r)] of the den-

sity, independent of the external potential Vext(r), such that the global minimum

value of the energy functional

E[n(r)] ≡
∫
n(r)Vext(r)dr + F [n(r)] (3.18)

is the exact ground state energy of the system and the exact ground state density

n0(r) minimizes this functional.

In other words, the minimum of the total-energy functional E[n(r)] is the ground

state energy of the system, and the density which yields its minimum is exactly the

single particle ground-state density. The proof is given in the appendix A.3.3.
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3.2.4. The Kohn-Sham Scheme

The HK theorems provide the ultimate theoretical foundation of DFT yet they do

not propose a simple way to solve the many-body problem. The scheme proposed in

[206] states that the ground state density of the original many-body interacting sys-

tem is equal to the ground state of some fictitious independent particle system where

all ”problematic” many-body effects are incorporated into a single term. This maps

the original interacting system with real potential into a non-interacting system

where the electrons move within an effective Kohn-Sham single-particle potential

VKS(r). This auxiliary system is described by Hamiltonian:

ĤKS = −1

2
O2 + VKS(r) (3.19)

(we took ~=1, me=1, e=1 for simplicity of notation). For system with N independent

electrons, we have an N one-electron Schrodinger equations from which we obtain

the ground state. (
1

2
O2 + VKS(r)

)
ψi(r) = εiψi(r) (3.20)

The density of auxiliary system is:

n(r) =

N∑
i=1

|ψ(r)|2 with condition

∫
n(r)dr = N (3.21)

The universal functional F[n(r)] is:

F [n(r)] = Ts[n(r)] + EH [n(r)] + Exc[n(r)] (3.22)

Ts[n(r)] is the non-interacting independent-particle kinetic energy, while EH [n(r)]

is the classic electrostatic Hartree energy of electrons:

EH [n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′ (3.23)

, and Exc[n(r)] is the exchange-correlation energy, which contains all the differences

between exact and the non-interacting kinetic energies and also the non-classical

contribution to the electron-electron interaction. Energy functional is:

E[n(r)] = F [n(r)] +

∫
n(r)Vext(r)dr (3.24)

And we obtain the ground state from its minimization under the constrain of

conservation of the number of electrons (µ is chemical potential):
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δ

{
F [n(r)] +

∫
n(r)Vext(r)dr − µ[n(r)dr −N ]

}
= 0 (3.25)

µ =
δTs[n(r)]

δn(r)
+ VKS(r) (3.26)

VKS(r) = Vext(r) + VH(r) + VXC(r) =

Vext(r) +
δEH [n(r)]

δn(r)
+
δEXC [n(r)]

δn(r)

(3.27)

VH(r) =
δEH [n(r)]

δn(r)
=

∫
n(r′)

|r − r′|
dr′ (3.28)

VXC(r) =
δEXC [n(r)]

δn(r)
(3.29)

These equations are known as the Kohn-Sham equations and they have to be

solved in self-consistent way (because VKS(r). depends on n(r) through the xc

potential). The detailed derivation of the KS equation is given in the appendix

A.3.4. The KS energy eigenvalues do not have physical meaning, they cannot be

interpreted as one-electron excitation energies of interacting many-body system.

However, within the KS theory, the eigenvalues have a well-defined meaning and

they are used to construct physical meaningful quantities.

The value and meaning of KS theory can be best depicted by Walter Kohns quote

from the Nobel Prize lecture [208]:

”The Kohn-Sham theory may be regarded as the formal exactification of Hartree the-

ory. With the exact EXC and VKS(r) all many-body effects are in principle included.

Clearly this directs attention to the functional EXC [n]. The practical usefulness of

ground-state DFT depends entirely on whether approximations for the functional

EXC [n] could be found, which are at the same time sufficiently simple and suffi-

ciently accurate.”

In other words, we know that there must be a functional EXC [n] which gives the ex-

act ground-state energy and density however, we do not know what this functional

is. Therefore, it is crucial to construct accurate approximations to EXC [n]. The

most widely used approximation are the local density approximation or LDA and

the generalized-gradient approximation or GGA. These two approximations were

used in this dissertation and they will be explained in the next sub-chapter in more

details.
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Figure 3.1.: Schematic diagram of the exchange-correlation functionals proposed by

J.P. Perdew [209]

3.2.5. The Exchange-Correlation Functional

Ever since the Kohn Sham theory was introduced, there has been significant effort

devoted to construct the accurate exchange and correlation functionals. As a re-

sult, today there is a great list of approximated functionals with varying levels of

complexity. In 2005, Perdew [209] proposed the categorization known as ”Jacobs

ladder” (presented in Figure 3.1 adapted from [209]).

In this scheme the functionals are grouped according to their complexity, ranging

from the Hartree approximation on ”earth” to the exact exchange-correlation func-

tional in ”heaven”. Furthermore, functionals can be categorized into non-empirical

(formulated by ”first principle”) and empirical (made by fitting to experimental re-

sult). We have defined the exchange and correlation energy before as the difference

between the exact total energy of a system and the classical Hartree energy. Ex-

cept in very simple cases, it is impossible to treat exchange and correlation exactly

and thus an approximation is in order. The quality of a DFT calculation is deter-

mined by how close the approximate exchange and correlation comes to the exact

value. Before the two main approximations are discussed, we will briefly review

what ”exchange-correlation” actually stands for. The electron exchange arises from

the fact that the system has to satisfy the Pauli Exclusion Principle (as discussed in

section 3.2.2). The Slater determinant satisfies the antisymmetric property of the
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electronic wave function, which is essential because electrons are fermions and obey

Pauli exclusion principle and there cannot be two electrons at the same state. The

exchange term lowers the energy by keeping the electrons of the same spin away from

each other thus reducing the Coulomb repulsion. Which means that for an electron

with a certain spin, there will be in area where the density of electrons with the

same spin is decreased. This effect is known as the exchange hole. The correlation

term is less intuitive. The correlation energy is defined as the difference between the

total exact energy and the sum of kinetic and exchange energies. Correlations are a

result of the collective behaviour of electrons to screen and decrease the Coulombic

interaction. Unlike the exchange term, the correlations become more pronounced

for opposite spins since they are more likely to occupy nearby locations. Intuitively,

we can explain that due to Coulombic repulsion, probability of finding an electron

somewhere is lower if there is another electron nearby. The correlation energy is

typically a small fraction of the total energy. However, it can be a very important

contribution to many systems of physical and chemical interest. For the correlation

energy even of the electron gas, there is not a simple analytic expression.

3.2.6. Local Density Approximation

Here the simplest functional is described, which goes under the name of Local Den-

sity Approximation to density functional theory [210, 211, 212]. In order to introduce

such a functional, we study the exchange and correlation energy of a very simple

system, the homogeneous electron gas. It is interesting that this is the oldest ap-

proximation but nonetheless, still very useful for a great amount of systems. A gas

of electrons is constrained within a box and the potential of the nuclei is taken as

constant and we consider the Coulomb repulsion between the electrons. For the ho-

mogeneous electron gas it is possible to calculate the exchange energy exactly, and

it is possible to determine the correlation energy using numerical techniques. At

each point in space the exchange-correlation energy is approximated locally by the

exchange-correlation energy of a homogeneous electron gas with the same electron

density at that point. LDA is based on the local nature of exchange-correlation and

the assumption that the density distribution does not vary too rapidly (Figure 3.2).
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Figure 3.2.: In LDA at each point r, we can replace the exact xc energy density

with that of a uniform homogeneous (hom) electron gas who has same

density n(r)

VLDA[n(r)] =

∫
n(r)εhomXC [n(r)]dr

=

∫
n(r)

{
εhomX [n(r)] + εhomC [n(r)]

}
dr

= Ehom
X [n(r)] + Ehom

C [n(r)]

(3.30)

The exchange energy, EX , of the electron gas can be obtained from the electron

density (in the Hartree units) [213, 215].

EX = −3

4

(
3

π

) 1
3

n
4
3V (3.31)

Based on Dirac [213], the exchange functional has a simple analytic form for ho-

mogenious electron gas:

EX [n] = −0.458

rs
(3.32)

,where rs is the Wigner-Setz radius radius of a sphere containing one electron. The

correlation part is more complicated and, as emphasized in the introduction to

exchange correlation functional, there is no analytical form. However, the accu-

rate values for Ec[n] have been determined by Ceperly and Adler in 1980 [216]

using Quantum Monte-Carlo techniques. By interpolating these values, Perdew and

Zunger provided a simple expression for Ec[n] [217]:

EC [n] = A ln rs + B + Crs ln rs +Drs rs ≤ 1

= γ/(1 + β1

√
rs + β2rs) rs > 1

(3.33)
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The coefficient A, B, C, D, γ, β1 and β2 have been obtained for both the spin-

polarized and spin-unpolarised homogeneous electron gas. The correlation energy is

consistently an order of magnitude smaller than the exchange energy throughout the

range of electron densities and Ex+Ec contribution is comparable in magnitude with

kinetic energy and therefore cannot be neglected. Although very old and simplistic,

LDA yields good results in geometries of solids, bulk moduli and phonon frequencies,

with just few percent errors. Yet it is less accurate in predicting ionization energies

and cohesive energies, gap at semiconductors, making an error of 10-20%. It is a

well-known fact that LDA fails completely in case of highly correlated systems where

electron-electron interaction is dominant [208].

3.2.7. Generalized Gradient Approximation

While LDA depends only on local density n(r), GGA incorporates the density gra-

dient [218, 219, 220]:

VGGA[n(r)] =

∫
n(r)εhomXC [n(r), |On(r)|]dr (3.34)

In contrast to LDA, where we had unique EXC [n(r)] available, for GGA several

versions exist due to different implementation of density gradient. Also many ver-

sions of GGA have free parameters that can be fitted into the experimental data.

Commonly used GGA functionals include PW91 proposed by Perdew and Wang

[221], and PBE by Perdew, Burke and Ernzerhof[218]. GGA shows an improvement

over LDA in predicting bond lengths, atomic energies and binding energies, crystal

lattice constants, especially in system where the charge density is rapidly varying.

Same as LDA, it performs poorly in materials with localized and strongly correlated

electrons, such as transition metal oxides and rare-elements and compounds. There

are also many other types of functionals such as the meta-GGA that includes the

second derivative of electron density, and hybrid functional which incorporates a

portion of the exact exchange component from Hartree-Fock theory, and they show

high precisions in particular cases. However, usually the usage of those functionals

is computationally very expensive and recommended only if we are certain that ef-

fects we are interested in are not good described with LDA/GGA. LDA and GGA

provide a good enough description of exchange and correlation energies for large

class of materials with moderate computational costs making the DFT the desired

technique for exploration of properties of materials.
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3.2.8. Self-Consistent Calculations

Using the HK theorems and the Kohn-Sham scheme for solving the KS equations

we can, in principle, find the exact density and energy of the ground state of a

condensed matter system. If we rewrite the Kohn-Sham equations and each term:[
−1

2
O2 + Vtot(r)

]
φi(r) = εφi(r) (3.35)

Vtot(r) = Vn(r) + VH(r) + Vxc(r) (3.36)

Vn(r) = −
∑
I

ZI
|r − RI |

(3.37)

O2VH(r) = −4πn(r) (3.38)

Vxc(r) =
δExc[n]

δn
(r) (3.39)

n(r) =
∑
i

|φi(r)|2 (3.40)

,we can see that these equations must be solved self-consistently, meaning that all

solutions are linked with each other. The ”self-consistency” stands for the following

concept: if we insert the solutions φi to calculate the density, determine the corre-

sponding potential Vtot, and solve the Schrodinger equation again, then we find, as

a solution, the same function φi from which we started. The self-consistent process

starts by us specifying the nuclear coordinates, in such a way that we can calcu-

late the nuclear potential, Vn. We make ”an educated guess” of a possible electron

density, n(r), in order to determine a preliminary approximation to the Hartree and

exchange and correlation potentials. Using the density, we obtain the initial esti-

mates of the Hartree and exchange and correlation potentials, VH + Vxc, and from

there the total potential, Vtot and we can proceed with the numerical solution of the

KS equations. By solving the Kohn-Sham equations, we obtain the new wavefunc-

tions, φi, which can in turn be used to construct a better estimate of the density, n,

and the total potential, Vtot. If the two quantities differ by a value less than a cer-

tain defined tolerance, then the self-consistency has been reached, otherwise a new

density has to be defined (usually this value is obtained by mixing the initial and the
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final electron density) and a new iteration will start with the new electron density.

This process continues up until the self-consistency is reached. This procedure is

depicted in Figure 3.3.

Having the electron density calculated, various quantities can be obtained: the

total energy, forces, stress tensors, eigenvalues, the electron density of states, the

band structure and many more. Most demanding part of this cycle is the solving

of KS equations. To solve the Kohn-Sham equation, the one-electron wavefunction

has to be expanded in a suitable basis set as:

φn(r) =

M∑
i=1

cn,iψi(r) (3.41)

, where φn is the nth Kohn-Sham orbital and ψi is the basis set. The choice of the

basis set depends mostly on the type of system studied but as well on the properties

we are interested to calculate. In molecular calculations, an atomic basis set is most

commonly used. It consists of a finite number of atomic orbitals with Gaussian form

e−αr
2
. For condensed matter, plane-wave basis is the most suitable for description

of infinite periodic structures.

3.2.9. Plane Wave Basis

The usage of plane-wave basis set comes with great advantages, but also with certain

difficulties. According to the Bloch’s theorem, the wavefunction of an electron in a

periodic potential can be written as:

φn,k(r) = eik·run,k(r) (3.42)

, where n is the band index, k is the wavevector, and un,k(r) is a function with the

same periodicity of the potential, such that un,k(r) = un,k(r+R), with R representing

the lattice vector. Consequently un,k(r) can be expanded in a Fourier series:

un,k(r) =
∑
G

cn,G(k)eiG·r (3.43)

, where G is the reciprocal lattice vector defined by G ·R = 2πm (m is an integer).

The corresponding electron wavefunction is thus given by:

φn,k(r) =
∑
G

cn,k+Ge
i(k+G)·r (3.44)

74



3. AB-INITIO METHODS

Figure 3.3.: Schematic flow-chart for finding self-consistent solutions of the Kohn-

Sham equations. The equality sign in the conditional symbol means

that the electron density at this iteration and the density at the previous

iteration differ by less than a desired tolerance. While conceptually it

makes sense to compare densities in order to check for self-consistency,

in practical calculations it is often more convenient simply to compare

the total energies at two successive iterations.
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The Kohn-Sham effective potential has also lattice periodicity and can be repre-

sented in the same way. The Kohn-Sham equations can be expanded to a simple

plane-wave form:∑
G′

[
1

2
|k +G|2δG,G′ + ν̃eff (G−G′)

]
cn,k+G′ = εncn,k+G (3.45)

ν̃eff = ν̃ext + ν̃H + ν̃xc (3.46)

Although it looks quite useful, a complete plane-wave basis set is impossible to

use in practise. It includes an infinite number of plane waves and we cannot operate

with it in a realistic calculation. Instead we apply a set of plane waves which are

restricted in a sphere in reciprocal space with a radius related to a cutoff energy

Ecut, so that (Figure 3.4):
~2

2m
|k +G|2 ≤ Ecut (3.47)

This cutoff value and the volume of the supercell ω determine the number of plane

waves NPW that will be used:

NPW ∼ Ω
3
2
cut (3.48)

The volume occupied by a single plane wave is:

VPW =
2π3

Ω
(3.49)

A cutoff is chosen individually for each studied system and it has to be varied until

the convergence is reached.

A great benefit of the Bloch’s theorem is that it allows one to consider only

the electrons within a unit cell of solids. Properties such as electron density and

total energy are then computed by adding the contributions from in principle an

infinite number of k vectors in the Brillouin zone. As wavefunctions vary slowly

over small distances in k-space, the integrations can be performed as summations

over certain finite and discrete k points. It is very important to appropriately

sample the Brillouin zone, and to do that, we must know how fast the integrand

changes with respect to k. For metals, the energy dramatically varies in the region

where the valence bands cross the Fermi level (this means it requires a dense k

mesh for description). For semiconductors and insulators, the electronic bands are

relatively flat, and a uniform grid with a small number of k points is generally

enough. Concluding this, certain familiarity with studied system is a prerequisite

for the correct setup of calculations.
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Figure 3.4.: Schematic illustration of the truncating the plane wave expansion -

cutoff

3.2.10. Pseudopotentials

There are certain difficulties using the plane wave basis. The main difficulty is in

a fact that electron wavefunctions oscillate rapidly in the core region, due to the

strong Coulomb interaction. Another complication is in the demand for orthogo-

nality between the core states and valence states. There is a method to overcome

these problems, the use of so-called pseudopotentials. We consider the fact that

core electrons are tightly bound to nuclei and respond very little to the presence

of neighbouring atoms, while the valence electrons strongly interact with the envi-

ronment and dominate the physical properties of material. When solving the KS

equation, we only need valence electrons to treat explicitly. A pseudopotential is an

effective potential that valence electrons feel. We view core electrons as frozen and

together with nuclei they form a non-polarizable ion cores. They are described by

a set of pseudo wavefunctions with no radial nodes in the core region. Outside of

the radius cutoff rc, the pseudopotential and pseudo wavefunctions are identical as

the real ones. The smoothness of pseudo wavefunctions near the core dramatically

reduce the number of plane waves needed for representation. In Figure 3.5, there is

a schematic illustration of wavefunction and pseudopotential.

The main advantage of pseudopotentials is in making calculations more efficient:

smoother potentials decrease the number of expansion coefficients for the Kohn-

Sham orbitals. However there are some disadvantages: The wavefunctions inside
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Figure 3.5.: Schematic illustration of the replacement of the true potential V (r)

and true electronic wavefunction φ(r) by a fictitious pseudopotential

Vps(r) and pseudo-wavefunction φps(r),respectively. For r > rc, the

psuedopotentials and wavefunctions become identical. This is the basic

idea of the PP approximation. Figure taken from [224].

the pseudo potential region deviates from the true behaviour. Also there are less

degrees of freedom, since the core electrons are frozen into the pseudo potential.

There are more than several methods to generate a suitable pseudopotential and

accordingly, types of pseudopotentials. The most used are the norm conserving

ones [222], which means that the integral of the pseudo charge density will give the

same total charge inside the cut-off radius as the true charge. Further development

of pseudo potentials was proposed by David Vanderbildt by introducing the concept

of ultrasoft pseudo potentials [223]. It allow calculations to be performed with the

lowest possible cutoff energy for the plane-wave basis set. In most cases, a high

cutoff energy is only required for the plane-wave basis set when there are tightly

bound orbitals that have a substantial fraction of their weight inside the core region

of the atom. In these situations, the only way to reduce the basis set is to violate the

norm-conservation condition by removing the charge associated with these orbitals

from the core region. The pseudo wavefunctions are thus allowed to be as soft as

possible within the core, yielding a dramatic reduction in the cutoff energy.
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3.2.11. Hellmann-Feynman Theorem and Density Functional

Perturbation Theory

Lattice vibrations are responsible for many observed phenomena such as the Raman

spectra, specific heat, thermal conductivity, thermal expansion, and bear heavily on

other phenomena such as conventional phonon-mediated superconductivity we dis-

cussed in the previous chapter. Vibrations of ions about their equilibrium positions

spread throughout the system and become collective excitations called phonons.

Density functional perturbation theory (DFPT) is the state-of-the-art method for

calculating lattice dynamics from the first-principles in condensed matter physics.

This is a method of applying a linear perturbation theory within DFT. The aim

of DFPT is to calculate the derivatives of the total energy within a system based

upon a periodic perturbation of the crystal lattice. Possibly the greatest advantage

of DFPT over other methods of calculating crystal vibrations such as the fozen-

phonon method is that the perturbation may take on any wavevector. This freedom

allows one to avoid the need of using computationally-expensive supercells to cal-

culate phonon eigenfrequencies at arbitrary wavevectors. The two main formalisms

of DFPT are due to Baroni [227] and Gonze [228]; although the two may be shown

to be equivalent, there are differences in the implementation that may result in one

method being preferable to another. The Baroni formalism is centred upon obtain-

ing a series of equations that may be solved self-consistently using Green’s function

methods; the Gonze formalism is based rather upon a perturbative expansion of the

Kohn-Sham energy functional, leading to a variational problem for even orders of

expansion akin to the zeroth order problem. In this thesis DFPT in Baronis im-

plementation was used and now it will be briefly discussed [225]. From the lattice

dynamics, where the vibrations of nuclei are treated classically, the equations of mo-

tion are coupled differential equations. Their solutions are the displacements of the

nuclei due to the perturbations. Expanding the force term around the equilibrium

positions of the nuclei, the responses to perturbations are higher order coefficients of

the expansion. In the harmonic approximation, the second order terms are retained

while higher order responses are ignored.

CI,J =
∂2E(R)

∂RI∂RJ

(3.50)

In a crystal, the atomic displacements obey the Bloch theorem, allowing for the

transformation of the classical equations of motion to be decoupled and expressed
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in terms of the wave number q. The solutions to the resulting eigenvalue equation

are the frequencies of an individual perturbation ωq [225]. Through DFPT calcu-

lations, we obtain the array of derivatives that form a dynamical matrix that can

be diagonalized to yield the phonon eigenfreqencies and eigenmodes. For DFPT

to be used in materials, the central approximation which enables that is the Born-

Oppenheimer approximation [226]. As mentioned above, it allows us to separate

the motion of electrons from the atomic cores, making them stationary (from the

electrons point). In DFPT the atomic positions are methodically perturbed, the

electronic ground state and total energy can be computed as a function of these per-

turbations. In practice, E(R) is the ground state energy of a system of interacting

electrons moving in the field of very slowly moving nuclei (ABO approximation),

with Hamiltonian:

HBO = − ~2

2me

∑
i

O2
i −

∑
i,I

ZIe
2

|ri − RI |
+

1

2

∑
i6=j

e2

|ri − rj|
+ EN(R) (3.51)

En(R) is the electrostatic interaction between different nuclei:

EN(R) =
e2

2

∑
I 6=J

ZIZJ
|RI − Rj|

(3.52)

The equilibrium geometry of the system is given by the condition that the forces

acting on individual nuclei are zero:

FI = −∂E(R)

∂RI

= 0 (3.53)

The vibrational frequencies ω are determined by the eigenvalues of the Hessian of

Born-Oppenheimer energy, scaled by the nuclear masses [227]:

det
∣∣∣ 1√

MIMJ

∂2E(R)
∂RI∂RJ

− ω2

∣∣∣ = 0 (3.54)

To calculate the equilibrium geometry and vibrational properties of a system, it

is necessary to compute the first and second derivatives of its Born-Oppenheimer

energy. The most important tool to achieve this is the Hellmann-Feynman theorem

[229, 230] which states that the first derivative of eigenvalues of a Hamiltonian Hλ,

which depends of a parameter λ, is given by the expectation value of the derivative

of the Hamiltonian:
∂Eλ
∂λ

= 〈Ψλ|
∂Hλ

∂λ
|Ψλ〉 (3.55)

, where ψλ is the eigenfunction of Hλ corresponding to Eλ eigenvalue:

HλΨλ = EλΨλ (3.56)
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As discussed before, in Born-Oppenheimer approximation, nuclear coordinates be-

have as parameters in the electronic Hamiltonian. Then we can calculate forces

acting on I nucleus in the electronic ground state as:

FI = −∂E(R)

∂RI

= −〈Ψ(R)|∂HBO(R)

∂RI

|Ψ(R)〉 (3.57)

Ψ(r, R) is the electronic ground state wave function of the Born-Oppenheimer Hamil-

tonian. This Hamiltonian depends on R through the electron-ion interaction that

couples to the electronic degrees of freedom only through the electronic charge den-

sity. In other words, if we know the ground state electronic density, we can calculate

all forces acting upon the system using classic electrostatics only. The Hellman-

Feynman theorem states then:

FI = −
∫
nR(r)

∂VR(r)

∂RI

dr − ∂EN(R)

∂RI

(3.58)

Where VR(r) is the electron-nucleus interaction:

VR(r) = −
∑
iI

ZIe
2

|ri − RI |
(3.59)

nR(r) is the ground state electron charge density corresponding to the nuclear con-

figuration R. Now we need to obtain Hessian of the Born-Oppenheimer energy and

we do that by differentiating the Hellman-Feynman forces with respect to nuclear

coordinates:

∂2E

∂RI∂RJ

≡ ∂FI
∂RJ

=

∫
∂nR(r)

∂RJ

∂VR(r)

∂RI

dr+

∫
nR(r)

∂2VR(r)

∂RI∂RJ

dr+
∂2EN(R)

∂RI∂RJ

dr (3.60)

From this equation, we see that for calculation of the Hessian we need to calculate

the ground-state electron charge density nR(r) as well as its linear response to dis-

tortion of the nuclear geometry ∂nR(r)
∂RJ

[231, 232]. This Hessian matrix is known as

the matrix of the interatomic force constants (IFC). To obtain the response within

the framework of DFT, the KS orbitals are varied according to first order pertur-

bation theory. Following equations are equivalent to the Kohn-Sham equations in

a perturbed system. These equations, solved self-consistently, lead to the matrix of

force constants known as the dynamical matirx.

∆n(r) =

N/2∑
n

ψ∗n(r)∆ψn(r) (3.61)

The variation of the KS orbitals ∆ψn(r) is obtained by standard first-order pertur-

bation theory:

(HSCF − εn)|∆ψn〉 = −(∆VSCF −∆εn)|∆ψn〉 (3.62)
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, where HSCF is unperturbed KS Hamiltonian:

HSCF = − ~2

2m

∂2

∂r2
+ VSCF (r) (3.63)

,∆VSCF (r) is the first order correction to the self-consistent potential:

∆VSCF (r) = ∆Vext(r) + e2

∫
∆n(r′)

|r − r′|
dr′ +

dVxc
dn(r)

∆n(r)dr (3.64)

and δεn is the first order variation of the KS eigenvalue εn:

∆εn = 〈ψn|∆VSCF |ψn〉 (3.65)

These equations for a set of self-consistent equations for perturbed system and they

are analogous to the Kohn-Sham equations in the unperturbed system.

3.2.12. Electron-Phonon Coupling in DFT Framework

Knowing the response of the system to perturbations in a lattice allows calculation

of phonon frequencies, energies and enables description of the electron-phonon in-

teraction. As discussed in details in the previous chapter, electron-phonon coupling

can be described as the scattering of an electron from a state |k〉 to a state |jk±q〉 by

absorbing or emitting a phonon. The Eliashberg spectral function α2F is expressed

as a sum over the contributions from scattering processes which connect electrons

through phonons on the Fermi surface.

α2F (ω) =
1

Nq

∑
qν

δ(ω − ωqν)
1

NFωqν

∑
mn,k

wk|gνmn(k, q)|2δ(εnk)δ(εmk+q) (3.66)

and matrix element for this interaction is:

g
(i,j)ν
k+q,k =

1√
2Mων,q

〈j, k + q|δqνVeff |i, k〉 (3.67)

In the DFT formalism, this coefficient can be calculated as:

gqν(k, i, j) =

(
~

2Mωq,ν

)
〈ψi,k|

dVSCF
dûqν

· ε̂q,ν |ψj,k+q〉 (3.68)

, while the electron-phonon coupling constant for mode at wavevector q is defined

as:

λqν =
γqν

π~N(εF )ω2
qν

(3.69)
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, where N(εF ) is a DOS at the Fermi level. Now the spectral function can be defined

as:

α2F (ω) =
1

2πN(εF )

∑
qν

δ(ω − ωqν)
γqν
~ωqν

(3.70)

And from knowing spectral function, we can calculate as the first reciprocal mo-

mentum of the spectral function:

λ =
∑
qν

λqν = 2

∫
α2F (ω)

ω
dω (3.71)

And using McMillan formula, as shown in the previous chapter, we can calculate

the critical temperature.
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OTHER COMPUTATIONAL

TOOLS

Quantum ESPRESSO (230) (opEn-Source Package for Research in Electronic Struc-

ture, Simulation, and Optimization) is integrated suite of open-source computer

codes for ab initio quantum physics methods for electronic-structure calculation

and materials modelling. QE is distributed for free under the GNU General Public

License (http://www.quantum-espresso.org) and it is based on Density Functional

Theory, plane wave basis sets, and pseudopotentials. QE is designed to be a dis-

tribution of packages, rather than a tightly integrated single package. It consists

of two main packages that share common installation method, input format, pseu-

dopotential format, data output format and large parts of the code:

• PWscf: self-consistent electronic structure and structural relaxation

• CP MD: Car-Parrinello molecular dynamics.

Except these two main packages, there are several more specialized QE originated

packages:

• Phonon: DFPT based package that does linear response calculations (phonons,

dielectric properties)

• PWneb: energy barriers and reaction pathways through the Nudged Elastic

Band (NEB) method

• PostProc: codes and utilities for data postprocessing

• PWcond: ballistic conductance
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• TD-DFPT: spectra from Time-Dependent Density Functional Perturbation

Theory

• GWL: GW calculations and solution of the Bethe-Salpeter Equation

and several auxiliary packages:

• Atomic: atomic calculations and pseudopotential generation

• PlotPhon: phonon dispersion plotting utility (to be used in conjunction with

PHonon)

QE is strongly interfaced with several other codes that perform various ab initio

quantum physics calculations. Here follows a list of just several of them :

• GIPAW (Gauge-Independent Projector Augmented Waves): NMR chemical

shifts and EPR g-tensor

• WANNIER90: maximally localized Wannier functions

• WanT: quantum transport properties with Wannier functions

• YAMBO: electronic excitations within Many-Body Perturbation Theory: GW

and Bethe-Saltpeter equation

• EPW: (calculates properties related to the electron-phonon interaction using

Density-Functional Perturbation Theory and Maximally Localized Wannier

Functions)

QE is the UNIX environment based code written in C and Fortran languages, opti-

mised for parallel execution using MPI libraries and for massively parallel machines,

OpenMP parallelization is supported as well. It uses external libraries:

• BLAS (Basic Linear Algebra Subprograms)

• LAPACK (Linear Algebra Package)

• FFTW (Fastest Fourier Transform in the West)

• MPI libraries

Although it is optimized to use open the source version of those libraries, QE can use

any architecture-optimized replacements (such is Intels MKL). As for parallelization,

there are two different parallelization paradigms implemented in QE:
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• MPI runs executable on each CPU with its own private set of data, and

communicates with other executables only via calls to MPI libraries.

• OpenMP - A single executable spawn subprocesses (threads) that perform in

parallel specific tasks. OpenMP can be implemented via compiler directives

(explicit OpenMP) or via multithreading libraries (library OpenMP). Library

OpenMP is a low-effort parallelization suitable for multicore CPUs. Its effec-

tiveness relies upon the quality of the multithreading libraries and the avail-

ability of multithreading FFTs. Explicit OpenMP is a recent addition, still

under development, devised to increase scalability on large multicore parallel

machines.

In this dissertation most of calculations were performed using Quantum Espresso

and its PW and PHonon code (as well as many auxiliary codes). In Figure 4.1,

a schematic representation of calculation is presented. All structures were fully

relaxed prior to further calculations and all calculations were performed using LDA

or GGA. In Figure 4.1, an example of a QE run on certain material, with steps and

results of calculations of superconductivity, electric, phonon and optical properties

within DFT/DFPT framework is depicted. Major steps of calculation performed

with different QE codes (.x stands for QE executable) are in blue squares. Results of

calculations are in purple circles. Only some results from calculations are presented

here, and there are many more available from the same run (with or without the

usage of other post-processing codes). Since most of structures calculated in this

dissertation and included papers are 2D materials, a special attention is devoted to

modelling of two dimensional material in a three dimensional environment such is

a DFT framework. QE (as well as the most other DFT codes) considers periodical

systems, where unit cell is ”infinitely” repeated in x, y, z direction. To design a

2D material, inclusion of vacuum is necessary in order to avoid interaction between

layers.

The unit cell has to include a large empty space in on one direction, i.e. to be

elongated in z axis direction, creating a distance between layers, sufficient enough to

avoid any interaction between layers. There is no universal recipe for choosing the

”amount” of vacuum, it has to be individually tested for every considered system.

It ranges from 10 Åup to 25 Å, or even more and it can cause serious influence on

time consumption. However, when dealing with such a unit cell, there are tricks

that can help reduction of the computational costs. Instead of sampling a whole
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Figure 4.1.: Schematic representation of various calculations performed using QE

in the preparation of this dissertation
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unit cell with Monkhrost-Pack grid [234] with same density in every direction, we

can take dense grid only in one plane. For example, instead of taking 32×32×32

grid for a unit cell with 25 Åof vacuum, we can take 32×32×1 and do not lose

anything in accuracy while saving resources. Since this dissertation is focused on

investigation of superconductivity in 2D material, an additional attention will be

devoted here to the calculations. The input files in QE are structured in a number

of namelists and input cards. Namelist (standard input construct in fortran90)

allows the specification of the value of an input variable only when it is needed and

the defining of the default values for most variables. Variables can be inserted in any

order, they are read in a specific order and the one that are not required for certain

run are ignored. Input cards are specific in QE. They are used to provide the input

data that are necessary, and they require the data in specific order. The input file

should contain all information about the system (geometry of the unit cell, number

and type of atoms, pseudopotential specification and position of atoms in the unit

cell). In Appendix B, some of most important inputs used in calculations in this

dissertation are given. It is not only simplifying but also very useful to visualize

the crystal structure before conduction any run. Various programs can be used

for this. We used XCrysden [235] and Virtual NanoLab [236] for all investigated

structures. XCrySDen is a crystalline and molecular structure render program,

with additional capabilities of rendering contours, isosurfaces, Wigner-Seitz cells

(also Brillouin zone), Fermi surfaces and many more. One of great benefits of using

it, is in the fact that it can directly visualize the structure from QE, both inputs

and outputs. All structures are advised to be first visualized in XCrysDen to check

the input data. In the Figure 4.2, there is screenshot of XCrysDen. VNL stands for

Virtual NanoLab, commercial software code (for Linux and Windows both) from

Quantum Wise, with free academic licence. It is interfaced with QE and it can be

used (partially) as GUI for it. It is a useful tool for visualization of inputs but it can

be also used (in Linux) as a working environment for QE (for handling input and

output, visualization, submitting job through python scripts, etc.) In the Figure

4.3, the screenshot of VNL is presented.

For EPC and the superconductivity calculations, which are the focal point of this

dissertation, workflow of QE will be briefly discussed in following paragraph. The

input files are prepared and as stated above, before any further calculations, they

are optimized and fully relaxed using BFGS (Broyden-Fletcher-Goldfarb-Shanno)

algorithm [238]. BFGS algorithm is an iterative method for solving unconstrained
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Figure 4.2.: Screenshot of XCrysDen window with the visualization of graphene

with lithium adatoms
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Figure 4.3.: Screenshot of VNL window with the visualization of graphene with

magnesium-diboride
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nonlinear optimization problems. The BFGS method approximates the Newton’s

method, a class of hill-climbing optimization techniques that seeks a stationary point

of a (preferably twice continuously differentiable) function. For such problems, a nec-

essary condition for optimality is that the gradient being zero. This algorithm does

not require additional variables. Relaxation proceeds until subsequent total energy

evaluations differ by less than 1.0d-4 Ry and each force component is less than 1.0d-3

Ry/Bohr. These default values can be changed by defining variables etot conv thr

and forc conv thr. In our calculations, we usually take 1.0d-6 Ry for total energy and

1.0d-5 Ry/Bohr for forces. The criterion is more stringent than default one because

of an extensive use of vacuum in the unit cells. In the relaxation algorithms, some

components of the atomic positions can be fixed by adding three integer values (0/1)

after the atomic coordinates. A value of 1 means that the corresponding component

is left free to vary, while a value of 0 means that the component is fixed. After

we made sure that system is in minimum energy, the SCF calculation begins. For

EPC calculation, first SCF run is necessary to be on a fine grid. The fine grid must

contain all k and k+q grid points used in the subsequent electron-phonon calcula-

tion and should be dense enough to produce accurate electron-phonon coefficients.

The input for calculation on this dense grid must contain the option ”la2F=.true.”

that instructs the code to save data into a file that is subsequently read during

the electron-phonon calculation. Fine grid run is followed by the SCF calculation

on a coarse grid, containing k points and a value of the gaussian broadening that

is suitable for good self-consistency and for the phonon calculation. With this we

finished the electronic calculation. We proceed with phonons and electron-phonon

calculation. The option ”electron phonon” must be specified in input of ph.x run as

well as the name of a file where the derivative of the potential is stored, ”fildvscf”. In

all calculations we used the option ”electron phonon= interpolated” and electron-

phonon is calculated by interpolation over the Brillouin Zone as in Wierzbowska,

et al [237]. The electron-phonon coefficients are calculated using several values of

Gaussian broadening because this quickly shows whether results are converged or

not with respect to the k-point grid and Gaussian broadening. Finally, we use mat-

dyn.x and lambda.x to extract α2F (ω) function, the electron-phonon coefficient λ,

and an estimate of the critical temperature Tc using McMillan formula [57]. Usually

the EPC calculations are computationally expensive, as they require the large k

and q points grids, causing large computational resources consumption. A proper

parallelization is essential for this calculation. Although it might look like a minor
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technical point, it is in fact a topic for itself. The details about enhancement of

speed of calculations, used techniques and results will be discussed as a last part of

the next chapter with a special focus on using of GPU acceleration in DFT calcu-

lations of low-dimensional materials. In that sub-chapter, another DFT code will

be discussed. That is BigDFT [239], a massively parallel electronic structure code

that uses a wavelet basis set. It is distributed under GPL licence as well. BigDFT

implements DFT by solving the Kohn-Sham equations describing the electrons in

a material, expanded in a Daubechies wavelet basis set and using a self-consistent

direct minimization or Davidson diagonalisation methods to determine the energy

minimum. Computational efficiency is achieved through the use of fast short con-

volutions and pseudopotentials to. It calculates the total energy, forces and stresses

and geometry optimizations and ab initio molecular dynamics may be carried out.

The greatest advantage of BigDFT is in the basis of Daubeschies wavelets [240].

The Daubechies wavelet basis sets are an orthogonal systematic basis set, just as

plane wave basis set of QE, but it has the great advantage of allowing the adaptation

of mesh with different levels of resolutions (two levels in BigDFT). Also wavelets

enable that the Hamiltonian can be done locally [241] which permits to have a linear

scaling in function of the number of atoms instead of a cubic scaling for traditional

DFT software. This provides great efficiency to BigDFT. However, although this

method is very efficient, it demands translating whole DFT paradigm to language of

wavelets, which is very far from elementary. An interest in BigDFT comes from the

fact it is among the first massively parallel density functional theory codes which

benefited from graphics processing units (GPU) on hybrid CPU/GPU systems [241]

using CUDA and then OpenCL languages. Just as in QE, the effects of hardware ac-

celerations have been studied and specificity of GPU-enabled runs for two-dimension

materials were discussed.
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5.1. Introduction to Theoretical Results

The fifth chapter of the dissertation presents a study of an electron-phonon coupling

and superconductivity, the electronic and phononic properties of graphene and re-

lated materials preformed within DFT and DFPT formalism. Specifically, doped

graphene and magnesium-diboride have been studied in the low-dimensional limit, as

single layer. In the previous chapters graphene properties, superconductivity in GICs

and relations to graphene have been briefly discussed and theoretical framework for

ab-initio study have been presented. The studies described here are fully related to

the dissertation and resulted in the following articles [242, 243, 244, 245, 246, 247].

This chapter opens with an introduction to the doped graphene 5.2. The first sec-

tion 5.2.1 gives the ab-initio description and the symmetry analysis of the phonons

in graphene doped with lithium, calcium and barium [242] It continues with the

detail ab-initio analysis of lithium doped monolayer in 5.2.2 section. This concerns

the LiC6-mono’s electron and phonon properties and continues with the engineering

of superconductivity by an application of biaxial strain in order to enhance EPC

[243]. The critical temperature of 29K is obtained in the case of a tensile biaxial

strain. In section 5.2.3 the optical properties are discussed for LiC6-mono using RPA

framework [244]. The third subchapter discusses properties of the thinnest limit of

magnesium-diboride superconductor (5.3). In the section 5.3.2 stability of MgB2-

monolayer is established. Its electronic and vibrational properties were determined

and the symmetry analysis of phonon modes at the Γ point is performed. After

proving that MgB2 monolayer is superconducting, we proceed with an engineering

its properties, i.e. adjusting the electron-phonon interaction in order to enhance

the critical temperature (section 5.3.4). The paper based on the results reported in

this subchapter is submitted to a journal and is currently in press [246]. The final

part of this chapter discusses the more technical issues about application of GPU

acceleration in DFT calculations with a target on study of low-dimensional materi-
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als and specificity of such calculations. Two papers are related to this topic, [245]

and [247] which is currently in press. Two different DFT codes have been tested

on hybrid architecture CPU/GPU for various low-dimensional materials. Different

paradigms of both programs demand different approach to implementation of GPU

and here they are tested in order to understand the particularities of calculation of

a low-dimensional material.

5.2. Doped Graphene

In Chapter 2 section 2.4 the superconductivity in graphene and related materials

have been discussed. Under the term ”related” there are considered GICs and

their relationship to doped graphene. When considering how to make graphene

superconducting, it was clear that the rigid-band doping of the carbon π -states

(in order to increase number of carriers) was not proper way to achieve that. Not

only the π -DOS grows very slowly with doping, but even if achieved two problems

could interfere. The first, even if the deformation potential related to the coupling

of the π-bands and the in-plane phonon vibrations are large, these vibrations are

highly energetic and EPC is small, owing to the ω2
ph factor in the denominator of the

Hopfield formula. Second, the symmetry forbids the coupling between the π -states

and the softer out-of-planes vibrations [59]. Taking all this into account, it is then

necessary to promote the new electronic states at the Fermi level as in GICs. As

stated before, GICs are the family of layered carbon materials, first synthesized in

1861 [248] and systematically studied for the first time in 1930s. Today under the

term GIC there are more than hundred compounds [51] with various properties.

The first discovered GIC superconductors were the alkali compounds [249] (C8A

with A = K, Rb, Cs with Tc <1 K), than it continued with GICs with a large

concentration of metals (T(C2Na)=5K) [250], rare-earth GICs (Tc(C6Yb)=6.5K)

[251]. C6Ca was discovered [251] in a graphite sample intercalated with Ca only on

the surface layers and YbC6 and CaC6 hold record of the highest temperature in GIC

family. The electron-phonon coupling mechanism has been shown to be responsible

for the occurrence of the superconductivity in GICs [52] where an intercalant atom

plays a crucial role. The simple doping of the π-bands in graphite does not lead

to a sizable electron phonon coupling and in order to stabilize a superconducting

state, it is necessary to have an electronic states of the intercalants on the Fermi

surface. However, it is not only necessary to have an adatom but the intercalant
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Figure 5.1.: The dependence of the interlayer band energy (at the Γ point) of the

empty graphite system with changing c-axis spacing for different elec-

tron dopings. The interlayer band is occupied in the systems that fall

into the shaded area. Figure taken from [254].

band needs to be partially occupied, i.e., the intercalant is not fully ionized [52, 252].

In superconducting GICs, an intercalant band (interlayer state) occurs at the Fermi

level [52, 252] and its role is multiple [253, 63]. Not only the number of carriers is

enhanced; but as well the coupling to the carbon out-of-plane vibrations is promoted.

The coupling to the intercalant vibrations occurs with a corresponding enhancement

of the deformation potential and a reduction of the effective atomic mass and phonon

frequency term in the Hopfield relation.

λ =
N(0)D2

M ω2
ph

(5.1)

In section 2.4 the two important conclusions were made: Not all types of in-

tercalant can lead to the superconductivity due to the charge transfer from the

interlayer state; and second: the interlayer distance between the intercalant atom

and the graphite plane should be smaller due to an increase of the deformation po-

tential of an intercalant and the carbon out-of-plane modes [253, 254]. However, the

distance should not be too small since the quantum confinement of the interlayer

state. If it is too narrow, this could result in an upshift of the intercalant band

well above the Fermi energy (as shown in Figure 5.1). With respects to all these

conclusions regarding GICs, the exploration of the superconductivity in graphene
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Figure 5.2.: Possible positions for the adatoms in doped graphene. Bridge is between

two C atoms, top is above the carbon atom and h stands for the hollow

center of the graphene hexagon

in a similar manner, gave some very interesting results but as well a completely a

new way of studying the superconductivity in 2D materials . Namely, similarly to

GIC, graphene can adsorb atoms in the three possible positions at the surface: B

(Bridge), T (Top) and H (Hollow) (Figure 5.2).

The detail DFT analysis [255] show the most elements prefer a hollow site, and

so does lithium, calcium and barium that have been studied in this chapter. Just as

in GICs, in doped graphene the presence of the interlayer is of the vital importance

and especially interesting in the case of the Li-doped graphene. Comparing the

LiC6-mono and the CaC6-mono with their bulk counterparts, two scenarios occur,

as described briefly in section 2.4 The critical temperature is lowered for the CaC6-

mono and enhanced for the LiC6-mono (comparing to the bulk) all because of the

particularity of their corresponding interlayers.

As explained by Profeta et al [59] in the bulk LiC6, the interlayer state is com-

pletely empty due to the strong confinement along the z direction that prevents its

occupation. Comparing the LiC6 bulk to the LiC6-mono, the removal of the quantum

confinement along the c direction brings the interlayer to the Fermi level. Figure 5.3

compares the planar averages of the interlayer charge density for the Li-doped and

Ca-doped graphene and graphite. In the CaC6-mono, the interlayer charge density

spills out in the vacuum region, whereas in the bulk case, it is much more confined

between the graphene and adatom layers (it has a period of 2h). And the lower
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Figure 5.3.: The Interlayer-state wavefunction. Planar (in the xy direction) average

of |ΦΓ, IL|2 along the perpendicular (with respect to the graphene layer)

direction (z). IL stands for interlayer. The vertical dotted lines represent

the z position of the calcium and lithium adatoms in the monolayer

(Image taken from the reference [59])

box shows that the spatial extension of the interlayer for lithium is the same as for

calcium, but as the interlayer is strongly localized around the adatom and closer to

the graphene layer, causing the enhancement of the total electron-phonon coupling.

Bringing the interlayer state to the Fermi energy and to localize it as close as

possible to the graphene plane is beneficial for superconductivity. For the LiC6-

mono, the presence of the interlayer state triggers the electron-phonon coupling of

the carbon modes along the z direction that is inactive in the bulk, and increases

the contribution of the intercalant modes, making it superconductive. An important

conclusion arises from this discussion. A graphene layer-adatom distance is deciding

parameter and proper engineering could be beneficial and increase of EPC. This can

be achieved by application of strain [243] but before focusing on enhancement of

EPC and the superconductivity a detail analysis of the phonons and symmetry in

lithium, calcium and barium doped graphene should be given.
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5.2.1. Li/Ca/Ba doped graphene - phonons and symmetry

analysis

The mutual influence of electrons and phonons in graphene is a highly debated topic

and the origin of some very interesting phenomena. The semi-metallic character

of its electronic structure is an important issue in understanding the behavior of

phonons. The atomic vibrations are partially screened by electrons but in metal this

screening can change rapidly for vibrations associated with certain q points which are

determined by the shape of the Fermi surface [38]. As mentioned before, graphene

is a material where the adiabatic Bohr-Openheimer approximation [226, 41] is no

longer valid, which means electrons relax non-adiabatically to the lattice motion and

that leads to the softening of phonon. It may occur only for q such that there are two

electron states, k1 and k2 = k1 +q, both on the Fermi surface [37]. For graphene, the

electronic gap is zero only at two Brillouin zone points K and K’ = 2K so we know

that the Kohn anomaly occurs at q G= and q’ = K. The opto-electronic properties

of graphene and graphite are directly affected by their environmental conditions and

adatoms in graphene.

In this section, we used DFT to calculate vibrational frequencies and normal

coordinates at the Γ point for the Li, Ca and Ba-doped graphene (the LiC6-mono,

CaC6-mono and BaC6- mono, respectively). These materials have been studied for

their superconducting properties [60, 59, 243, 63, 257]. For the understanding of

the electron-phonon coupling and the appearance of superconductivity in the doped

graphene monolayer it is of great importance to have insight in phononic properties of

the material. As explained in the previous section, the dopant-related vibrations are

crucial for achieving superconductivity [258] and phonon softening is shown to be an

indication of a strong electron-phonon coupling enhancing superconductivity [243].

A detailed description, as presented here, is meant also to be used as a practical

guide for an experimental research, namely IR and Raman spectra, identifying and

characterizing these materials, as well as a theoretical ground for further research.

The recent experimental and theoretical studies of the electron-phonon coupling and

superconductivity in single layer iron-selenides [72, 259] strengthen the need for a

thorough analysis of phonons in the monolayer superconducting structures, like the

doped monolayer graphene. Due to the fact that DFT and DFPT [225] (used for this

work) are based on the adiabatic ABO approximation, which is not sufficient for the

study of the Kohn anomaly necessary analytical corrections are required for certain
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modes. The group theory methods are additionally used to support the calculation.

Finally, the ab-initio results are compared to experimental data for graphene.

Computational details

All results reported here are obtained from the DFT calculations in the LDA, using

the QE. The ionic positions in the cell are fully relaxed, in all calculations, to

their minimum energy configuration using the BFGS algorithm. The hexagonal cell

parameter c was set to c = 12.5 Åin order to simulate a two-dimensional system. The

norm-conserving pseudopotential [260] and the plane wave cutoff energy of 65-75 Ry

are used in the calculation, accordingly convergence is achieved with an error less

than 1% for all calculated frequencies, by varying values of the plane wave energy

cutoff. The unit cell for the H-site doped monolayer was modeled in the
√

3 ×
√

3

R60◦ in-plane unit cell (seven atoms per unit cell, with adatom in every other hollow

spot), consisting of one adatom placed above the center of the carbon hexagon.

This configuration has been theoretically studied as an optimal structure [59, 60]

and experimentally realized for the Li-doped monolayer [56] and Ca-doped bi-layer

graphene [261]. The adatom-graphene distance for the LiC6-mono is h = 1.8 Å, for

the CaC6-mono h = 2.04 Å, for the BaC6-mono h = 2.17 Å. The phonon frequencies

are determined by the DFPT for evaluating the effects of the adatoms on the phonon

spectrum. All calculations are performed at the Γ point of the Brillouin zone. The

symmetry groups of these structures are Dg80 = TD6h for pristine graphene and

Dg77 = TC6v for graphene doped at the H-site [262, 263]. All groups are diperiodic

(i.e. Dg) and represented as a semi-direct product of the translational subgroup T

and a point group. Translational subgroups of these symmetry groups need not to

be mutually identical.

Results and discussion

The total energies for all considered structures and graphene are calculated and, as

expected, graphene doped at the H-site has a higher total energy than the graphene.

This does not represent an obstacle for the stability. If the provided reservoir of

adatoms is large enough, adatoms will be adsorbed in graphene, because the ther-

modynamical potential is a grand-canonical one and then becomes minimized:

−kBT lnZ = ΦG = 〈E〉 − TS − µ〈N〉 (5.2)
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The transfer of the adatoms on the graphene will reduce Z, even if µ is small.

We begin with the group theory discussion and the symmetry assignment of the

modes. The symmetry group Dg77 = TC6v of the H-site adatom doped graphene is

a subgroup of the diperiodic group Dg80 = TD6h, a symmetry group of graphene.

In order to find which of the phonon modes of the H-site adatom doped graphene

monolayer corresponds to a certain phonon mode of the graphene, it was necessary

to reduce the corresponding irreducible representation of group Dg80 to its subgroup

Dg77. For the modes belonging to the Γ point:

ΓE2g(Dg80) ↓ Dg77 = ΓE2

ΓB1g(Dg80) ↓ Dg77 = ΓB1

(5.3)

(↓ is the notation for the subduction operation). Since the translational subgroup

of these diperiodic groups is represented by the number one in irreducible represen-

tations belonging to the Γ point, the upper formulae are obtained using the point

group character tables (see, e.g., [264]). For the modes belonging to the K point, the

characters of Dg80 for irreducible representations at this point [29] are necessary.

The reduction procedure gives

KA′1(Dg80) ↓ Dg77 = ΓA1 + ΓB2,

KA′2(Dg80) ↓ Dg77 = ΓA2 + ΓB1,

KE ′(Dg80) ↓ Dg77 = KE ′′(Dg80) ↓ Dg77 =

ΓE1 + ΓE2.

(5.4)

ΓB1g, ΓE2g, KA
′
1 , KA′2, KE ′, KE ′′ of graphene correspond to the mode B1, E2,

A1 and B2, A2 and B1, E1 and E2, E1 and E2 for the graphene doped at H-site,

respectively. There is a perfect agreement with the irreducible representation shown

in Figures 5.4, 5.6, 5.5, . T’ is a translational subgroup of Dg77 while T is trans-

lational subgroup of Dg80. T’ is a subgroup of T such that for all elements of T’

the phase factor cos(~kK · ~R) is equal to one. This factor appears in the characters of

irreducible representations of Dg80 for the K point [29]. The vibrational frequencies

and normal coordinates for the LiC6-mono, CaC6-mono, BaC6-mono are shown in

Figure 5.4, 5.5, 5.6 respectively. For all compounds, true acoustic mode (with ω

= 0 at the Γ point) are not represented. Also, modes where Kohn annomaly is

present are not depicted. For all H-site doped graphene, the two lowest modes can

be related to three acoustic modes of graphene. Therefore, their frequencies are the

lowest. The remaining modes have normal coordinates similar to graphene phonons

at the Γ and K points.
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Figure 5.4.: Vibrational frequencies (in wave numbers) and normal coordinates for

the monolayer LiC6-mono. The modes of graphene with a similar dis-

placement pattern are denoted in parentheses.

Figure 5.5.: Vibrational frequencies (in wave numbers) and normal coordinates for

the monolayer CaC6-mono. The modes of graphene with a similar dis-

placement pattern are denoted in parentheses.

Figure 5.6.: Vibrational frequencies (in wave numbers) and normal coordinates for

the monolayer BaC6-mono. The modes of graphene with a similar dis-

placement pattern are denoted in parentheses.
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This is indicated in Figure 5.7 (the Kohn anomaly is marked with red) and it

is a consequence of the Brillouin zone folding. The K point of graphene becomes

equivalent to the Γ point of H-site doped graphene, due to the reduction of the basis

vectors length in the reciprocal space [58]. This reduction is caused by an increase in

the size of the primitive cell in direct space, as depicted in Figure 5.8. The K point

of the Brillouin zone (BZ) of graphene is folded to the Γ point of the reconstructed

BZ in the H-site doped graphene and the phonon bands at the Γ and K points in

graphene are ascribed to the folded superstructure, as shown in Figure 5.7. The Γ

point is the same for both structures. The normal coordinates of phonons at high

symmetry points of the BZ of monolayer graphene can be determined solely by the

symmetry arguments [265, 266, 30]. For the complete system of eigenvectors of the

honeycomb lattice at the Γ and K points, see ref. [30]. There are several reports on

the experimental realization of doped graphene [258, 267, 268, 269]. None of them

contains Raman or infra-red spectra of these structures. Therefore, we compared

our results with inelastic X-ray scattering experiments on graphite [270]. In this

paper graphite is considered as a system of weakly interacting graphene sheets.

The bonds between the two carbon atoms in the plane are much stronger than the

weak van der Waals interactions between the layers. The graphite phonon modes

correspond approximately to the in-phase and out-of-phase vibrations of the two

graphene planes. Most of the phonon branches in graphite are almost the same as

in graphene [38, 270]. The group of wave vectors for all H-site doped graphene at

the Γ point is C6v. The modes of E2 symmetry are Raman active while those of

the A1 and E1 symmetries are both Raman and infra-red active. According to ref.

[270], the experimentally determined values for phonon frequencies are 542 cm−1,

867 cm−1, 1007 cm−1, 1218 cm−1, 1576 cm−1, for KE”, Γ B1g, KA’2, KE’, Γ E2g,

respectively, while the KA1 mode is unresolved (its value is known from other ab

initio calculations, and it is 1310 cm−1 [38]).

If we compare our calculated modes with experimental data [251], small discrep-

ancies exist due to the presence of the adatoms. Significant discrepancies can be

seen for modes related to the Kohn anomaly. In graphene, the Kohn anomaly exists

in E2g and KA’1 modes due to the strong electron-phonon coupling. The fact that

the Kohn anomaly can be observed in a two-dimensional system is quite remarkable

since this phenomenon is more pronounced for one-dimensional systems the Kohn

anomaly can be observed and measured using Raman spectroscopy [38]. As men-

tioned before, the zone folding effects in graphene occur because the graphenes unit
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experimental/
other work

Figure 5.7.: Comparison of calculated vibration frequencies for various stacking and

experimental data. The modes which require non-adiabatic are marked

in red. The experimental values are taken from ref. [270].

cell consists of two carbon atoms, where the presence of an additional adatom en-

larges the unit cell. This affects the electron [261] and phonon configuration as well.

Comparing the phonon dispersion relations of the pristine and doped graphene, the

phonon bands along the Γ -K direction in graphene correspond to the ones at the

H-site doped graphene along the ΓMΓ’ direction. A small shift in energies can be

observed due to the adatom presence.

In the phonon dispersion relations of doped graphene one can distinguish three

regions: the low-energy region (0-400 cm-1) with the adatom- related modes, the

mid-energy region (400-900 cm-1) can be associated with the Cz and the high-energy

Figure 5.8.: a) Unit cell of pristine graphene (black) and H-site doped graphene

(red); b) corresponding BZ.
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region consisting of the carbon-carbon stretching modes [59]. Comparing the phonon

dispersion bands, like in Figure 5.9 for graphene and the LiC6-mono, one can see

how, due to the zone folding, graphene’s Γ and K point modes correspond to the

Γ modes of the H-site doped graphene with small discrepancies which originate due

to the presence of an adatom. For the graphenes out-of-plane optical phonon (Γ

at 867 cm−1 [270]) and the corresponding H-site doped graphenes mode there is a

discrepancy in energies which depends on the type of adatom (different shifts appear

for the Li, Ba and Ca doping). A similar behaviour appears for the two optical in-

plane modes of graphene and its corresponding H-site doped ones. Due to the zone

folding, it is also expected that the Kohn anomaly will be also present in modes which

are related to these two. All frequencies are computed by the static perturbation

theory of the DFT energy, from the linearized forces acting on the atoms due to the

static displacement of the other atoms from their equilibrium positions. As stated,

this DFT approach is based on the adiabatic ABO approximation, which is broken

for graphene so the modes where the Kohn anomaly seems to require a dynamic

approach, i.e. time-dependent perturbation theory. As a conclusion, our calculated

frequencies, for modes where the Kohn anomaly does not exist, are in a satisfying

agreement with those reported in [270]. There is a discrepancy around 10% (10-90

cm−1 depending on the mode) between experimental results for graphene presented

in [270] and calculated energies of graphene-related modes, which we can attribute

to the presence of the adatom in H-site doped graphene. The occurrence of non-

adiabatic effects in the GIC is observed and studied [271] thoroughly. In Li, Ca

and Ba GIC, for modes with present Kohn anomaly, non-adiabatic correction is less

than 20%. (∆ω for E2g mode in Li GIC is 218 cm−1, Ca GIC is 83cm−1 and for Ba

GIC is 59cm−1 [271].)

It is expected that the doped graphene has the same correction since we considered

graphite as a system of weakly interacting graphene sheets. In all cases, the vibra-

tional frequencies for modes with displacement pattern similar to the corresponding

phonon in monolayer graphene are almost the same.

The frequency splitting is due to the presence of the adatoms. The Raman tensors

and optical modes [272] for all considered structures are summarized in table 5.1. In

summary, by using DFT, we have calculated the vibration frequencies and normal

coordinates of the Γ point phonons for monolayer graphene doped with lithium,

calcium and barium. We found that they have a similar displacement pattern as

those for graphene at the Γ and K points. The group theoretical analysis that
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Figure 5.9.: Phonon dispersion for graphene and the LiC6-mono. Red circles mark

modes in the Γ point and blue circles at the K point. Due to the zone

folding, graphene modes from the Γ and K points fold to modes in the

Γ point at the LiC6-mono.

Table 5.1.: Raman tensors and symmetry classification of optical modes for doped

monolayer graphene

Raman tensors

graphene

Dg80=TD6h

Oz ||C6

Ox ||C ′2

A1g
a 0 0

0 a 0

0 0 b


E1g

0 0 0

0 0 c

0 c 0




0 0 −c
0 0 0

−c 0 0


E2g

d 0 0

0 −d 0

0 0 0




0 −d 0

−d 0 0

0 0 0


Aα

Dg77=TC6v

Oz ||C6

Ox || σv

A1
a 0 0

0 a 0

0 0 b


E1

0 0 c

0 0 0

c 0 0




0 0 0

0 0 c

0 c 0


E2

d 0 0

0 −d 0

0 0 0




0 −d 0

−d 0 0

0 0 0


Optical modes

Aα Γopt = 2A1 + A2 + 2B1 + B2 + 3E1 + 3E2
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demonstrates the correspondence between phonon modes of graphene and the H-site

doped graphene. A satisfying agreement with experimental data [270] additionally

supports these calculations. The results provided in this work are important for the

characterization of those structures and their further investigation and application.

5.2.2. LiC6 Superconductivity and enhancement

Results of Damascelli group [56] in 2015 indubitably shown that graphene can be-

come superconductive and the ARPES measurements on their monolayer graphene

doped with litium, just as predicted with DFT, have an electron-phonon pairing

mechanism. However much before an experimental realization, almost right after

the superconductivity in the Li-intercalated graphene has been suggested by Pro-

feta, the considerable attention has been devoted to the study of its enhancement

[257, 273, 274, 275]. From the previous GIC research as well as a graphene study,

a conclusion is drawn. Beside the Li doping, an increase of electron-phonon par-

ing potential is necessary to enhance EPC. And in order to increase λ, the phonon

frequencies must be softened. In the bulk material such effect would not be easy

to accomplish. Nonetheless, the low-dimensional materials offer great possibility for

manipulation and engineering, especially with techniques that are not available in

bulk materials. Application of homogenous strain would be practically impossible

outside of the theoretical discussion, and in low-dimensional material it is rather

simple. Based on this concept, we study the effects of the tensile equibiaxial strain

on the Li-intercalated graphene. Application of the strain is an intensively studied

topic, both in theory and experiment [276, 277, 278, 7]. Namely, an application of

strain on graphene can induce changes of the vibrational properties [279, 280], in the

electronic band gaps [281, 282] and significant changes in conductivity both at local

and macroscopic level [283, 284, 285]. The type of the strain is a very important

feature, since the graphene lattice symmetry determines its band structure. The

breaking of the hexagonal symmetry will modify the band structure of graphene

[286, 287], causing the opening of the band gap and many other effects [288, 289].

Since our intention is to soften modes, without drastically modifying the structure,

the tensile equibiaxial strain is employed in the calculations on the LiC6-mono (Fig-

ure 5.10 b)). Here it is shown that such strain causes softening of the phonons, in

particular, the in-plane phonons will be dramatically softened, whereas the out-of-

plane ones will be less affected [289]. This causes a wanted outcome and greatly
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Figure 5.10.: a) Lithium-intercalated graphene, h is the adatom graphene distance.

b) Schematic description of biaxial tensile strain.

affects λ. We investigate the enhancement of the electron-phonon interaction in

the LiC6-mono using the DFT calculation in the LDA [260] and based on the prior

discussion, we find that λ is sensitive to the tensile equibiaxial strain, therefore pro-

ducing a higher Tc. For instance, the strain of 10% makes a Tc increase of almost

300%!

Computational details

The ionic positions in the cell are fully relaxed, in all calculations, to their minimum

energy configuration using the BFGS algorithm. The hexagonal cell parameter c

was set to c = 12.5 in order to simulate a two-dimensional system. The norm-

conserving pseudopotential and the plane wave cutoff energy of 65 Ry were used

in the calculation. Although DFT with LDA may have problems in application in

certain situations where electronic correlations are strong, for graphene, with large

electronic bands, it is quite a suitable assumption [289, 290]. As stated before,

there is pronounced Kohn anomaly in certain modes. Although DFT is known to

underestimate the electron-exchange correlation energy in the presence of the Kohn

anomaly [291], the application of DFT here is justified. The differences appear only

in a small portion of the first Brillouin zone (as thoroughly discussed in previous

section) and do not lead to significant inconsistencies when the electron interaction

with entire phonon system is observed [292]. The unit cell for the LiC6-mono was

modeled in the in-plane unit cell, with an adatom-graphene distance h = 1.8 Å.

(Figure 5.10).
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Table 5.2.: Physical properties of graphene under different values of tensile equibi-

axial strain

Strain

%
h distance (Å)

C-C bond

lenght (Å)
λ ωlog Tc

0% 1.80 1.42 0.61 278.88 8.1

3% 1.69 1.46 0.47 876.17 6.42

5% 1.64 1.49 0.49 976.20 9.43

7% 1.61 1.52 0.55 1009.05 14.73

10% 1.54 1.57 0.73 827.09 28.72

λ was calculated with the electron momentum k-mesh up to 40× 40×1 and the

phonon q-mesh 20×20×1. The superconducting critical temperature was estimated

using the Allen-Dynes formula with µ* = 0.112 [135]

Results and discussion

In order to strain the LiC6-mono and in-crease the lattice constant, the in-plane

distance between C atoms is increased leaving the hexagonal symmetry preserved.

The Li adatom is placed above the H site in graphene (the center of hexagon)

(Figure 5.10). The modification of the lattice constant does not interfere with the

Li adatom position which remains fixed in the center of the hexagon, leaving the

symmetry unbroken. Due to the expansion of the carbon atom distances and the

invariance of the hexagonal symmetry, the Li adatom shifts only along the z-axis.

The effects of several values of the strain, which increase the lattice constant by 3%,

5%, 7%, and 10%, are studied. Larger strains are not applied due to the instabilities

that occur after the attempt of geometrical optimization and relaxation.

Table 5.2 presents the physical parameters of the Li-doped graphene under the

various strains. The distance between the Li adatom and graphene decreases with

the strain, as the Li adatom moves down deeper towards graphene. When the strain

is applied, the distance between neighboring C atoms increases and the graphene

π bonds less repulse the Li adatom, which then moves down along the z-axis. In

Figure 5.11, the electronic DOS is shown (values are normed to the Fermi level).

The small shift of the Fermi level can be observed with the strain. Here it is worth

mentioning that in graphene, a truly 2D system with low electron density, the long-

range Coulomb force is weakly screened and the electron-electron interaction cannot
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Figure 5.11.: Electron density of states for the LiC6-mono under a tensile equibiaxial

strain

be neglected. The two-dimensionality in graphene can cause enhanced excitonic ef-

fects, like the M-point exciton [44, 293] or the charge density waves (CDWs) forma-

tion (the Peierls transition) as a result of the Fermi nesting. Especially an interplay

between superconductivity and CDWs seems to be important [294, 295]. Namely,

CDWs make a pre-existing environment for superconductivity [296]. Various strains

in graphene have been studied as a method for the introduction of different broken

symmetry phases. CDWs in graphene have been thoroughly investigated both the-

oretically [297, 298, 299] and experimentally [298] showing interesting results. For

instance, the presence of axial magnetic field caused by a buckle strain can lead to

realization of CDWs [297]. Also, in CaC6 the electron-electron repulsion is dominant

within graphene sheets [298] producing the CDW stripes. In the case of strained

the LiC6-mono, DOS near the Dirac point gets enhanced (Figure 5.11), hence the

question about interplay of electron-electron and electron-phonon interaction can

be imposed. The problem of CDW in graphene, doped and strained, is discussed

comprehensively and its very existence in LiC6-mono is not in conflict with our

discussion and results. Moreover, CDW and superconductivity appear together in

different systems like high-Tc superconductors or intercalated graphite [299, 300, 301]

and can be even used as a criterion for high-temperature superconductivity.

Contrary to electronic image, where there is no significant adjustments, consid-
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Figure 5.12.: Phonon dispersion for the LiC6-mono, black lines as for the non-

strained the LiC6-mono and green and red for the 3% and 10% tensile

biaxial strain, respectively.

Figure 5.13.: Comparison of phonon DOS for various strains

erable changes are present for the phonons. In the phonon dispersion spectrum the

three regions can be distinguished: the adatom-related modes are associated with

low-energy regions (0-400 cm−1), where 300-400 cm−1 are Li modes mixed with the

out-of-plane carbon modes (Cz), the mid-region (400-900 cm−1) can be associated

with Cz modes and the high-energy region with carbon-carbon stretching modes

[59]. The main contributions to λ come from the low-energy lithium modes and the

carbon vibrations along the z-axis, with an additional contribution from the C-C

stretching modes (in agreement with [59] and [60]).

As shown in Figure 5.12 significant softening of phonons occurs with the appli-

cation of strain. In green phonon dispersion is depicted for the 3% strained LiC6-
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Figure 5.14.: Comparison of Eliashberg function for equibiaxial strain.

mono and in red for 10%. The softening of the high-energy C-C stretching modes

is strongly present with a larger strain. In addition, the consequent increase of the

phonon DOS in the low energy region occurs as well. The phonon density of states

(PhDOS) as a function of strain is depicted in Figure 5.13. Although the low-energy

modes slightly move upwards in energy, the main effect on the electron-phonon cou-

pling is the softening of graphene high energy C-C stretching modes.

The Eliashberg spectral function (Figure 5.14) describes which phonon modes

couple with the electrons on the Fermi level. The intensity of the Eliashberg function

is greatly increased in the area of the C-C stretching modes, with the strain. This

results in a great increase of λ and Tc. For the 10% tensile equibiaxial strain we

get λ = 0.73 and Tc = 29 K. λ is presented as function of strain in Figure 5.15.

It is worth mentioning that there is a reduction in λ for small values of strain

(0-3%) (Figure 5.15). Particularly, with strain, the C-C bonds expand, causing

a decrease of the Coulomb repulsion between th pe orbitals and the Li adatom.

That allows the Li adatom to descend toward the center on the graphene hexagon.

As emphasized before, a too small intercalant-graphite layer distance in the GIC

is destructive for superconductivity. On the other hand, this effect vanishes for

larger strains, while an increase in Tc, even up to three times larger than the value

reported for non-strained LiC6-mono, can be observed. This effect is associated to

an overlap of the carbon π and the Li orbitals. For the small strain, the Li adatom

drops down toward the center of hexagon and its orbitals overlap more with the

carbon π orbitals. That causes an increase in charge transfer and emptying of the

interlayer band, which reduces λ. When more strain is applied, the carbon bonds
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Figure 5.15.: Electron-phonon coupling constant behavior with tensile equibiaxial

strain.

are elongated and the n orbitals move away, both from each other and the center

of the hexagon. The orbital overlap is reduced, and after the certain critical value,

λ increases, following the strain (circles in Figure 5.15). In order to corroborate

this interpretation, we perform two additional calculations: the calculation on non-

strained graphene, where the Li adatom position is shifted along the z-axis; and the

second one with the strained pristine graphene.

Here it is proven that an increase of λ is a mutual effect of strain and doping.

For the first calculation, the π orbitals remain fixed in their positions (since there is

no strain). As the overlap with the lithium orbital and carbon π orbitals increases

and one can clearly see that λ is decreased (violet triangles in Figure 5.15) due to

an approach to the charge transfer completion and emptying of the interlayer band.

The effects of the strain on the pristine graphene λ are also depicted in Figure 5.15

(orange squares). Graphene has a very small λ which is increased with strain almost

four times, but effect of this enhancement is negligible (λ = 0.06). On the other

hand, Figure 5.16 presents the effects of the different strain on electronic localization

function (ELF). The significant changes for the large strain are presented, proving

the above-described effects. For ELF at 10% of the strain, the electron localization

region is greatly lowered as graphene and adatom separate one from another and

as a C-C bond are elongated. As expected, the strain alone will not boost the λ

considerably, nor the doping itself. A complex mechanism of the enhancement is a

mutual effect of the mechanical effects with the presence of the interlayer level, all

owing to the unique structure of graphene. For the notable enhancement of λ the
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Figure 5.16.: ELF (electron localization function) for the LiC6-mono with strain:

(a) ELF for the LiC6-mono without strain on the xy plane; (b) ELF

for the LiC6-mono without strain on the xz plane; (c) ELF for the

LiC6-mono for the 5% strain on the xy plane; (d) ELF for LiC6-mono

for the 5% strain on the xz plane; (e) ELF for LiC6-mono for the 10%

strain on the xy plane; (f) ELF for LiC6-mono for the 10% strain on the

xz plane. In panels (a), (c) and (e) we can see slight changes in ELF

projected on the xy plane, localization region at Li adatom is enlarged.

In panels (b), (d) and (f) are shown effects of strain, projected on the

xz plane. Notable change is present for the 10% of strain, where the

electron localization region is significantly lowered due to the described

effects.
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presence of both the adatom and the strain is essential. In summary of this section,

we can conclude tensile biaxial strain enhances EPC for the LiC6-mono. Since no

symmetry is broken, there are no major changes in the electronic structure of the

system. On the other hand, the strain softens the phonon modes significantly. The

critical temperature is enhanced by the strain, up to Tc = 29 K where the EPC

constant is 0.73. Further we conclude that both the presence of the adatom and

the strain are necessary for an enhancement of λ. It is important to stress that this

increase in Tc, achieved by the described mechanism, can be experimentally realized.

A pristine graphene is experimentally confirmed to be elastically stretchable up to

25% [7] making here considered strains feasible.

5.2.3. Optical properties of LiC6

The graphene’s specific electronic structure and unique combination of the opti-

cal electronic properties have inspired numerous investigations of its optoelectronic

properties and possible applications in photonics, energy applications and detectors.

For optical properties as well, intercalation can induces interesting new properties.

Great example is that optical transmittance of graphite increases upon metalliza-

tion by intercalation with e.g caesium [302]. This unusual property results from

the unique band structure of the graphene layer; intercalation heavily dopes ultra-

thin graphite, shifting the Fermi level upward more than any other band engineer-

ing method [303, 304, 305, 306] suppressing interband optical transitions due to

Pauli blocking thus increasing transmittance of light in the visible range. Li doped

graphitic materials are studied for optical properties, mostly in form of the ultrathin

films (3-60 layers) [307]. In this section we continue investigation of the LiC6-mono

by studying optical properties using only DFT techniques. This computationally

inexpensive method though very crude can gives us a surprisingly good qualitative

image. Since there are no prior calculations of the LiC6-mono optical properties in

literature to compare our results with, a test on a known material is necessary to

check the sufficiency of applied method. The calculations on MoS2 using the same

DFT method were made and the results were compared with the literature proving

the satisfactory correspondence.

The MoS2 monolayer is a member of transitional metal dichalcogenides 2D mate-

rials family, and it has a hexagonal structure, like graphene, with the monoatomic

Mo plane placed between two monoatomic S planes, and it displays some interesting
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Figure 5.17.: Atomic model of single layer MoS2

electronic and photocatalytic properties [308, 309]. Unlike the graphene, which does

not have a band gap, a property essential for many optical applications, MoS2 is

direct-gap semiconductor [310] which opens possibilities for many optical applica-

tions. In this section we study optical properties of graphene doped with lithium

and MoS2 (as shown in Figure 5.17), in particular we discuss the imaginary part of

dielectric function, using approaches based on DFT, implemented in the QE. In QE

the dielectric constant computed by phonon package is the static (high-frequency)

dielectric constant of the system (also referred as ε∞ in the literature). It is a ground

state property and its computation is exact (as much as exchange-correlation func-

tional is). In QE implementation of the RPA frequency dependence is computed

from an explicit summation of dipole matrix elements and transition energies. [428]

We are interested in the study of the optical properties of this two materials using

DFT as a computational inexpensive method for the qualitative description. First,

we study MoS2 and compare it with existing studies in order to approve this tech-

nique as sufficient for study and then we investigate graphene doped with Li and

compare it with pristine graphene.

Computational details

The ionic positions in the cell are fully relaxed, to their minimum energy config-

uration using the BFGS algorithm. The hexagonal cell parameter c was set to

c = 12.5 Åin order to simulate a two-dimensional system. The norm-conserving

pseudopotential [260] and the plane wave kinetic energy cutoff of 65 Ry were used

in the calculation of the LiC6-mono. The uniform k-point grid was composed of
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Figure 5.18.: The calculated imaginary part of the dielectric function for MoS2

4096 points in the first Brillouin zone. For MoS2, the GGA exchange-correlation

functional, Perdew-Burke-Ernzerhof (PBE) [311] was used for the relaxation of the

system. Also, similar as in graphene, to avoid periodicity effects, 20 Åvacuum be-

tween layers was added. The plane wave kinetic energy cutoff of 50 Ry was used and

the uniform k-point grid was composed of 4096 points in the first Brillouin zone.

Dielectric function ε(ω) was calculated, in the range 1-20 eV, within the framework

of the RPA [312] based on the DFT ground-state calculations, starting from eigen-

vectors and eigenvalues, implemented in the QE code as epsilon.x post-processing

utility. Matrix elements were accounted only for interband transitions that can cause

an inaccuracy ε(ω). RPA does not include the nonlocal part of the pseudopotential

and it is not able to include in the calculation the non-local field effects and excitonic

effects. We are interested in the study of the optical properties of this two materials

using DFT as a computational inexpensive method for the qualitative description.

For a more precise and detailed approach the many-body theory and its methods

are required (Bethe-Saltpeter equation (BSE) and GW approximation).

Results and discussion

The imaginary part of the dielectric function of the MoS2, pristine graphene and

the LiC6-mono is calculated. From the imaginary part of dielectric function an

absorption spectra can be derived. The dielectric function have been calculated in

the energy range from 1 to 20 eV.

The imaginary part of the dielectric function of MoS2 for the E vector perpen-

dicular to the c axis is presented in the green color and E parallel to the c axis is
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Figure 5.19.: The calculated imaginary part of the dielectric function for the pristine

and intercalated graphene for the E vector perpendicular to the c axis

presented in the violet on Figure 5.18. Four distinct structures on Figure 5. 81 , 1

(2.7 eV), 2 (3.7 eV), 3 (4.2 eV) and 4 (5.3 eV) can be connected to the interband

transitions, marked on the inset of the electronic band structure, with 1, 2, 3 and

4 as well. All interband transitions depicted here, are mainly due to the transition

from the p valence bands of s to the d conduction bands of the Mo [313]. The peak

1 is determined by the interband transitions from the valence bands I, II below the

Fermi energy to the conduction bands I, II and III above the Fermi energy along

the ΓM and KΓ direction. The peak 2 is due the interband transitions from the

valence bands II below the Fermi energy to the conduction bands II and III above

the Fermi energy along ΓM direction and near the M. The peak 3 exists due to

the interband transitions from the valence bands III below the Fermi energy to the

conduction bands II and III above the Fermi energy along KΓ direction. Peak 4

is determined by the interband transitions from the valence bands IV below the

Fermi energy to the conduction band I above the Fermi energy in the vicinity of the

M high symmetry point. Our calculations are in agreement with the other similar

DFT studies [313] and experimental research as well [314] but for the more precise

results an advance approach is needed (BSE). By concluding this, we proceed to the

imaginary part of the dielectric function of the pristine and intercalated graphene.

Results are presented in Figure 5.19.

For the pristine graphene, there is a significant peak at small frequencies at 4

eV and another peak at 14 eV. The origin of these peak structures is π∗ → π and

σ∗ → σ interband transition [315], respectively. The ellipsometry measurements
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show that the first peak is at 4.6 eV [293, 316, 317] and it is connected with the

van Hove singularity in graphenes DOS (the M point). The lower value compared

to one derived from the experiment, could be due to neglecting of the interaction

between graphene and substrate and many-body interactions within the RPA calcu-

lation [318, 319]. There is also present singularity at zero frequency (due to metallic

property of studied system). The intercalation did not introduce the band gap so

peaks are not shifted as it can be seen on the Figure 5.19. The intensity of peaks

obtained in this study cannot be discussed in a proper way due to approximative

nature of the used method. The variation in peak heights for the same material,

can be observed in calculations based on various models [320]. We can discuss qual-

itatively, for the peak at 4 eV, it is expected that, analogues to bulk graphite and

the bulk LiC6, due to the up-shift of the Fermi level, part of the π*-like final bands

in graphite fall below the Fermi level in LiC6 and lead to a reduction of the peak

height [321]. Similar is expected to happen in graphene and the LiC6-mono. Similar

effect is discussed in graphene monolayer doped with various amounts of B and N

[322]. Continuing analogy with LiC6 bulk, for other peak a 14 eV, this structure

also corresponds to transitions at graphite, however, due to zone folding, they cor-

respond to contributions from different regions in the LiC6 Brillouin zone [321, 323].

In this section we made a brief study of the optical properties i.e. the dielectric

function of the LiC6-mono using DFT techniques. To ensure quality of our approx-

imate method first was performed calculation of MoS2 and compared to literature

where it was proven that the used method gives satisfactory results. Afterwards,

graphene and the LiC6-mono calculations were made and we concluded that the Li

intercalation in monolayer graphene does not significantly affects the imaginary part

of the dielectric function and hence the absorption spectra. Because of the similarity

in their properties, in the Li doped and pristine graphene, we can expect that they

can be used in similar optic applications. Experimental data for comparison are not

yet available for LiC6 but parallels with graphene and the bulk LiC6 can be drawn

and discussed. Although used technique qualitatively well describes MoS2 and LiC6,

effects present in those materials due to the excitonic effects and interband transi-

tions, demand a detail and advanced approach (but computationally significantly

more expensive, time-demanding and resource-consuming). In technical aspect, we

can conclude that DFT techniques can be used for study of the optical properties of

these and similar 2D materials, and they provide the reliable and computationally

non-expensive solution (even available for calculating on personal computer) for the
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satisfactory qualitative description.

5.3. Magnesium-diboride monolayer

Magnesium diboride is an inter-metallic compound superconductor with a quasi-two

dimensional character [82] and a critical temperature of Tc=39K. Although first syn-

thesized and its structure confirmed in 1953 [80] interest in its properties grew since

2001 when it is discovered that MgB2 exhibits the highest superconducting transi-

tion temperature Tc of all metallic superconductors. Peculiar properties of MgB2

just begin with high Tc. The presence of unexpected phenomenon of the two-band

superconductivity draw even more attention and debate. Because the limit of Tc

in metallic superconductors had been believe to be 30 K in the framework of the

BCS theory, the discovery of surprisingly high-Tc superconductivity in this simple

binary inter-metallic compound has triggered enormous interests in the community.

MgB2 is the first and one of few materials where the presence of intrinsic multiple

gaps has been experimentally established. There were additional surprises, MgB2

is an sp not d metal, it has strong two-dimensional character and it becomes a su-

perconducting with a high critical temperature due to extremely strong coupling

to just few (3%) phonons, rather than having the strength spread rather uniformly

over the phonon spectrum. Better definition describes MgB2 not as a metal but as

a self-doped semimetal with crucial a-bonding band nearly filled [203]. The light

mass of B in MgB2 certainly enhance the phonon frequency and therefore the critical

temperature. There are some features considered to produces such a high Tc: (1)

hole doping of the covalent s bands, achieved through the ionic, layered character of

MgB2, (2) 2D character of the σ band density of states, making small doping con-

centrations nh give large effects on DOS on the Fermi level, independent of nh and

[96] a very strong deformation potential of the σ bands from the bond-stretching E2g

modes [84]. The basic aspects of the electronic structure and pairing is in a rather

strong coupling of the high frequency B-B stretch modes to the strongly bonding

electronic B-B states at the Fermi surface. The phonon mediated mechanism with

different coupling strengths between a particular phonon mode and selected elec-

tronic bands, boron σ and π-bands [96, 84, 87, 325, 326, 327, 328, 332, 333] results

in the presence of two superconducting gaps at Fermi level. Moreover, its high Tc,

simple crystal structure, large coherence length, high critical current density, high

critical field, transparency of grain boundaries to current and low normal state re-
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Figure 5.20.: Crystal structure of the monolayer MgB2 (a) and the bulk MgB2

(b), with hexagonal unit cell. Green (red) spheres represent Boron

(Magnesium) atoms.

sistivity promise that MgB2 will be a good candidate material for both large scale

applications and electronic devices. MgB2 has already been fabricated in the form

of bulk, single crystal, thin film and shows potential for practical applications.

MgB2 has layered structure where boron atoms form a honeycomb layer and mag-

nesium atoms are located above center of the hexagons, between every boron plane.

The boron layers alternate with a triangular lattice of magnesium layers. Theoreti-

cal studies offered insight in very interesting nature of this material, proposing that

superconductivity originates in the boron px, py bands [83] and suggesting the two-

band and even a new type-1,5 superconductivity [84, 329, 330, 331]. Experimental

studies by STM tunnelling spectroscopy [87], point-contact spectroscopy [88, 89, 90],

specific heat measurement [91] and Raman spectroscopy [92] supported two-band

superconductivity. Today we know that there are two distinct superconductivity en-

ergy gaps of ∆1 =2.3meV and ∆2 =7.1meV [93, 94]. The Fermi surface consists of

several parts, it is very anisotropic [326] and EPC is dominated by the in-plane B-B

stretching modes (E2g) [87, 326, 335] which have a large anharmonicity [87, 328, 335].

The σ-bonding states are confined in the boron planes but the charge distribution

of these states is not symmetrical with respect to the in-plane positions of the boron

atoms, due to their coupling. As boron atoms vibrate in-plane, shortening and elon-

gating bonds, shortened bonds become attractive to electrons and elongated bonds

became repulsive, this means σ-bonding states couple strongly to the vibrational
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mode [333] and this pairing is a principal mechanism responsible for superconduc-

tivity. Also, three-dimensional π-bands couple weakly to phonons generating second

superconducting gap. Measurement of B-isotope effect on Tc, tunneling, transport,

thermodynamic properties and phonon density of states confirm that MgB2 is most

likely an electron-phonon mediated σ-wave superconductor with an intermediate or

strong coupling [325, 59]. There is noticeable structural similarity of MgB2 to GIC

some of which also exhibit superconductivity. Furthermore, similarity to graphite

exists as well as in electronic structure. The peculiar and unique property of MgB2 is

the incomplete filling of two σ bands corresponding to strongly covalent, sp2-hybrid

bonding within the graphite-like boron layers [334]. The band structure of MgB2 was

studied and determined in detail, long time before discovery of superconductivity

[336, 337]. Charge carriers in MgB2 can be divided in two distinctive groups: π-

electrons similar to those in graphite and σ-electrons which represent highly specific

case of covalent bands crossing Fermi level that demonstrate anomalously strong

interaction with only two phonons with sufficiently small wave vector [334]. Various

approaches have been thoroughly studied in search for enhancement of critical tem-

perature in MgB2. The pressure effects and doping on the electron-phonon coupling

and superconductivity in MgB2 are well investigated [338, 339, 340]. Inspired with

doped-graphene and similarity to MgB2, we continue study of superconductivity in

low-dimensional materials and theoretically consider the two-dimensional limit of

MgB2 and a possibility of enhancement of the electron-phonon coupling. Although

some theoretical studies already exist on bilayer [343] MgB2 and thin films and

nanosheets [352, 353, 354] here is presented for the first time a comprehensive study

of the lowest limit of MgB2, a single monolayer MgB2-mono, studying its electron-

phonon interaction and an enhancement of electron-phonon coupling strength by

affecting the interdopant distance and softening phonons applying a tensile and

compressive strain. The electron-phonon coupling was studied using the Eliashberg

formalism. For simplicity, we do not study multiband and anisotropy effects and

use an isotropic Eliashberg function [61]. The comprehensive molecular dynamics

study was performed prior to all other calculations to establish stability of material

in broad range of temperatures. Combining results from DFPT with group theory

we analyze phonons in MgB2-mono.
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5.3.1. Computational details

MgB2 has a hexagonal unit cell and consists of graphite-like B2 layers stacked on-

top, with the Mg atom between layers, as shown in Figure 5.20. The first principle

calculations have been performed within DFT formalism in GGA to calculate the

electronic structure. For all electronic, phonon structure and electron-phonon inter-

action, QE is used with the ultra-soft pseudopotentials and plane-wave cutoff energy

of 30 Ry. All calculated structures are relaxed to their minimum energy configuration

following the internal force on atoms and stress tensor of the unit cell. We used the

Monkhorst-Pack 48×48×48 and 40×40×1 k-mesh, for calculations of the electronic

structure of the MgB2 bulk and the MgB2-mono, respectively. Phonon frequencies

are calculated using DFPT on the 12×12×12 and 20×20×1 phonon wave vector

mesh for bulk and monolayer structures, respectively. The crystal structure of the

MgB2 and MgB2-mono are presented in Figure 5.20. The lattice parameters for the

MgB2 bulk are in agreement with the experimental results, a=3.083 Åand c/a=1.142

[325]. In order to simulate 2D material, an artificial vacuum layer was set to be 25 Å.

When the monolayer is modeled, the structure is geometrically optimized, allowing

atoms to reach points of minimum energy. The bond length between neighbor-

ing atoms remained 1.78 Åbut the Mg atoms distance from the boron layer changed

from h=1.76 Åto h=1.60 Å. The results of geometrical optimization are summarized

in Table 5.4. For the molecular dynamics (MD) study the Siesta code is utilized

[345]. The super-cell is built by repeating the unit cell 3 times in both in-plane

directions whereas the lattice vector in the perpendicular direction is 15 Åproviding

a large enough vacuum space between the 2D material. The lattice parameters and

the geometry of the unit cell are initially optimized using the conjugate gradient

method. The Perdew-Burke-Ernzerhof form of the exchange-correlation functional

[311], double-zeta polarized basis set and Troulier-Martins pseudopotentials [346]

were used in all MD calculations. To estimate electron-phonon coupling, the Eliash-

berg function was calculated within QE with the electron momentum k -mesh up

to 80×80×1 for a fine grid and 40×40×1 for a coarse one, and the phonon q -

mesh 20×20×1 for the monolayer (48×48×48 fine grid, 24×24×24 coarse grid and

12×12×12 q mesh, for the MgB2 bulk). To estimate the strength of the electron-

phonon coupling, the Eliashberg function α2F (ω) is calculated.
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5.3.2. Molecular dynamics study of MgB2-mono

In order to determine the stability of a single layer of MgB2 in monolayer we perform

the MD simulations based on DFT and the super-cell approach. Besides the system

with optimized (pristine) lattice parameters, we also consider the biaxially stretched

system up to 3% of tensile strain and the biaxially compressed system up to 5% of

compressive strain. The MD simulations are conducted in the range of temperatures

between 50K and 300K in steps of 50K using the Nose-Hoover thermostat [347].

Figure 5.21 a) shows the average distance between the Mg and B atomic layers as

evolved during time of 1 ps. Throughout the simulation time there is no further

evolution of the z-coordinate and the Mg atoms show only an oscillatory movement

around the equilibrium positions (as it is shown in Figure 5.21) Importantly the

separation indicates that the Mg atoms do not leave surface of the MgB2 crystal. The

plane where the Mg atoms reside shifts away from the plane of the B atoms in average

by 0.09Åin the compressed crystal while the distance between the planes decreases

in average by 0.42 Åin the stretched system. This relatively larger shift in the latter

case can be understood by analyzing the details of the MgB2 atomic structure. When

the crystal is biaxially stretched its bond lengths increase, effectively destabilizing

the lattice. The interaction between Mg and B is especially affected since each

Mg atom is at the hollow sites of the B sublattice and builds six bonds with its

neighboring B atoms. This destabilization is partially compensated by nesting the

Mg atoms closer in the B sub-lattice. This support a phonon spectrum which will be

analyzed later in the text. There are no negative phonon modes present indicating a

stabile system. As a result of this MD calculation one can conclude that the MgB2

monolayer is a stable structure.

Figure 5.21 b) presents the dependence of the global Lindemann index on tem-

perature. It is calculated for the pristine crystal, with a compressive strain of 5%

and a tensile one of 3% from the local Lindemann indices from formula

qi =
1

N − 1

∑
j 6=i

√
〈r2
ij〉 − 〈rij〉2

〈rij〉

by averaging over all atoms. Here qi is the local Lindemann index of atom i, N

is the number of atoms, rij is a separation between i and j atoms while the angle

brackets denote averaging over time, i.e. the MD steps [327]. The linear behavior

of the Lindemann indices indicate that systems are stable at least up to the room
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Figure 5.21.: a) An average distance between the Mg and B atomic layers

b)dependence of the global Lindemann index on temperature.
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Figure 5.22.: The Electronic band structure and the total density of states of the

MgB2 bulk and the monolayer.

temperature.

5.3.3. Electrons, phonons, symmetry

In Figure 5.22 the electronic structure of the MgB2 mono and the bulk is presented.

The band structures for the bulk along the high-symmetry points Γ-K-M-Γ-A-L and

for the monolayer along Γ-K-M-Γ were calculated. The Fermi level is set to zero. The

band structure of the bulk is in a full agreement with the previous studies [338, 326,

344, 98]. The two bands crossing the Fermi level play a crucial role for the electronic

properties of MgB2. The density of states around Ef are predominantly related to

the B atoms and its p-orbitals wheras the Mg atom contribution is negligable in this

region. The previous studies described that Mg is fully ionized in this material and

the electrons donated to the system are not localized on the anion, but rather are

distributed over the whole crystal [96]. A similarity to graphite can be observed, with

three σ bands corresponding to the in-plane spxspy (sp2) hybridization in boron layer

and two π-bands of boron pz orbitals. [334]. Boron px(y) and pz orbitals contribute

as σ and π states. Analyzing PDOS one concludes that the σ states are considerably

involved to the total density of states at the Fermi level, while the π states have only

a partial contribution. It is worth emphasizing that the bulk bands of this material

at the K-point above the Fermi level present a formation similar to the Diracs cones

of graphene. In the monolayer there is an increase of the total density of states on

the Fermi level from N(Ef )bulk=0.72 states/eV to N(Ef )mono=0.97 states/eV, which

is beneficial for an enhancement of superconductivity. In the same manner as in

the bulk, the monolayer Mg atoms negligibly contribute to the DOS at the Fermi

level and the main contribution comes from the B p-orbitals. The characteristic
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Figure 5.23.: The phonon dispersion and the phonon density of states for the MgB2

bulk and the monolayer.

Diracs cone-like structure is still present and closer to the Fermi level. Dg77 as

the symmetry group of the MgB2-mono hosts a Dirac-like dispersion in the vicinity

of the K-point in the hexagonal BZ, if the orbital wave functions belong to the

2D representation E of the C3v point group of the wave vector [349, 350]. In the

tight-binding case, the px and py orbitals of two boron ions give rise to the two E

- representations, while s - orbitals form a basis for one E - representation. This

explains the presence of the Dirac cones at the K-point in the band structure of the

MgB2 monolayer (shown in Figure 5.22 b)).

Figure 5.23 shows the phonon dispersions for the bulk and monolayer. For the

bulk, in Figure 5.23 up, there are four optical modes at the Γ point. Due to a light

atomic mass of the B atoms and the strong B-B coupling the two high-frequency

modes almost have a pure boron character. The in-plane stretching mode E2g and

the out-of-plane mode (where atoms move in opposite directions B1g) are the boron

atom modes. E2g is a doubly degenerate Raman mode and the experimental studies

[96, 84, 203, 87, 325] show this mode is very sensitive to structural changes and it

has a strong electron-phonon coupling. The low-frequency modes, A2u and double

degenerate E1u, are infrared active and they do not involve changes on in-plane

bonds. In Figure 5.23 right the phonon dispersion of the MgB2 monolayer is pre-

sented. In the phonon spectrum there are no imaginary frequency which confirms

once again the dynamical stability of the system also demonstrated earlier by the

MD calculations.

At the Γ point there are three acoustic and four optical modes. The optical modes

A1, B1, E1 and E2 are related to the optical modes of the parent material. Two signif-

icant differences between the bulk and monolayer spectrum can be observed. There
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Table 5.3.: Raman tensors and symmetry classification of optical modes for MgB2-

mono

Raman tensors

MgB2-mono

Dg77=TC6v

Oz ||C6

Ox || σv

A1
a 0 0

0 a 0

0 0 b


E1

0 0 c

0 0 0

c 0 0




0 0 0

0 0 c

0 c 0


E2

d 0 0

0 −d 0

0 0 0




0 −d 0

−d 0 0

0 0 0


Optical modes

MgB2 Γopt = A1 + B1 + 2E1 + 2E2

Figure 5.24.: Vibrational frequencies (in wave numbers) and the normal coordinates

for the MgB2-mono.
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is a slight softening (hardening) of a mode which leads to nearly equal frequencies,

this opens a gap in phonon DOS between the acoustic and optical modes. More sig-

nificant effect concerns the softening of the B1 mode and hardening of the E2 mode.

As in the bulk E2g mode, the monolayer E2 mode is strongly coupled to electrons

causing the superconductivity in the monolayer in a similar fashion as in the bulk.

At this point, it is important to make another comparison to graphite and graphene.

Similar to the intercalated graphite and graphene in MgB2 [351] there is a presence

of the Kohn anomaly [273]. As mentioned above, there is a strong electron phonon

coupling of the E2g mode, which results both in a large phonon linewidth and, in

the neighborhood of 2kF , an abrupt change in the phonon mode frequency with a

phonon momentum - essentially the Kohn anomaly [351]. From previous studies of

graphene [243], we are aware that DFPT approach is not a proper tool for a treat-

ment of the Kohn anomaly and that some discrepancies with experimental results

can exist for specific modes when the Kohn anomaly is present, but also it is shown

[56, 59] that this does not affect total assessment of the electron-phonon coupling

and the Eliashberg function. In Figure 5.24 the vibrational frequencies and normal

coordinates for the MgB2-mono are presented. The symmetry group is C6v and the

acoustic modes are A1 and E1. The optical modes at Γ point are: A1,B1,E1,E2 where

the infrared active ones are A1 and E1, The Raman active modes are A1, E1,E2 and

B1 is silent. In Table 5.3 the Raman tensor for the MgB2-mono is presented. Similar

to graphene, the phonon eigenvectors and the normal coordinates at the Γ-point are

determined by symmetry rules and therefore are a model independent.

5.3.4. Superconductivity and enhancement

To investigate the strength of the electron-phonon coupling we calculate the Eliash-

berg function and the electron-phonon coupling constant λ for the bulk and the

monolayer. In Figure 5.26 the corresponding Eliashberg function is presented. In

the bulk material one can observe a large contribution close to 60 meV which comes

from the coupling of the E2g mode to the holes at the top of the a bands [59].

There is also smaller contribution from the coupling of the out-of-plane boron

B1g mode at 90 meV and a very small influence of the low frequency modes. The

calculated values are λ=0.72 and Tc=39.5 K There are different results for monolayer

materials. Our calculations show a decrease of the λ to be λ=0.55 and Tc=18.2

K. The Eliashberg spectral function for the MgB2-mono changes its appearance
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Figure 5.25.: a) Schematic description of MgB2 under a tensile (dark arrows) and

a compressive (light) strain. b) MgB2-mono, h is the distance between

the Mg and B layer

comparing to the bulk. The coupling of the high-frequency modes (which are soft

comparing to the bulk) is still present but with a lesser intensity, which is the adverse

for superconductivity and eventually causes lowering of the critical temperature. In

the area of low-frequency modes there is a certain enhancement associated to the

softening of the A1 mode. Nonetheless, low-dimensional materials are favorable for

enhancement of electron-phonon coupling comparing to bulk materials. Increasing

of the DOS at the Fermi level and softening of the modes are both beneficial for EPC.

In principle both effects can be achieved rather easily in low-dimensional systems.

Since we proved that the MgB2- monolayer is stable and superconducting a potential

superconductivity enhancement can be studied. Therefore, we apply a biaxial strain

to the MgB2-mono (Figure 5.25). Both a tensile and compressive strain were applied

and a certain enhancement from the both approaches was observed. The Eliashberg

spectral functions for all tested structures are summarized in Figure 5.27 and results

for the electron phonon coupling constant, critical temperature and cell parameters

are presented in Table 5.4.

When a biaxial strain is applied several mechanical effects happen which affect

the electron and phonon dispersions. The application of the biaxial strain leaves

the symmetry of the system unchanged, yet a tensile (compressive) strain moves B

atoms further (closer) from (to) each other in the same proximity, allowing the Mg

atom to move along the z-axis (As it is described by the h parameter in Table 5.4, h

is distance of the Mg atom from the boron layer). This causes a change in the charge

transfer from the magnesium atoms to the boron plane increasing (decreasing) DOS
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Table 5.4.: The cell parameters, electron phonon coupling constant and critical tem-

perature for the MgB2-mono biaxial tensile and compressive strains

Mono-layer a (Å) h(Å) % λ Tc (K)

No-strain 3.083 1.60038 No strain 0.55 18.2

Compressive 1% 3.0574 1.63555 -1% 0.58 20.6

Compressive 3% 2.99051 1.69576 -3% 0.65 24.0

Compressive 5% 2.92885 1.74098 -5% 1.04 31.0

Tensile 1% 3.11383 1.58069 1% 0.56 19.1

Tensile 3% 3.17549 1.50779 3% 0.62 22.3

Tensile 5% 3.23715 1.43748 5% 0.70 25.3

Tensile 7% 3.29881 1.36789 7% 0.85 27.9

on the Fermi level. Other effects concern the softening (hardening) of modes of the

boron atoms due to an elongation (compression) of the B-B bonds. Generally based

on the Hopfield formula [359] softening of phonons favors an increase in λ and conse-

quently also the critical temperature (as shown by the Hopfield formula). Together

these effects enhance the electron-phonon coupling but not enough to achieve values

of λ and Tc of bulk MgB2. Once again, we can make a comparison with an inter-

calated graphene where it is known that not all types of intercalant atoms produce

superconductivity or significantly increase Tc. This discovery was in contradiction

expected phenomenon of decreasing of the Tc and λ with the reducing dimensions

of a material (as we have here).

As shown in previous section an application of the tensile biaxial strain in the

LiC6-mono enhances EPC and increases the critical temperature dramatically [243].

Inspired with it and structural similarity of materials same procedure is repeated

here. In the MgB2-monolayer an application of the strain enhances EPC as well,

the 5% compressive strain raises the critical temperature almost 60% but it is neg-

ligible to the critical temperature of the bulk MgB2. In Figure 5.27 the Eliashberg

spectral functions are compared for the MgB2 bulk, monolayer and biaxialy strained

structures, tensile 1%, 3%, 5%, 7% and compressive strains 1%, 3%, 5%. For higher

values of the strain structural instabilities occur in material and they are excluded

from further analysis. The Coulomb pseudopotential (µ) is included in the Eliash-

berg theory as a parameter obtained experimental values of critical temperature

[339]. In the multiband case it (µ*) becomes a matrix which can be treated in
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Figure 5.26.: The Eliashberg function α2F for the MgB2 bulk and monolayer

various approximations [328, 334]. In anisotropic treatment µ* is determined to be

0.12 for critical temperature of 39K. Uniqueness of MgB2 and its anisotropy and

anharmonicity (present in the B-B stretching modes [87, 335]) demand the fully

anisotropic Eliashberg equations [328]. However, due to the interlayer interaction

the system should have only one transition temperature and other common proper-

ties [331] which justifies use of the isotropic Eliashberg equation in our calculations.

In this section the electronic band structure, density of states, phonon dispersion

and phonon DOS have been calculated for the MgB2-mono and compared to the

bulk material, using first principle calculation. We calculated the Eliashberg func-

tion and determined the electron-phonon coupling constant for the MgB2-mono and

concluded that it is superconducting while EPC strength is weaker than in bulk

material. To enhance it, we applied the biaxial strain and achieved an increase for

both tensile and compressive strain, due to increase of DOS at the Fermi level and

softening of the modes, but not enough to reach values for the MgB2 bulk. We

showed that the low-frequency vibrations contribute more in low-dimensional struc-

tures however not to overcome a decrease of coupling in high-frequency region. Our

further calculations on enhancement of EPC suggest that adding one more layer of

boron (i.e. making of MgB2 thin sheet) is beneficial and critical temperature will be
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Figure 5.27.: The Eliashberg function α2F (ω) for the MgB2 bulk, monolayer and

the biaxial tensile and compressive strains

enhanced. This statement is in agreement with previous study [343]. To enhance

even further EPC in the MgB2-mono, increasing of DOS at the Fermi level is needed.

This could be achieved by adsorption of suitable adatoms. The approach used in this

research does not include the anisotropy effects. For more precise description of the

superconductivity in 2D MgB2 an anisotropic approach is suggested (for example

using electron-phonon approach based on Wannier functions, which showed remark-

able accurate description of MgB2-bulk [344, 98]). However the isotropic Eliashberg

theory gives overall description of the superconducting properties of the thinnest

limit of magnesium-diboride. Establishing its stability and offering insight in this

new 2D material, we focus on effects of ultimate lowering of the dimensionality.

The question of reduction of dimensionality to its limit to the truly atomic-scale

2D system and the consequence of this [352, 353, 354, 355, 356, 357, 358, 359, 360]

are highly relevant not only to fundamental science but to nanotechnology and it

will be crucial for production of superconducting devices in future. The thin films

with nanometer thickness and nanosheets of MgB2 have been studied and shown to

be superconductive [352, 353, 354] however best to our knowledge this is the first

study of the thinnest limit of MgB2. Importance of the insight in MgB2-mono is

both for fundamental research in the low-dimensional superconductivity and in the
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field of applications e.g. through production of low-dimensional superconductive

heterostructures. Another important implication of our research reflects in opening

a possibility to revisiting of ideas of constructing MgB2-inspired high-temperature

superconductors [203], but now in the new context of two-dimensional materials and

all benefits offered by such systems.

5.4. GPU acceleration in 2D materials calculations

In the third chapter it was shown that DFT provides an excellent balance between

computational accuracy and cost for quantum mechanical calculations. The ap-

proximate nature of DFT lowers computational cost drastically, comparing to other

calculation methods, but the resources demand becomes still very high for systems

with few hundred atoms. For such a systems with a large number of atoms, the

computational demand is still a serious limitation for the considered system size.

In recent years, GPGPU (General Purpose Graphics Processing Unit) accelera-

tors have raised the interest for massively parallel computing in the field of scientific

calculations. GPGPUs were specifically designed to target high performance com-

putation (HPC) applications incorporating additional features into GPUs, such as

caching technology, and support for double-precision arithmetic. This technology

has rapidly evolved from graphics processing to programmable parallel streaming

processing. GPU accelerators are specialized for highly parallel and for computa-

tionally intensive computations. The GPU computing model uses a Central Pro-

cessing Unit (CPU) and GPU together in a heterogeneous co-processing computing

model.

Term ”parallel computation” simply can be described as performing many cal-

culations, or the execution of processes, simultaneously. Certain large problems

can be divided into smaller ones, which can then be solved at the same time. For

expressing parallel CPU code the two most widely used application programming

interfaces (APIs) are MPI (Message Passing Interface) [361] and OpenMP (Open

Multi-Processing) [362]. MPI is a library called upon from existing CPU code and

it is language-independent. This means it can be called from code written in any

compatible programming language, that is, C, C++, or Fortran. MPI is primarily

designed for use with a distributed memory system and it enables point-to-point

and collective communication between processors in a system. OpenMP is primar-

ily a set of compiler directives that can be called from within C/C++ and Fortran
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code. OpenMP is designed primarily for shared memory programming. OpenMP is

considered a higher level parallel programming API than MPI.

Benefit of GPU accelerators are in potentially several times faster calculations

than the CPUs (Central Processing Units) in data-parallel applications. Nonethe-

less the architectures of GPUs are more focused to data processing rather than to

instruction control and data caching. Due to the excellent price to performance

ratio and the low energy consumption per FLOP, it is tempting to use GPGPU to

accelerate highly data parallel scientific computations [365]. However, these GPU

accelerators have some special characteristics which makes this rather complex task.

Often they are optimized in such a way that the performance has the higher priority

rather than numerical accuracy. Most of the GPUs are only support single preci-

sion floating point numbers with very high performance and only single precision

accuracy is not sufficient in the quantum physics simulations. Response of one of

the biggest GPU manufacturer NVIDIA, comes in as a series of GPU cards, Tesla,

dedicated only to computation [363]. The Tesla products target the HPC market

due to their high computational power and the lack of ability to output images

to a display. This made the main difference between Tesla products and rest of

NVIDIA′s commercial (GeForce) and professional (Quadro) cards [363]. However

Quadro cards have double precision floating point numbers accuracy and can be

used as computational accelerator although then is necessary to use additional card

for video output.

In scientific computing, in order to achieve high performance from GPU acceler-

ators, the application needs to be very fine divided with highly parallel algorithms,

where each thread can do the calculations using the resources allocated for it. Ap-

plications with high arithmetic intensity are particularly well suited for GPU accel-

erators. A lot of quantum calculations application have been ported to the GPU

[372]. Thus there is an opportunity for high-throughput GPUs to play an active role

on DFT calculations.

The greatest benefit of introducing GPU in the scientific calculations is the fact

that performance of the supercomputers was brought to the desktop. The idea

behind the usage of GPGPU for the scientific computing is to offload the demanding

parts of calculations to GPUs while the remaining parts of the code will run on CPUs

(as shown in Figure 5.28). The advantage of GPGPUs massively parallel architecture

lies in the thousands of cores specially designed to handle multiple tasks parallelly.

Although the core clock of GPUs is slower, the number of cores inside provides more
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Figure 5.28.: Illustration of a GPU working in conjunction with a CPU as work is

offloaded and computed on a GPU concurrently with CPU execution

[367]

computational power. A great advantage of the GPU technology it is not limited

to the supercomputers but is increasingly found in desktop, laptop computers and

high-end workstations. Multiple GPUs can be plugged into desktop machines as

well as the supercomputer nodes for an increased performance. There are three

main vendors for the GPGPUs, Nvidia, Intel and ATI/AMD and they are actively

developing computing technology on GPUs.

Designing code suitable for massive parallel system such are GPUs demand careful

approach. When parallelizing computer code, it is important to know that not all

parallel processing elements have access to all the data in memory. As GPUs were

originally designed for applications involving graphics rendering, the lack of sophis-

ticated hardware limited the number of applications suitable for acceleration using

the historical GPU hardware design. The first programmers had difficult task to

represent their calculations in terms of graphics primitives, triangles and polygons,

when attempting to execute general-purpose applications on a GPU. As GPUs were

made exclusively for computer graphics, the input was a list of geometric primi-

tives, typically triangles, in a 3-D world coordinate system. With development of

GPGPU and the need for executing non-geometrical problems, APIs were designed

for general-purpose scientific computing. It significantly reduced the complexity of

general purpose usage of GPUs, that an extensive range of scientific problems is

making use of its acceleration in an economically efficient manner. At present there

are two main APIs available to program GPUs: OpenCL and CUDA (”Compute
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United Device Architecture” or CUDA is a parallel computing platform and API

created by Nvidia). Although modern GPU hardware design (along with usage of

dedicated APIs) has become more accepting to the general-purpose application, it

is still necessary to ensure that an algorithm is suited to the hardware.

Today the GPU computing model is known as the heterogeneous CPU - GPU pro-

gramming model. In this model, the sequential parts of an application are running

on CPU, whereas the data parallel, computationally expensive, parts are running

on the GPU. There are two major commercial standards for GPGPU development.

One is ATI′s StreamSDK and the other is the Nvidia′s CUDA.

To discuss performance of GPU acceleration term ”speedup”, has to be defined.

S(n) =
T (1)

T (n)
(5.5)

,where T (1) is the execution time of the original algorithm and T (n) is the execution

time of the new algorithm on n processors/cores/threads. Amdahl ′s and Gustafson′s

laws provide a guideline for speedup after parallelizing code. These laws show that

the serial portion of a parallel program is always the limiting factor in speedup. Am-

dahl presumes a fixed problem size, whereas Gustafson presumes increasing problem

size with increasing numbers of processors. Amdahl ′s Law [368], was introduced in

1967 and is defined by:

where βA is the fraction of the algorithm that is non-parallelizable, that is, the

fraction of the total run time T (1) that the serial program spends in the non-

parallelizable part. It can be seen from Amdahls equation, as the number n of

processors increases, the speedup becomes limited by the serial code fraction βA.

Amdahl′s Law is rather simplistic, as it makes many assumptions: the number of

processes used throughout the parallel portions of the code is a constant; the parallel

portion achieves linear speedup, and the parallel portion scales perfectly. Gustafson

[369] attempted to remedy this shortcoming by defining parallel speedup by a new

equation:
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where βG is again the non-parallelizable fraction, but now defined as the fraction of

the total time T (n) that the parallel program spends in serial sections if run on n

processors and βA as defined at Amdahl′s law. What Gustafson′s law says is that

the true parallel power of a large multiprocessor system is only achievable when

a large parallel problem is applied. Both from Amdahl and Gustafson ′s law it is

clean that, the serial code will ultimately become the bottleneck as the core count

increases. So this means that even if there is only 10% of serial code (and in DFT

calculations there is much more) time consumption is significantly increased.

Except fundamental limitations shown above, there are certain technical limi-

tations when it comes to aplication of GPU acceleration in scientific calculations.

When porting a code from the CPU to GPU, certain changes must be made in al-

gorithms to suit the GPU strongly parallel environment [366]. The communication

between hardware parts, since the speed is limited by the PCIe bus which connects

GPU and CPU is well known issue. Practically, this means there has to be a good

amount of computing on GPU to compensate for the bottleneck in the communica-

tions. Specially, in the material science there are parts of the code that are suitable

for parallelization (like matrix calculations, FFTs...) and they greatly benefit from

usage of the GPU, but also there are serial parts of the calculation that cannot be

parallelized for GPU.

In porting DFT codes to GPU the main focus is in finding a computationally

most expensive parts and reimplementing them with GPUs. The most demanding

parts are usually matrix elements (i.e. integrals), vector operations and FFTs [366].

Although there are already GPU versions of the standard computational libraries

(e.g. BLAS for GPU is CUBLAS) there is so much more than simple replacement

of libraries with their GPU equivalents. A satisfying speedup demands minimizing

of the slow transfer between GPU and CPU, in addition to porting of other routines

to GPU.

When it comes to 2D materials calculations, as discussed in the Chapter 3 it is

very misleading to think about 2D system calculations as simpler due to existence of

the system in x-y plane. Most of existing DFT codes do not recognize 2D systems

as such and there are necessity for modification in description and in input files
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Figure 5.29.: Structures used for testing of the GPU acceleration. a) the LiC6 bulk,

carbon and lithium atoms are presented with gray and blue color,

respectively, b) the LiC6-mono c) bulk, the Li-intercalated graphite d)

and e) silicium atoms in 8 and 64 atoms per unit cell configuration, f)

the single-wall zig-zag carbon nanotube

to avoid periodicity in the z plane. In this section the two codes (available under

GPL license) that benefit from the usage of GPU are compared on various low-

dimensional systems. It is important to emphasize these two codes, although they

are based on the same DFT formalism, are very different from each other and vary

in the approach on many subjects. The worlds first complete DFT code with GPU-

enabled calculations, BigDFT[238] is discussed and tested. The BigDFT reported a

speedup for the factor 6 for the whole hybrid code (and 20 for GPU routines). The

other code is Quantum Espresso [233] used throughout this dissertation. Porting of

QE to GPU is ongoing process [370, 371] and for version used for research presented

in this chapter (QE v5.2) it reports speedups for the factor 3-5.

The hardware used for all calculation has configuration: Intel Core i7-3930K at

3.7 GHz empowered with Nvidia Tesla K20c. Tesla K20c is GPU card with dual

slot, it has Kepler architecture, 2496 processor cores with 5GB GDDR5 memory on

the card, connected using 320-bit memory interface [363]. The GPU is operating at

a frequency of 706 MHz, memory is running at 1300 MHz.

For demonstration of GPU acceleration in DFT codes we employed several low

dimensional materials and its bulk counterparts, as presented in Figure 5.29. For

the first test we used LiC6-mono.

The BigDFT [238] is a massively parallel electronic structure code that uses

wavelets as a basis set and GTH [373] and HGH [374] pseudopotentials. BigDFT is

distributed as stand-alone code but as well as part of Abinit DFT program [375].

The performance was tested for 8 different system configurations (1,2,4 and 6 mpi

processes, with and without GPU) for the monolayer (Figure 5.29 (b)) and bulk
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Figure 5.30.: Elapsed time and speedup for LiC6-mono using BigDFT

(Figure 5.29 (c)) LiC6 and results are presented in Figure 5.30. This test was per-

formed to observe difference of boundary conditions. All the other properties are

exactly the same except the boundary conditions, which distinguish monolayer from

bulk. We can observe the slightly decreased wall-times for periodic structures, but

at the same time better speedup for the monolayer. Here GPU acceleration is more

efficient because the size of the simulation domain (i.e. the number of degrees of

freedom) is bigger for monolayer system. This is also a reason for the longer run.

The tests where GPU calculations were employed, show significantly better results

that can be eminently enhanced with the joined use of the MPI parallelization and

GPU together. It is worth emphasizing that the size of the problem is one of im-

portant prerequisites that dictate efficiency of the usage of the computing resources.

As a result, we can confirm the fact that, for best speedups it is very important

to adjust computational resources to specific problem. Best result is achieved for

the GPU run with 6 processes (for monolayer) and 4 mpi processes (for bulk) and

achieved speedup, compared to non-paralleled and non-accelerated system is up to

16 times for periodic (bulk) and even 45 for the surface (monolayer) configuration.

When we compare parallel run with and without benefits of GPU, the speedup of 4

to 5 times can be observed for both configuration. To show difference that number of

atoms makes in effectiveness of GPU acceleration we employed two simple examples.

Silicium bulk systems with 8 and 64 atoms, common example in BigDFT, is used
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Figure 5.31.: Elapsed time and speedup for bulk Si with 8 and 64 atoms per unit

cell using BigDFT

(Figure 5.29 (d) and (e)), to demonstrate effects of size of system on speedup. Re-

sults of this tests are presented in Figure 5.31. It is clear, better speedups are visible

on the larger systems, due to the fact that larger system can be better parallelized.

Other tested code with the GPU implementations is QE [233]. As BigDFT, it is

freely available and distributed as an open-source software under the terms of the

GNU General Public License (GPL). One of the important differences between this

two programs is in the basis set (as described in details in the Chapter 4). The

plane waves basis is easy to use on any atomic type. It uses FFT and has many

more advantages but is computationally expensive and requires large number of

basis functions. This was discussed thoroughly in the Section 4.

Introduction of GPU acceleration in the QE is an ongoing process [371, 370],

where main focus is on accelerating core modules first. The PWscf module is main

part of QE distribution involves the calculation of the Kohn-Sham orbitals and ener-

gies [206] for the isolated or extended/periodic systems and the complete structural

optimizations of the microscopic (atomic coordinates) and macroscopic (unit cell)

degrees of freedom and it is the first part of the QE distribution that is fully ported

for hybid CPU-GPU configuration. The special library PhiGEMM [370] was de-
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Figure 5.32.: Elapsed time and speedup for bulk and monolayer LiC6 using Quantum

Espresso, a) with gamma trick b)without gamma trick usage

signed to makes use of the CUDA features to provide a matrix multiplication that

concurrently utilizes multiple GPUs and the host processor. As a result, usage of

phiGEMM with QE benefits in speedups of 8.9-times [370]. An important feature

of QE-GPU is fact the package is configured to run concurrently on one the single

GPU and multi-core host processor, but greater speedups are achieved when it runs

on multiple GPUs.

We perform test on the same system as for BigDFT. QE can be compiled in

two different configuration, serial and parallel. In the parallel run, because of the

unique configuration of QE GPU, unlike in BigDFT, it is required for every MPI

process to have assigned one GPU. Otherwise, calculation would be cluttered and

unnecessary weighted by the GPU-CPU communication. Since, our calculations

have only employed one GPU, the calculation in the parallel configuration for more

than 2 mpi processes are pontless with GPU acceleration. They are unnecessarily

prolonged and we did not include such cases in our study. The performance was

tested for several different system configurations (serial with and without GPU and

parallel for 1,2,4 and 6 mpi processes) and results are presented on Figure 5.32. All

calculations are performed at the Γ point. In QE, a special algorithm is implemented,

called ”Gamma trick” which enables significantly faster calculations for the Γ point

only. For the Γ point (k=0), the Kohn-Sham orbitals are chosen to be real functions

in real space and this allows only half of Fourier components to be stored. Two

real FFTs can be performed as a single complex FFT with introduction of the

auxiliary complex function. We performed our tests with and without the usage of

the ”gamma trick”. As it can be seen in Figure 5.32, usage of the ”gamma trick”

reduces the total elapsed time in half but do not affect the achieved speedups. There
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Figure 5.33.: Elapsed time and speedup for CNT using Quantum Espresso, a) in Γ

point b)on the 8x8x1 Monkhorst-Pack grid

is some speedup when comparing GPU run and non-GPU run, but not significant.

We can see that in parallel run, effects of the GPU acceleration can be observed but

better speedups are present for no-GPU run with multiple mpi processes. This is

consequence of the fact we have quite small system.

In systems with small number of atoms communication between CPU and GPU

(which is known as largest drawback) happens too often and time saved on parts

of calculations performed on GPU disipate on this communication. For the large

systems, there is significant difference. One of illustrious examples of large systems

is AUSURF112 (system of 112 atoms of Au with one surface) used for benchmarks,

where the true benefit of GPU-QE can be seen [370].

To show the effects of the GPU acceleration on the low-dimensional system with

large number on atoms in the unit cells we choose a one-dimensional system, a

single-wall zigzag carbon nanotube (CNT) (Figure 5.29 (f)). The system with 76

carbon atoms was modeled, and the calculations with and without the GPU on the

serial and parallel configurations were performed in the Γ point (using ”gamma-

trick”) and on the 8x8x1 Monkhorst-Pack grid [234]. On Figure 5.33 are presented

results of these calculations. As explained above, the larger systems can show higher

benefit from usage of GPU technologies and this example demonstrates that fact.

The result speedups are 2-3 times with usage of GPU acceleration, depending on

configuration of the system. We showed that use of GPU and single mpi process is

better than usage of the multiple mpi processes (up to 4), for the same system.

It is demonstrated that, depending on the method of the GPU implementation and

properties of studied system various acceleration can be achieved. The fundamental

difference in two different approaches to DFT implementation (like in BigDFT and
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QE) makes it impossible to compare their speedups to each other. Furthermore

important conclusion imposes, GPU technologies have became an important part

of the high performance computing and their implementation is improving with an

every new program version. A goal of this study is to asses the effects of GPU usage

in low dimensional material DFT calculations, that has its own peculiarities and

tricks. Significant speedups can be observed in various DFT approaches (varying

from 2 to 45 times) but it is important to emphasise, that this is work in progress

and some problems are still present. There is always present dilemma of porting

vs writing new code from the scratch. At the same time almost everyday new

technologies and new solutions are appearing opening possibilities for new ways

and paradigms. The biggest advantage of GPU technologies introduced in scientific

calculations is in fact that performance of supercomputer was brought to the desktop

computers and high-end computational resources are available to everyone. Newer

generations of GPUs, that may provide more computational resources, are showing

up in an amazing speed. The next generation of NVidias TESLA GPUs is already

announced. Named Tesla V100 (using Volta architecture) it promises 5120 cores

and 7.5 TFLOPS in double precision [376]. We can conclude that although results

and benchmarks are promising, the golden age of GPU accelerated DFT is yet to

come and many more exciting improvements are yet to be seen. Results presented

in this section are formed in two papers [245, 247] where second paper is currently

in process of preparation for submission to relevant journal.
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6.1. Micromechanical Exfoliation Technique

In the first chapter it was described how did Novoselov and Geim, synthesized

graphene by a micromechanical fabrication technique [1]. This techniques gives the

best sample quality, truly monolayer flakes of graphene, with ideally flat surface but

of the micrometer size. Samples made by micromechanical exfoliation are mostly

used in fundamental research or for proof-of-concept devices. Although samples

are of the highest quality, it is very difficult, or even impossible to scale up the

production of graphene via this route. Being aware of the great potential that

discovery of graphene opened, a significant part of the research in the field for

first few years was devoted to solving a problem of a mass synthesis of graphene.

Dozens of various techniques were proposed resulting with a large spectra of sample

properties (as presented in Figure 6.1. The number of layers and control over the

number of layers also differs for different production approaches. Although the final

product is called graphene it can happen that most of the properties that pristine

graphene has are not present in obtained sample.

The technique of micromechanical exfoliation did not appear with graphene and

two-dimensional materials although it did made them very recognizable both to

scientific wider community. It is based on a well known method in mineralogy called

cleavage. It exploits the tendency of crystalline materials to split along definite

crystallographic structural planes [378]. It is not required that material has the Van

der Waals forces in the direction perpendicular to the cleavage plane. Sometimes

relative weakness of bond between the planes is result of the regular location of atoms

and ions in the crystal (example will be presented in this section). The cleavage

techniques include not only pealing or exfoliation, but also cutting and controlled

breaking (as with Si wafers). The cleavage parallel to the crystallographic (001)

plane is the most common one and all of the two-dimensional the Van der Waals

materials have their unit cells connected by Van der Waals forces in a direction
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Figure 6.1.: Several most commonly used fabrication methods of graphene (Figure

taken from [377]). Methods position in the chart illustrates the sample

quality versus mass-production costs; potential applications are also

noted for each method.

perpendicular to the basal 001 plane. In material science, long before graphene,

the cleavage technique was used to obtain near perfectly flat surfaces of highly

oriented pyrolytic graphite (HOPG), or mica group materials and others. This

was very important in scanning microscopy techniques (scanning electron, scanning

tunneling microscopy, atomic force microscopy), since these materials have been

used as substrates, because after cleavage they have almost perfectly flat surfaces.

These surfaces are perfect for the analysis where a substrate imperfections would

affect measurements of nanoscopic structures.

After the cleavage along well defined crystallographic plane, the surface is almost

perfectly flat. The micromechanical exfoliation is based on cleavage but with one

additional requirement. There should be no material left under the surface produced

by cleavage, i.e. cleavage should give only one atomic layer of the material (which

is not mandatory after the cleavage).

Micromechanical exfoliation if done properly should produce surfaces of only one

atomic layer with relatively high yield. In graphene production it exploits weak

the Van der Waals forces existing in crystal graphite making perfect monoatomic

samples. However an exfoliated graphene cannot be free-standing and it needs to be
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Figure 6.2.: Optical image of the mechanically exfoliated graphene sample on

Si/SiO2 substrate (SiO2 300nm dry oxide)

supported (or at least partly supported) by a substrate. The substrate preparation

is one of the most crucial steps for the deposition of atomically thin samples. In

most cases graphene and other atomically thin materials do not chemically bond

to a supporting substrate, and are only held on by the Van der Waals forces. In

practise this means, any microscopic dirt, chemical residue, or high enough surface

roughness will reduce a binding of sample to surface and deposition of graphene

will not be possible over such substrates. Having a systematic way of substrate

preparation (cutting, cleaning etc) therefore it is of great importance for successful

and controllable deposition of graphene. The success of micromechanical exfoliation

technique lies in the fact that the Van der Waals forces between the cleaved surface

of graphite (i.e. the surface layer) and the substrate are stronger than the forces
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between each graphene layer in graphite. So if we would have a flat substrate

surface with a graphite flake firmly attached to it by the Van der Waals forces,

an additional cleavage of that surface would remove all the graphite but the last

layer which remains on the substrate. This technique is not only recipe for graphene

samples preparation but for many other the Van der Waals materials as MoS2, WS2,

WSe2 [3, 4], FeSe[72], NbSe[66] and even some layered cuprates (Bi2212) [192].

Although it is a complectly manual technique, properties of the exfoliated graphene

are unparalleled. Exfoliated samples are always single crystals, usually with well de-

fined crystal edges. Due to the unique process the resulting graphene layer is not

exposed to anything but other graphite layers, substrate and the ambient making it

perfectly clean. Any number of layers could be produced by this method, although

there is no direct control over the number of layers, flakes size, shape and position

on the substrate. It is considered that thinner structures are more favorable, and

”graphene” is considered to be graphene up to 10-15 layers. The starting material

(natural crystalline graphite) has almost perfect structure and very low amount of

defects, obtained graphene samples have almost no defects in their crystal structure.

With all this benefits however there are several major drawbacks of this method.

For industry and application of graphene in it the biggest one is that it would be

almost impossible to scale up the production of exfoliated graphene and especially to

make it cost-effective. For this reason an exfoliated graphene is used in fundamental

research mainly and in proof-of-concept devices. It could be extended to very small

series of highly sophisticated devices. For fundamental research quality of samples

is of greatest importance so making large number of samples and using those that

were best suited for the planned experiment is way to overcome issues. Depending

on the requirements, the yield is usually one-tenth or even one-hundredth of the

prepared samples.

The mechanically exfoliated graphene can be used in various nano-electronic de-

vices, due to its excellent electrical conductivity, and as protective coating due to its

unequaled mechanical properties, originating in strong carbon-carbon bonds. The

Young’s modulus of graphene is about five times greater than of the bulk steel

[7, 379]. Not only strong but graphene is elastic and at the same time git can

be folded by 180◦ over less than one nanometer in length, without breaking its

in-plane carbon-carbon bonds. Another important point is in the fact the crys-

tal lattice of graphene is so densely packed that it is impermeable to any gases,

even H2 [8]. One of the most important application is graphene-based proton ex-
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Figure 6.3.: Schematic diagram of the mechanical exfoliation. Figure used with

permission of the author [425].

change membrane. Also, graphene has low friction coefficient [380], and has been

employed as a protective coating for friction reduction [381, 382, 383, 384, 385], wear

protection [386, 387] and as corrosion barriers [388]. Recently, graphene has been

employed to encapsulate objects such as single yeast cells [389], bacteria [390], water

molecules [391, 392, 393, 394, 395, 396, 397, 398, 399, 400], fluorescent films [401],

single-stranded DNA and DNA nanostructures [402, 403]. It was demonstrated that

graphene replicates the topography of the DNAmolecules [402, 403].

In the next two sections detail procedure of exfoliation will be described 6.2, and

afterwards its application as protective coating for DNA structures will be briefly

discussed 6.3.

6.2. Exfoliation Procedure

As emphasized before, the proper substrate preparation is one of the most impor-

tant prerequisite for successful isolation of high-quality micromechanically exfoliated

graphene samples. In this section several substrate preparation procedures that have

been used in the dissertation are presented. These techniques together with many

others are commonly used in the Si-based industry, nanotechnology, and surface
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science. For successful substrate preparation usually several steps of cleaning are

combined. [404] As discussed above, graphene samples require a substrate to be

place onto. Silicon substrates covered with 80 nm or 300 nm thick dry thermal

oxide (SiO2/Si) are most commonly used. Since graphene absorbs about 2.3 % of

the incident light, it should not be visible on any surface and it would be very

hard to locate flakes on substrate surface. However due to the interference of the

light within the oxide layer, the optical contrast of the graphene is enhanced and

enables a good visibility of graphene using optical microscopy, which is essential

for the identification [422]. If the thickness of the oxide layer is increased by only

5 % (315 nm), the contrast is significantly reduced [422]. Cleaning process for

SiO2/Si substrates begins with a mechanical cleaning, followed by thermal anneal-

ing. Mechanical cleaning starts with removing visible dirt and residue with q-tips

specialized for cleaning optical components, either dry or soaked with acetone. To

remove acetone residue substrates should be dried with an air or argon gun. Gas

flow should be 15 - 30 l/min with a nozzle diameter od ∼ 1 mm. If mechanical

cleaning is not sufficient chemical cleaning should follow. The chemical cleaning

begins in sonication acetone for 5 minutes, followed by another repeated sonication

for 5 minutes more in fresh acetone. Afterwards substrates should be removed from

the acetone and, without drying, should be transferred to be sonicated again in

isopropyl alcohol for 5 minutes. After sonication in isopropyl alcohol it is necessary

to quickly be dried with an air gun, preferably using argon gas. Gas flow should be

over 15 l/min with a nozzle diameter od ∼1 mm. When samples are cleaned from

mechanical and/or chemical residue, thermal annealing proceeds. Samples heat for

about 30 minutes, at temperatures between 200◦C and 250◦C. This temperature is

suitable for SiO2/Si, quartz, sapphire and similar substrates. Higher temperature

would increase surface roughness which is adverse. However with other substrates

like thin metallic films, or organic layers, or predefine micro- or nano-structures,

such high temperature could cause substrate degradation. Heating is ended with a

quick cooldown. Substrates should be cooled to room temperature quickly, e.g. by

removing them from the heater and placing them onto a metallic surface (at room

temperature). A substrate should be inspected by an optical microscope in dark

field for any residue or dirt. If there are any substrate contaminations, a chemical

cleaning followed again by thermal annealing should be carried out. A final step

should be plasma or ozone cleaning, to remove any organic residue. In preparation

of samples Novascan UV 8 system was employed. Process of ozone cleaning consists
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Figure 6.4.: Optical image of the mechanically exfoliated graphene sample on

Si/SiO2 substrate (SiO2 85 nm dry oxide)

of several steps. It begins with an exposure to ozone (UV light) for time duration of

10 minutes, at temperature between 100◦C and 200◦C. It is followed by the ozone

incubation period (with a lamp turned off) for 10 minutes, at the temperature be-

tween 25◦C and 60◦C. After time is elapsed ozone is purged (evacuation system on)

for 5 - 10 minutes, at temperature between 25◦C and 60◦C. Ozone is hazard for

human health and before opening of cleaning chamber it must be complectly evac-

uated. When chamber is opened substrates should be used in next several minutes

(up to 15 minutes), or the entire ozone cleaning procedure should be repeated. For

glass substrates (glass, quartz, SiO2/Si, etc.) ozone cleaning is not only proper way

to clean from any organic residue but it will further break any silanol bonds (Si-OH)

that are formed on the surface due to water contamination. As a result a substrate

should be highly hydrophilic. These broken Si-OH bonds will reform in ambient

conditions in the matter of several minutes hence graphene deposition should follow

immediately after ozone cleaning. After substrates were prepared micromechanical

exfoliation procedure can be performed. Procedure consists is a two-step process,

consisting of chemical and mechanical exfoliation steps. This procedure results with

150



6. 2D MATERIALS SYNTHESIS

very large samples and yield of of about 50% (with samples greater than 10x10

µm2) and also it minimizes any sample contamination, since graphene layers comes

in contact only with a clean substrate and ambient environment. The sample itself

is never exposed to any kind of chemicals, tape or tape residue, however surrounding

substrate will have both chemical and tape residue. Exfoliation procedure begins

with tape preparation process. A small flake (less than 10 mm in diameter) of Kish

graphite (preferably: NGS Naturgraphit GmbH) is placed between two pieces of a

sticky tape (preferably: NITTO ELP BT150ECM tape). Two pieces of tapes are

peeled off, exfoliating a graphite flake in two pieces, one piece on each side of the

tape. The process is repeated several times depending on the thickness of the start-

ing flake. Once graphite flakes on the tape are thin enough (there should be several

regions of graphite that are semi transparent, grayish in color, and non transpar-

ent regions should be thin enough so their thickness should not be visible by the

naked eye), less than 100 nm tape is considered prepared. Prepared tape should

be gently placed over a clean substrate, just removed from ozone cleaner. After

placement of the tape, there should be no air bubbles left, and the tape should not

be stretched nor strained. Excess tape (the part not supported by the substrate)

should be cut away, to about 1 mm from the substrate edge with sharp scalpel.

The sample with the tape on is then placed in Methyl-isobutyl ketone (MIBK), and

kept at about 40◦C until the tape comes off. This commonly lasts from 45 minutes

up to 2 hours, for a substrate size of 1x1 cm2. MIBK disolvs the adhesive, leaving

exfoliated graphene on surface of substrate. After the tape falls off, samples should

be rinsed in acetone, followed by iso-propyl alcohol, and quickly dried with an air

gun. With this, the first, chemical, exfoliation is over and as a result of the surface of

the substrate should be covered with large (about 1 mm in diameter) graphite flakes

that are not thicker than several hundred nanometers. There is still not graphene

at the surface. Second, mechanical, exfoliation continues. Samples should be slowly

(approximately 5 minutes) heated from room temperature (RT) to 150◦C and kept

at elevated temperature for about 30 minutes. After 30 minutes they should be

slowly cooled down back to RT in order to enhance the contact between flakes and

substrate. After cooled down samples should be covered with another tape (NITTO

ELP BT150ECM), again with no air bubbles nor strain. Procedure of mechanical

exfoliation occurs when the tape is pulled off as depicted at Figure 6.3. The rate of

the pulling will determine the amount of graphite and graphene that remains on the

sample surface. For example a slower pulling (about 1 mm per minute) will result
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Figure 6.5.: Image obtained by the optical microscopy of the mechanically exfoliated

Bi2212. In the area marked by 1, in the lightest violet, the half unit

cell of Bi2212 is present. In area 2 is single unit cell region and in

the area marked by number 3 is Bi2212 with few unit cells thickness.

Inhomogeneity of the area 1 is due to the degradation of material in the

interaction with oxygen from the air [192]. After the period of 12 hours,

the half unit cell samples were almost complectly degraded. To further

study this way obtained samples, coating with the layer of graphene or

hexagonal boron-nitride is necessary
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Figure 6.6.: Graphene monolayer on 85 nm dry oxide Si/SiO2 substrate with golden

contact in four point probe configuration made by UV photolithography.

Figure used with permission of author [426]
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with larger flakes but also with a more residual graphite. Qucik pulling could strip

the wanted graphene from the surface. The resulting sample should be inspected

under optical microscope, where potential atomically thin flakes should be located.

It can occur that there is no graphene samples on a substrate but a still significant

amount of graphite. Then second exfoliation can be repeated even several times if

needed. After the samples are obtained and thickness and number of layers is opti-

cally estimated comparing contrast of different layers (as shown in the first chapter,

and in Figures 6.2 and 6.4), they can be submitted to Raman spectroscopy where

exact number of layers can be determined, as described in the first chapter of this

dissertation (but only up to 5 layers). This way prepared samples, defect-free and

clean can be used for micro-electronic devices. Metalic contacts can be placed on the

surface, as presented in Figure 6.6. The above described procedure is suitable not

only for exfoliation of graphene but as well for other 2D materials, as well as certain

layered non-van der Waals materials. In Figure 6.5, 6.7 the mechanically exfoliated

Bi2Sr2CuO2 (Bi2212), a high-Tc cuprate superconductor, using same technique as

for graphene.

6.3. Mechanically exfoliated graphene as protective

coating for DNA structures

In this section it is demonstrated how mechanically exfoliated graphene can be used

as a protective layer for organic nanostructures. Results presented in this section

are presented in two papers [423, 424]. They are not directly related to the subject

of this thesis but they present part of experimental research of the candidate.

Manipulation of the artificial deoxyribonucleic acid (DNA) macromolecules can

be used for highly controllable process of bottom-up fabrication of various nanos-

tructures. The wide variety of structures and patterns and many 2D and 3D DNA

origami nanostructures were fabricated [405, 406, 407] using the technique of DNA

folding. Application for these structures are various. Spectra ranges from simple

usage as substrates [408], offering a solution-based self-assembly with nanometer

precision geometries, over usage as scaffolds for assembly of metallic nanoparti-

cles [409, 410, 411], for routing polymers [412], surface-enhanced Raman scattering

[413], as positive and negative masks for DNA nano-lithography [414, 415, 416, 417],

and even graphene patterning [418]. However a mechanical wear or solution phase
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Figure 6.7.: Image obtained by the optical microscopy of the mechanically exfoliated

Bi2212 on Si/SiO2 substrate (300nm dry oxide). Large scale samples

right after exfoliation procedure (deterioration process did not start

yet).
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processing could damage these nanostructures [410, 420, 421] due to their delicate

nature and limits their applicability in bottom-up fabrication.

Excellent mechanical properties of graphene offer possibility on enhancing the

structural stability of the DNA origami nanostructures by encapsulation. For this

purpose triangular the DNA origami nanostructures are deposited onto silicon sub-

strates and encapsulated by single layer exfoliated graphene. The procedure of

mechanical exfoliation is slightly modified due to the sensitive nature of the DNA

origami. As emphasized in the previous section, prior to any other procedure,

the substrates were cleaned and prepared by 5 min treatment in Novascans ozone

cleaner. Subsequently, drops of 0.5 µl of DNA origami solution were deposited on

each substrate and covered with 10 µl of 10TAE with 10 mM of MgCl2. After one

hour of the incubation period in the water-saturated environment, the samples were

rinsed in 1:1 water-ethanol solution to clean excess of material and dried with an

argon gun (flow 10 l min−1). The DNA origami nanostructures covered the entire

substrates with an averaged density of twenty triangular nanostructures per square

micrometer and substrates were prepared for deposition. After this point, there

were no any further cleaning or treating of substrates. Quickly after cleaning the

graphene was deposited over the DNA origami structures using, above described,

micromechanical exfoliation. The tapes were prepared and deposited on the sub-

strates with the DNA origami nanostructures. In order to avoid damaging the DNA

origami nanostructures (since their sensitivity on heat), the entire micromechanical

exfoliation was carried out at room temperature, without any heating. This made

process of chemical exfoliation in MIBK much longer, almost 4 hours. After the

deposition the individual flakes were detected using optical microscopy and single

atomic layer samples were chosen by the optical contrast, and confirmed by the

Raman spectrosopy and AFM. Schematic representation of the encapsulation by

graphene is shown in Figure 6.8

The morphology of DNA origami nanostructures is very well transferred to the

graphene, having even the inner triangle clearly resolved by atomic force microscopy

(AFM) (as shown in Figure 6.9). The samples are tested for their structural sta-

bility using AFM based manipulation and aqueous solution exposure. The forces

required to damage bare and graphene encapsulated nanostructures are compared,

and the effects of cumulative damage introduced by successive manipulations are

investigated. In addition, the stability of the graphene encapsulated DNA origami

nanostructures is tested against prolonged exposure to deionized water (DIH2O).
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Figure 6.8.: Schematic diagram of the DNA origami deposition and encapsulation

by the exfoliated graphene.

Figure 6.9.: (a)TAFM topography of a step edge of graphene covering a substrate

with DNA origami nanostructures. Scale bar is 500 nm. (b) and (c)

histograms (circles) and Gaussian fits (solid and dashed lines) of the

selected areas in (a), corresponding to the bare and graphene encapsu-

lated nanostructures. h1 and h2 stand for the height of the bare and

graphene encapsulated structures, and are estimated as a peak-to-peak

distance within the corresponding histograms. Figure taken from [423]
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It was demonstrated that a single layer exfoliated graphene can be used as a

protective layer for the DNAorigami nanostructures. The threshold for the normal

force that induces structural damage to the graphene encapsulated DNA origami

nanostructures was found to be about 60 nN. The graphene provides wear protec-

tion against multiple manipulations if the applied normal force is below the damage

threshold. Also graphene encapsulated nanostructures remain intact even after 30

min of the exposure to the deionized water, while the bare structures are signifi-

cantly damaged in the matter of seconds. The limits of graphene protection against

deionized water exposure arise from wrinkling of the graphene layer itself. It is

expected that other liquids will act in the similar manner as long as they do not

damage graphene, and will only take different amount of time to damage the bare

DNA origami nanostructures. This extends the use of the DNA origami scaffolds

in many fabrication processes, as various lithography steps or wet transfer of 2D

materials.

However this is not only application of graphene with DNA origami nanostruc-

tures. The unique electronic, mechanical, and thermal properties of graphene are

combined with the plasmonic properties of the gold nanoparticle (AuNP) dimers,

which are assembled using the DNA origami nanostructures [424]. A strong interac-

tions between graphene and AuNPs result in superior SERS performance of the hy-

brid structure compared to their individual components. Furthermore, an improved

photostability due to graphene encapsulation resulting in significantly lower photo-

bleaching rates. This is attributed to the efficient protection of the dye molecules

from reactions with the ambient oxygen by graphene and heat dissipation from the

SERS hot spots [424].

158



7. CONCLUSION

In the conclusion, the dissertation and publications directly related to it [242, 243,

244, 245, 246, 247] address the topic of superconductivity in the graphene and related

materials and study it using the ab-initio methods.

Research of 2D materials, as a field is born with the discovery of graphene, and

it is growing at a fast pace with each new atomically thin material that is isolated

or synthesised. The thin films have been studied for the second half of the 20th

century but their micron thickness still made them bulk materials. Graphene and

its thickness of only one atom showed completely new physics in a truly lowest limit.

In this dissertation the alkali doped graphene have been studied using DFT and

DPFT with an extensive focus on the vibrational properties [242]. A detail descrip-

tion and understanding of the phonons in the doped graphene is of the utter impor-

tance for the comprehension of the electron-phonon coupling and the appearance of

superconductivity thus making it necessary prerequisite for any further study. The

vibration frequencies and normal coordinates of the Γ point phonons for monolayer

graphene doped with lithium, calcium and barium have been studied and compared

it with ones in the pristine graphene. In addition, using the group theory methods,

the correspondence between phonon modes of the graphene and phonon modes of

the variety of doped graphene possesing C6v symmetry have been demonstrated. A

satisfying agreement with experimental data [270] additionally supports these cal-

culations. Not only the results provided in this study give important information for

further analysis of superconductivity but as well are relevant for the characterization

of those structures and their further investigation and application. To complete the

description, the optical properties of Li doped graphene have been studied within

DFT formalism [244]

Ever since supercondutivity in graphene have been suggested, a tireless struggle

for its enhancement have begun, suggesting plethora of methods how to make ”the

wonder material” even better superconductor [257, 275, 273]. The method for the

engineering of superconductivity in graphene by application of tensile biaxial strain,
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suggested in this dissertation and including paper [243] proposes an experimentally

available and plausible method [7] for the augmentation of the electron-phonon

coupling. The biaxial tensile stain can greatly enhance the eph coupling by softening

the optical phonon modes without breaking symmetry, resulting in a significant

increase of the critical temperature, up to 29K.

The experimental realisation of the Li-doped monolayer graphene [56] and suc-

cessive ARPES measurements shown, just as previous theoretical studies suggested

[59], that Li deposited on graphene strongly modifies the phonon density of states,

leading to superconductivity. This is not the only experimental realization of su-

perconductive graphene, there are several others, as the Ca-doped graphene bilayer

[261], graphene laminates [199] and the potassium-doped few layer graphene [178].

However, this was the first experimental proof of superconductivity in the Li-doped

monolayer graphene and it gave the strong evidence for the electron-phonon cou-

pling mechanism. This makes the ab-initio approach (DFT,DPFT, calculation of

the Eliashberg functiona and the McMillan formula) used in this dissertation, com-

plectly justified. Also since the electronic correlations are not strong in graphene,

usage of DFT and LDA is quite a suitable assumption [289, 290] ensuring the cor-

rectness of presented approach.

Conclusions drawn from the superconducting graphene not only have the funda-

mental importance for the understanding of superconductivity in the low dimension

but, as well, for search for other 2D superconductors and engineering of EPC in

them. This concerns the fundamental problem of the existence of superconductivity

in 2D limit. In general a 2D crystal structure and its phonon dispersion can be easily

modified which can be beneficial for superconductivity. A low density of states in a

2D system might be unfavorable to superconductivity but it can be easily increased

since a doping of one or few atomic layers is much simpler task than the bulk system.

The 2D systems not only give new properties but as well present a great possibility

for the manipulation and engineering, and artificially producing of the new materials

by stacking them, as heterostructures, that exibit different (sometimes dramatically

[72]) properties than its building components.

Inspired with the structural similarity between intercalated graphite and graphene,

and magnesium-diboride, research is continued on 2D limit of magnesium-diboride.

After proving its stability, a comprehensive analysis was performed including the ab-

initio methods and group theory study [246] showing that monolayer of magnesium-

diboride is superconductive with the critical temperature of 18 K. Calculating the
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Eliashberg function and the electron-phonon coupling constant, it is concluded that

EPC strength is weaker in comparison to the bulk. The low-frequency vibrations

contribute more in the low-dimensional structure however not enough to overcome

a decrease of the coupling in the high-frequency region occurred after the removal of

the other layers. Transferring conclusions made for the doped graphene and enhance-

ment of EPC by engineering biaxial strain to, not only structurally but electronically

similar, magnesium-diboride monolayer expected increase of EPC and critical tem-

perature was achieved. Modifying the of DOS at the Fermi level and softening of

the modes are beneficial for EPC resulting in the critical temperature of 31 K. Value

of this study not only lies in discovery of the new superconducting 2D material but

more importantly in this new perspective given to the ”old” material. It is opening

a possibility to revisiting of ideas of constructing MgB2-inspired high-temperature

superconductors but as the 2D materials. It demonstrates opportunity to review

known superconducting materials in context of the low-dimensional systems.

It is important to emphasize that low-dimensional systems open new possibili-

ties but as well as challenges and effects. The quantum confinement effects, sample

surface effects, BKT transition and many more become a factors [359]. Although

some of those are not included in ab-initio techniques, results obtained this way still

have remarkable value. The purpose of ab-initio calculation is not only in interpre-

tation of the experimental results but more importantly, in giving predictions for

the further research and improvements. Also, the ab-inito methods are ever-growing

part of science and new techniques are constantly being developed, approximations

are improving, including more effects and specificities. This is all followed by the

fascinating development of computational resource that become inescapable part of

theoretical research and almost the science for itself. As presented in this disserta-

tion [245, 247], the usage of various hardware and software accelerations can make

significant difference. Technological development of the computational resources

skyrocketed in the past decade enabling more complex and extensive problems to be

conquered. The new computational methods together with the constantly-improving

ab-initio methods are on synergic road to exact description of the reality.
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[126] W. Jones and N. H. March, ”Theoretical solid state physics: Perfect lattices

in equilibrium”, vol. 1, Courier Dover Publications, 1973.

[127] V. Ambegaokar, ”The Green’s function method,” Parks RD, New York, Mar-

cell Dekker, pp. 259{319, 1969

[128] T. Matsubara ”A New Approach to Quantum-Statistical Mechanics”, Prog.

Theor. Phys, 14, 351, 1955.

[129] P. B. Allen and B. Mitrovic, ”Theory of superconducting Tc,” Solid State

Physics, 37, 1-92, 1983.

[130] D. J. Scalapino, ”The electron-phonon interaction and strong-coupling super-

conductors,” Superconductivity, (RD Parks, ed.), 1, 449-560, 1969.

[131] J. Carbotte, ”Properties of boson-exchange superconductors,” Reviews of

Modern Physics, 62, 1027, 1990.

[132] F. Marsiglio and J. Carbotte, ”Electron-phonon superconductivity,” Super-

conductivity, 73-162, Springer, 2008.

172



Bibliography

[133] F. Marsiglio, ”Eliashberg theory of the critical temperature and isotope effect.

Dependence on bandwidth, band-flling, and direct Coulomb repulsion,” Journal

of low temperature physics,87, 659-682, 1992.

[134] V. Kresin, H. Morawitz, and S. A. Wolf, ”Mechanisms of conventional and

high Tc superconductivity”. Oxford Univ. Press, 1993.

[135] P. B. Allen and R. Dynes, ”Transition temperature of strong-coupled super-

conductors reanalysed,” Phys. Rev. B, 12, 905, 1975.

[136] G.W. Webb, F. Marsiglio and J.E. Hirsch ”Superconductivity in the elements,

alloys and simple compounds,” Physica C, 54, 17, 2015.

[137] Cardy J., Scaling and Renormalization in Statistical Physics (Cambridge:

Cambridge University Press, 1996.

[138] Rice T M ”Superconductivity in one and two dimensions”, Phys. Rev. 140,

A1889–91, 1965.

[139] Hohenberg P C 1967 ”Existence of long-range order in one and two dimen-

sions”, Phys. Rev. 158, 383, 1967.

[140] Likharev K K and Semenov V K ”RSFQ logic/memory family: a new

Josephson-junction technology for subterahertz- clock-frequency digital sys-

tems”, IEEE Trans. Appl. Supercond. 1, 3-28, 1991.

[141] Yazdani A ”Lean and mean superconductivity Nat. Phys., 2, 151, 2006.

[142] Seidel P (ed) ”Applied Superconductivity: Handbook on Devices and Appli-

cations” vol 2 (New York: Wiley) Ch. 9 & 10, 2015.

[143] Shalnikov, A. ”Superconducting thin films”, Nature, 142, 74 1938.

[144] Buckel, W. & Hilsch, R. ”Einfluss der Kondensation bei tiefen Temperaturen

auf den elektrischen Widerstand und die Supraleitung für verschiedene Metalle”.

Z. Phys., 138, 109–120, (in German) (1954).

[145] Hilsh, R. Non-crystalline Solids (ed. Frechette, V. D.) (Wiley, 1958).

[146] Ginsberg, D. M. & Shier, J. S. Basic Problems in Thin Films Physics (eds

Niedermayer, R. & Mayer, H.), 543, (Vandenhoeck and Ruprecht,1966).

173



Bibliography

[147] Strongin, M. & Kammerer, O. F. ”Superconductive phenomena in ultrathin

films”, J. Appl. Phys. 39, 2509–2514, 1968.

[148] Mooij, J. E. in Percolation, Localization and Superconductivity (eds Goldman,

A. M. & Wolf, S. A.), 325–370 ,(Plenum, 1984).

[149] Guo, Y. et al. ”Superconductivity modulated by quantum size effects”. Sci-

ence, 306, 1915–1918, 2004.

[150] Blatt, J. M. & Thompson, C. J. ”Shape resonances in superconducting thin

films”. Phys. Rev. Lett., 10, 332–334, 1963.

[151] Orr, B. G., Jaeger, H. M. & Goldman, A. M. ”Transition temperature oscil-

lations in thin superconducting films”. Phys. Rev. Lett., 53, 2046–2049, 1984.

[152] Aslamasov, L. G. & Larkin, A. I. ”The influence of fluctuation pairing of

electrons on the conductivity of normal metal”. Phys. Lett. A, 26, 238–239,

1968.

[153] Maki, K. ”The critical fluctuation of the order parameter in type-II supercon-

ductors”. Prog. Theor. Phys., 39, 897–906, 1968.

[154] Thompson, R. ”Microwave, flux flow, and fluctuation resistance of dirty

type-II superconductors”. Phys. Rev. B, 1, 327–333, 1970.

[155] Berezinskii, V. L. ”Destruction of long-range order in one-dimensional and

two-dimensional systems having a continuous symmetry group. I. Classical sys-

tems”. Sov. Phys. JETP, 32, 493–500, 1971.

[156] ”Berezinskii, V. L. ”Destruction of long-range order in one-dimensional and

two-dimensional systems possessing a continuous symmetry group. II. Quantum

systems”. Sov. Phys. JETP, 34, 610–616, 1972.

[157] Kosterlitz, J. M. & Thouless, D. J. ” Long range order and metastability

in two dimensional solids and superfluids. (Application of dislocation theory)”.

Sov. J. Phys. C Solid State Phys., 5, 124–126, 1972.

[158] Fisher, M. P. A. ”Quantum phase transitions in disordered two-dimensional

superconductors”. Phys. Rev. Lett. 65, 923–927, 1990.

174



Bibliography

[159] Goldman, A. M. ”Superconductor–insulator transitions”, Int. J. Mod. Phys.

B 24, 4081–4101, 2010.

[160] Anderson P.W., Edited by C.J. Gorter Progress in Low Temp Phys, 5, 5, 1967.

[161] Anderson P. W. ”Theory of dirty superconductors”, J. Phys. Chem. Solids,

11, 26–30, 1959.

[162] Strongin M, Thompson R S, Kammerer O F and Crow J E, ”Destruction of

superconductivity in disordered nearmonolayer films” Phys. Rev. B, 1, 1078–91,

1970.

[163] Tinkham M, ”Introduction to Superconductivity (New York: McGraw-Hill),

1996.

[164] Uchiashi T., ”Two-dimensional superconductors with atomic-scale thickness”,

Supercond. Sci. Technol. 30, 013022, 2017.

[165] Reyren, N. et al. ”Superconducting interfaces between insulating oxides”.

Science, 317, 1196–1199, 2007.

[166] Gozar, A. et al. ”High-temperature interface superconductivity between metal-

lic and insulating copper oxides”. Nature, 455, 782–785, 2008.

[167] Gariglio, S. & Triscone, J. M. ”Oxide interface superconductivity”. C. R.

Phys., 12, 591–599, 2011.

[168] Gariglio, S., Gabay, M., Mannhart, J. & Triscone, J.-M. ”Interface supercon-

ductivity”. Phys. C 514, 189–198, 2015.

[169] Qin, S., Kim, J., Niu, Q. & Shih, C.-K. ”Superconductivity at the two-

dimensional limit”, Science, 324, 1314–1317, 2009.

[170] Zhang, T. et al. ”Superconductivity in one-atomic-layer metal films grown on

Si(111)”, Nat. Phys., 6, 104–108, 2010.

[171] Cao, Y. et al. ”Quality heterostructures from twodimensional crystals unstable

in air by their assembly in inert atmosphere” Nano Lett., 15, 4914–4921, 2015.

[172] Xi, X. et al. ”Strongly enhanced charge-density-wave order in monolayer

NbSe2”, Nat. Nanotechnol., 10, 765–769, 2015.

175



Bibliography

[173] Ueno, K. et al. ”Electric-field-induced superconductivity in an insulator”, Nat.

Mater., 7, 855–858, 2008.

[174] Ye, J. T. et al. ”Liquid-gated interface superconductivity on an atomically

flat film”, Nat. Mater., 9, 125–128, 2010.

[175] Ueno, K. et al. ”Field-induced superconductivity in electric double layer tran-

sistors”, J. Phys. Soc. Jpn, 83, 32001, 2014.

[176] Xu, C. et al. ”Large-area high-quality 2D ultrathin Mo2C superconducting

crystals”, Nat. Mater., 14, 1135–1141, 2015.

[177] Wang, L. et al. ”Magnetotransport properties in high-quality ultrathin two-

dimensional superconducting Mo2C crystals”, ACS Nano 10, 4504–4510, 2016.

[178] Xue M, Chen G, Yang H, Zhu Y, Wang D, He J and Cao T., ”Superconductiv-

ity in potassium-doped few-layer graphene”, J. Am. Chem. Soc. 134, 6536–6539,

2012.

[179] Ichinokura, S., Sugawara, K., Takayama, A., Takahashi, T. & Hasegawa, S.

”Superconducting calcium intercalated bilayer graphene”, ACS Nano, 10, 2761–

2765, 2016.

[180] W.E. Pickett, ”The next breakthrough in phonon-mediated superconductiv-

ity”, Physica C, 468, 126, 2008.

[181] Ohtomo, A. & Hwang, H. Y. ”A high-mobility electron gas at the LaAlO3/

SrTiO3” . Nature, 427, 423–426, 2004.

[182] Caviglia, A. D. et al., ”Electric field control of the LaAlO3/ SrTiO3 interface

ground state”, Nature, 456, 624–627, 2008.

[183] He, Q. L. et al. ”Two-dimensional superconductivity at the interface of a

Bi2Te3 /FeTe heterostructure”. Nat. Commun. 5, 4247, 2014.

[184] Lee, J. J. et al. ”Interfacial mode coupling as the origin of the enhancement

of Tc in FeSe films on SrTiO3”, Nature, 515, 245–248, 2014.

[185] He, S. et al. ”Phase diagram and electronic indication of high-temperature

superconductivity at 65 K in single layer FeSe films”, Nat. Mater., 12, 605–61,

2013.

176



Bibliography

[186] Tan, S. et al. ”Interface-induced superconductivity and strain-dependent spin

density waves in FeSe/SrTiO3 thin films.” Nat. Mater., 12, 634–640, 2013.

[187] Shen, S. et al. ”Observation of quantum Griffiths singularity and ferromag-

netism at superconducting LaAlO3/SrTiO3(110) interface”, Phys. Rev. B, 94,

144517, 2016.
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A. APPENDIX

A.1. Graphene

A.1.1. Tight-Binding Model

Derivations of the nearest neighbor hopping Hamiltonian components HAB(
−→
k ) and

HBA(
−→
k ) , and the detailed derivation of the dispersion relation for graphene are

presented in this section. The Hamiltonian HAB(
−→
k ) addresses nearest neighbor

hopping from B site to three neighboring A sites: A,A′ and A′′

We start with the equation:

HAB(
−→
k ) =

∫
φ∗A(−→r −−→r A)ĤφB(−→r −−→r B)dr =

tAB · exp(i
−→
k (−→r A −−→r B))

(A.1)

If we consider only nearest neighbors:

HAB(
−→
k ) = tAB

∑
Ai=A,A′A”

exp(i(kxx̂+ kyŷ)(−→r B −−→r Ai)) (A.2)

We assign an appropriate coordinates for the atomic sites and by doing this we

define the exact atomic positions, assigning the symmetry of a hexagonal structure.

If the center of a(x̂, ŷ) coordinating system is placed at the site A ( Fig A. 1)), then

all atomic site coordinates are:

A = (0, 0)

B = (
a√
3
, 0),

A′ = (
a
√

3

2
,
a

2
)

A′′ = (
a
√

3

2
, −a

2
)

(A.3)

Using this coordinates, we rewrite nearest neighbor Hamiltonian and sum it to

obtain:
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Figure A.1.: A (gray) and B (violet) atomic sites and nearest neighbor sites. The

a stands for a length of a unit vector, and relates to carbon-carbon

distance as: a = a0

√
3

HAB(
−→
k ) = tAB · [ei(kxx̂+ky ŷ) a√

3
x̂

+ e
i()( a√

3
x̂−a

√
3

2
x̂−a

2
ŷ)
kxx̂+ kyŷ+

e
i(kxx̂+ky ŷ)( a√

3
x̂−a

√
3

2
x̂+a

2
ŷ)

],
(A.4)

HAB(
−→
k ) = tAB.[e

i( kxa√
3

)
+ e

i( kxa√
3
− kxa

√
3

2
− kya

2
)
+ e

i( kxa√
3
− kxa

√
3

2
+

kya

2
)
], (A.5)

HAB(
−→
k ) = tAB.[e

i kxa√
3 + e

i kxa√
3 e−i

kxa
√

3
2 e−i

kya

2 +

e
i kxa√

3 e−i
kxa
√
3

2 ei
kya

2 ],
(A.6)

HAB(
−→
k ) = tABe

i kxa√
3 [1 + e−i

kxa
√
3

2 (e−i
kya

2 + ei
kya

2 )], (A.7)

HAB(
−→
k ) = tABe

i kxa√
3 [1 + e−i

kxa
√
3

2 cos
kya

2
] (A.8)

The same procedure is repeated for HBA(
−→
k ), which corresponds for nearest neigh-

bor hopping from A site to three neighboring B,B′ and B′′ sites.

B′ = (
a√
3
− a
√

3

2
,
a

2
)

B′′ = (
a√
3
− a
√

3

2
, −a

2
),

that gives:

HBA(
−→
k ) = tBAe

−i kxa√
3 [1 + e+i kxa

√
3

2 cos
kya

2
]. (A.9)
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Combining the HAB and HBA to equation (1.8) we get:

∆k =

(
0 t∗e

i kxa√
3 (1 + 2e(−i

√
3

2
kxa)coskya

2

te
−i kxa√

3 (1 + 2e( i
√

3
2
kxa)coskya

2
0

)
=

(
0 ∆k

∆∗k 0

)
(A.10)

The eigenvalues are:

E(k) = ±
√
tt∗ · e(+i

√
3

2
kxa)e(−i

√
3

2
kxa) · (1 + 2e(−i

√
3

2
kxa)cos

kya

2
) · (1 + 2e(+i

√
3

2
kxa)cos

kya

2
)

(A.11)

E(k) = ±t
√

(1 + 2e(−i
√

3
2

kxa)cos
kya

2
) · (1 + 2e(+i

√
3

2
kxa)cos

kya

2
) (A.12)

To make it simpler to handle we define:

√
3

2
kxa = φ

cos
kya

2
= C,

E(k) = ±t
√

(1 + 2e−iφC)(1 + 2e+iφC)

= ±t
√

1 + 4C2 + 2C(eiφ + e−iφ),

= ±t
√

1 + 4C2 + 2C cosφ

(A.13)

Finally, if we return back from φ and C, to
−→
k , the dispersion relation of graphene

is obtained:

E(k) = ±t

√
1 + 4 cos2

kya

2
+ 2 cos

kya

2
cos

√
3kxa

2
(A.14)
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A.2. Superconductivity

A.2.1. Eliashberg Equations

Nambu [124] demonstrated how the formalism used for normal state can be rewritten

in such a way that the diagrams used for normal state can be applicable also to the

superconductive state. The inclusion of Coulomb interaction causes the electron-

phonon interaction to be screened and this causes a significant reduction. Although

there is a strong electron-phonon coupling, and phonons’ correction to the electron-

phonon vertex are small. Moreover, the Coulombic correction is not necessarily

small, but constant factors, so they can be included in the coupling constant. In the

Nambu formalism, a 2-component spinor for the electron and a bare-phonon filed

operator are defined as:

ψk =

(
ck↑

c†−k↓

)
ψ†k =

(
c†k↑ c−k↓

)
(A.15)

ϕqν = bqν + b†−qν (A.16)

The Hamiltonian of an electron-phonon interacting system can be written in terms

of ψ and φ, including the Coulomb interactions [126]:

H =
∑
k

εkψ
†
kσ3ψk +

∑
qλ

Ωqλb
†
qλbqλ

∑
k,k′,λ

gkk′λϕk−k′λψ
†
k′σ3ψk+

1

2

∑
k1k2k3k4

〈k3k4|Vc|k1k2〉
(
ψ†k3σ3ψk1

)(
ψ†k4σ3ψk2

) (A.17)

where εk is the one-electron Bloch energy relative to Fermi energy EF , σ3 is a Pauli

matrix, Ω is the bare phonon energy of wavevector q and mode ν, gk,k′,ν are electron-

phonon matrix elements and VC is the Coulomb potential. Translational invariance

of VC restrict k1+k2-k3-k4 to be either zero or a reciprocal lattice vector K. (The

electrons are described in an extended zone scheme and phonons are described in

a reduced zone scheme which is extended periodically through q-space) In order to

apply the perturbation method to superconductors, the possibility of the existence of

Cooper pairs has to be included and this is done by taking anomalous propagators.

Green function becomes [127]:

Ĝ(k, τ ) = −〈T{ψk(τ)ψ†k(0)}〉D̂(q, τ ) = −〈T{ϕqλ(τ)ϕ†k(0)}〉 (A.18)
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Where the average is over the grand canonical ensemble (β=1/T, T is the tem-

perature)

〈Q〉 =
Tre−βHQ

Tre−βH
(A.19)

where the operators develop with imaginary time and T represents the usual time-

ordered product. As the matrix operator ψk(τ)ψk†(0) does not conserve the number

of particles, the definition of a new operator U that adjusts the number of particles

is necessary:

U=1+R†+R

where R converts a given state in an N-particle system into the corresponding

state in N+2 particle system.

The Green function for electrons is a 2x2 matrix, the diagonal elements are the

conventional Green functions for spin-up electrons and spin-down holes, while G12

and G21 describe the pairing properties. We have:

Ĝ(k, τ ) = −

(
〈T{ck↑(τ)c†k↑(0)}〉 〈UT{ck↑(τ)c−k↓(0)}〉
〈UT{c†−k↓(τ)c†k↑(0)}〉 〈T{c†−k↓(τ)c−k↑(0)}〉

)
(A.20)

The diagonal elements are the ”normal” propagators, while off-diagonal elements

are Gor’kov’s F and F bar, respectively [101].

The phonon and the electron Green function could be expanded in a Fourier series

Dλ(q, τ ) =
1

β

∞∑
n=−∞

eiνnτDλ(q, iνn)G(k, τ ) =
1

β

∞∑
n=−∞

eiωnτG(k, iωn) (A.21)

where

ν = 2nπ/β , ωn = (2n+ 1)π/β (A.22)

νn and ωnare the Matsubara frequencies [128] and n is an integer. The Matsubara

frequencies are odd multiplies of π/β for fermions while for bosons they are even.

The Midgal-Eliashberg theory [98, 129, 130, 131, 132, 133, 134] is based on the

propagators. In momentum and the imaginary frequencies space, the one-electron

Green function for the non-interacting system is given by:

Ĝ0(k, iωn) = [iωnI− εkσ3]−1 (A.23)
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And for phonons

D0(q, iνn) =
[
M
[
ω2(q) + ν2

n

]]−1
(A.24)

Where M is the ion mass and ω(q) is the phonon dispersion. For the electron and

phonon, the Green functions can be written:

[
Ĝ(k, iωn)

]−1

=
[
Ĝ0(k, iωn)

]−1

−
∑̂

(k, iωn)
[
D̂(q, iνn)

]
=

[
D̂0(q, iνn)−

∏̂
(q, iνn)

]−1

(A.25)

where Σ is the electron self-energy and Π the bosonic one. The Migdal’s approx-

imation sets the vertex values equal to the bare vertex, and the electron-phonon

interaction is truncated at order
√

m
M
∼ ωD

EF
. We began from Hamiltonian, then

the Coulomb interaction can be included and discussion can be generalized to a

temperature different from zero obtaining:

∑̂
(k, iωn) = − 1

β

∑
k′,n′

σ3G(k′, iωn′)σ3

×

[∑
ν

|gk,k′,ν |2Dν(k − k′, iωn − iωn′) + VC(k − k′)

] (A.26)

where VC(k-k’) is screened Coulomb potential which depends only on the mo-

mentum transfer k-k’. Since σ are Pauli matrices, this equation consists of actually

four coupled equations, one per each component of matrix Σ If we use the linear

combination of the Pauli matrices, we can rewrite it as:

∑̂
(k, iωn) = iωn

[
1− Z(k, iωn)I + χ(k, iωn)σ3 + φ(k, iωn)σ1 + φ(k, iωn)σ2

]
(A.27)

We can solve Σ by using the Green function. But before that, we transform it

using the Dyson equation, and it becomes:

[
Ĝ(k, iωn)

]−1

= iωnZI− (εk + χ)σ3 − φσ1 − φσ2 (A.28)

There is always a solution for φ = φ = 0, and it corresponds to the normal state.

For non-zero φ or φ , the solution has lower free energy and describes a state with

Cooper-pairs condensation. After the matrix inversion we have:
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Ĝ(k, iωn) =
1

Θ

[
iωnZI + (εk + χ)σ3 + φσ1 + φσ2

]
=

1

Θ

(
iωnZ + (εk − µ+ χ) φ− iφ
φ+ iφ iωnZ − (εk − µ+ χ)

)
(A.29)

where,

Θ = (iωnZ)2 − (εk − µ+ χ)2 − φ2 − φ2
(A.30)

The importance of the Eliashberg theory lies in its validity in the normal state [129]

where Ĝ is diagonal. In that case, φ and φ vanish and Z and χ are determined by

the normal state self-energy. X shifts electronic energies and Z is a renormalization

function.

From the Green function we have that the poles, the electrons (and holes) elementary

excitations are given by:

Ek =

√(
εk − µ+ χ

Z

)2

+

(
φ+ φ

Z

)2

(A.31)

And then the gap function is:

∆(k, iωn) =
φ− iφ
Z

(A.32)

After inserting the Green equation into self-energy and comparing the result with the

general expression, we get set of equations for Z, χ , φ and φ, called the Eliashberg

equations:

[1− Z(k, iωn)]iωn =
1

β

∑
k′,n′,ν

|gk,k′,ν′ |2
iωn′Z(k, iωn)Dν(k − k′, iωn − iωn′)

Θ(k′, iωn′)
(A.33)

χ(k, iωn) =
1

β

∑
k′,n′,ν

|gk,k′,ν′ |2
χ(k′, iωn

′) + εk′

Θ(k′, iωn′)
Dν(k − k′, iωn − iωn′) (A.34)

φ(k, iωn) =
1

β

∑
k′,n′,ν

[
|gk,k′,ν′ |2Dν(k − k′, iωn − iωn′)− VC(k − k′)

] φ(k′, iωn′)

Θ(k′, iωn′)

(A.35)
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φ(k, iωn) = − 1

β

∑
k′,n′,ν

[
|gk,k′,ν′ |2Dν(k − k′, iωn − iωn′)− VC(k − k′)

] φ(k′, iωn′)

Θ(k′, iωn′)

(A.36)

With addition of one more equation that represents the electron number equation

and determines the chemical potential µ:

n = 1− 2

β

∑
k′,n′

χ(k′, iωn′) + εk′ − µ
Θ(k′, iωn′)

(A.37)

For elemental superconductors good approximation is in the averaging of these

equations over energy isosurface in k-space and solving it in one dimension. Yet this

is not sufficient for more complex systems. We can fix φ = 0 and k-dependence in Ĝ

comes mainly from explicit εk dependence of θ but it can be averaged out in Z and

ϕ (fixing εk=EF because they are non-zero only near Fermi surface) and we get:

Z(k, iωn)→ 〈Z(k, iωn)〉ε=EF
= Z(iωn)

φ(k, iωn)→ 〈φ(k, iωn)〉ε=EF
= φ(iωn)

χ(k, iωn)→ 〈χ(k, iωn)〉ε=EF
= χ(iωn)

(A.38)

We can use the same k average in the right side of the Eliashberg equations by

applying an operator
1

N(0)

∑
k

δ(εk) (A.39)

where N(0) is the normal density of state at the Fermi level and by introducing a

unity factor ∫
dωδ(ω − ωq,v) (A.40)

where q=k-k‘ is the phonon wavevector and we get:

iωn = − 1

βN 2(0)

∑
n′

∫
dω
∑
k,ν

∑
k′

|gk,k′,ν |2δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν
(ωn − ω′n)2 + ω2

q,ν

×
∫ ∞
−∞

dε
N(ε)iωn′Z(iωn′)

Θ(ε, iωn′)

(A.41)

φ(iωn) =
1

βN 2(0)

∑
n′

∫
dω
∑
k,ν

∑
k′

|gk,k′,ν |2δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν
(ωn − ω′n)2 + ω2

q,ν

×
∫ ∞
−∞

dε
N(ε)φ(iωn′)

Θ(ε, iωn′)

(A.42)
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χ(iωn) = − 1

βN 2(0)

∑
n′

∫
dω
∑
k,ν

∑
k′

|gk,k′,ν |2δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν
(ωn − ω′n)2 + ω2

q,ν

×
∫ ∞
−∞

dε
N(ε)(ε− µ+ χ(iωn′))

Θ(ε, iωn′)

(A.43)

n = 1− 2

βN(0)

∑
n′

∫ ∞
−∞

dε
N(ε)[ε− µ+ χ(iωn′)]

Θ(ε, iωn′)
(A.44)

Now we specify always positive-definite function, the electron-boson spectral func-

tion:

α2F (ω) = N(0)
∑
q,ν

g2
q,νδ(ω − ωq,ν) =

1

N(0)

∑
k,k′

∑
ν

|gk,k′,ν |2δ(εk′)δ(εk)δ(ω − ωq,ν)

(A.45)

Where the electron-phonon coupling is:

g2
q,ν =

1

N 2(0)

∑
k′

|gk,k′,ν |2δ(εk+q)δ(εk) (A.46)

After applying this, the Eliashberg equations changes its form to:

[1− Z(iωn)]iωn = −π
β

∑
ωn′

Z(iωn′)iωn′

Ξ(iωn′)

∫
dω

2ωα2F (ω)

(ωn − ωn′)2 + ω2
(A.47)

φ(iωn) =
π

β

∑
ωn′

φ(iωn′)

Ξ(iωn′)

[∫
dω

2ωα2F (ω)

(ωn − ωn′)2 + ω2
−N(0)Vcol

]
(A.48)

Ξ(iωn) =
√

[Z(iωn)ωn]2 + [φ(iωn)]2 (A.49)

Vcol is Fermi surface average of the VC . The sum over the Matsubara’s frequencies

can be cut off at an energy ωC.After solving these equations, we get the electron

self-energy at the Fermi level.

Now we discuss the reduction of the Eliashberg theory to BCS limit where all

calculations in this dissertation are performed. We introduce several approxima-

tions. The first is that real boson scattering is not taken into account. The next

approximation is in setting:

∆ (ω, T ) =

{
∆0 (T ) for ω < ωD

0 for ω ≥ ωD
,
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Where ∆0 (T ) is real number and ωD is the Deybe energy. Z(w,T) can be replaced

with its form for the normal state at w=0 and T=0, so we get:

Z(0, T )− 1 = 2

∫ ∞
0

dω′
∫ ∞

0

dΩα2F (Ω)

[
f(−ω′)

(ω′ + Ω)2
+

f(ω′)

(ω′ + Ω)2

]
≡ λ(T ) (A.50)

And for T→0 it becomes:

Z(0, 0)− 1 =

∫ ∞
0

dΩα2F (Ω)

∫ ∞
0

2dω′

(ω′ + Ω)2
≡ λ(T ) (A.51)

The gap equation becomes:

∆0(T ) =

∫ ωD

δo(T )

dω′
∆0(T )√

ω′2 −∆2
0(T )

λ− µ
1 + λ

[1− 2f(ω′)] (A.52)

For ε =
√
ω′2 − δ2

0 we can rewrite it to the usual BCS equation at finite temperature:

∆0(T ) =
λ− µ
1 + λ

∫ ωD

0

dε
∆0(T )√

ω′2 + ∆2
0(T )

[
1− 2f(

√
ε+ ∆2

0(T ))

]
(A.53)

For T→0 we get BCS gap equation as we know:

∆0(T ) =
λ− µ∗

1 + λ

∫ ωC

0

dε
∆0√
ε2 + ∆2

0

(A.54)

The renormalization factor 1/(1+λ) comes from the Z term in the Eliashberg

equation i.e. the inclusion of electron-phonon interaction. The Eliashberg equation

can be solved numerically with the iterative method until convergence is reached.
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A.3. Numerical Methods

A.3.1. Derivation of the Hartree-Fock equations

Derivation of the Hartree-Fock equations starts with the case of two electrons in

many-body Schrödinger equation:[
−
∫
i

O2
i

2
+
∑
i

Vn(ri) +
∑
i<j

1

|ri − rj|

]
Ψ = EΨ for N = 2 (A.55)

and for the single-electron Hamiltonian

Ĥ0(r) = −1

2
O2 + Vn(r) (A.56)

it can be writen as:

[Ĥ0(r1) + Ĥ0(r2) +
1

|r1 − r2|
]Ψ = EΨ,

The single-particle wavefunctions defined by ψ1 and ψ2 is:

Ψ(r1, r2) =
1√
2

[ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)]. (A.57)

Ψ is the solution with the lowest energy, E, i.e. the electronic ground state.

In order to find the functions ψ1 and ψ2 which minimize the total energy, E is

written an explicit functiona of the wavefunctions. Knowing that energy E is:

E =

∫
dr1...drNΨ∗ĤΨ (A.58)

and combining equations 1 and 2 in this expression we get:

E = {ψ1|Ĥ0|ψ1}{ψ2|ψ2}+ {ψ2|Ĥ0|ψ2}{ψ1|ψ1}−

{ψ1|Ĥ0|ψ2}{ψ2|ψ1} − {ψ2|Ĥ0|ψ1}{ψ1|ψ2}

+

∫
dr1dr2

|ψ1(r1)|2|ψ2(r2)|2

|r1 − r2|
−
∫
dr1dr2

ψ∗1(r1)ψ∗2(r2)ψ1(r2)ψ2(r1)

|r1 − r2|
,

(A.59)

The ψ1(r) and ψ2(r) need to be orthonormal and this requirement corresponds to

setting:

{ψ1|ψ1} = {ψ2|ψ2} = 1, and {ψ1|ψ2} = {ψ2|ψ1} = 0. (A.60)

Applying this conditions we get:

E =

∫
drψ∗1(r)Ĥ0(r)ψ1(r) +

∫
drψ∗2(r)Ĥ0(r)ψ2(r)

+

∫
dr1dr2

ψ∗1(r1)ψ∗2(r2)ψ1(r1)ψ2(r2)

|r1 − r2|
−
∫
dr1dr2

ψ∗1(r1)ψ∗2(r2)ψ1(r2)ψ2(r1)

|r1 − r2|
.

(A.61)
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Since E = E[ψ1, ψ2] functional of ψ1 and ψ2 and we can find the functions ψ1 and

ψ2 which minimize this functional. In order to acheve this functional derivatives of

E with respect to ψ1 and ψ2 should be equal to zero ie.

δE

δψ1

= 0
δE

δψ2

= 0 (A.62)

The functional derivative is:∫
drh(r)

δF

δg
(r) =

d

dε
F [g(r) + εh(r)]

∣∣∣∣
ε=0

(A.63)

Using the method of Lagrange multipliers we make sure constrains (A.62) are

fulfilled. We introduce a new functional which automatically incorporates the con-

straints:

L[ψ1, ψ2, λ11, . . . , λ22] = E[ψ1, ψ2]−
∑
ij

λij[{ψi|ψj〉 − δij], (A.64)

where the Langrange multipliers λ11, λ12, λ21 and λ22 should be calculated. For

constrains to be fullfiled it is necessary for L and λ to be:

δL

δψi
= 0, i = 1, 2,

δL

δλij
= 0, i, j = 1, 2.

(A.65)

The Hamiltonian is Hermitian and it allows ψi and ψi∗, (though they are not

independent) to be effectively be treated as independent and we calculate functional

derivative of each term of (A.63). Beginning with the first term of equation and using

expression (A.65), we get:

G =

∫
drψ∗1(r)Ĥ0(r)ψ1(r) (A.66)

∫
drh(r)

δG

δψ∗1
=

d

dε

∫
dr[ψ∗1(r) + εh(r)]Ĥ0(r)ψ1(r) =

∫
drh(r)Ĥ0(r)ψ1(r) . (A.67)

δG

δψ∗1
= Ĥ0(r)ψ1(r) . (A.68)

For the second term of equation and using expression (A.65) we get:

I =

∫
drψ∗2(r)Ĥ0(r)ψ2(r) (A.69)
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∫
drh(r)

δI

δψ∗2
=

d

dε

∫
dr[ψ∗2(r) + εh(r)]Ĥ0(r)ψ2(r) =

∫
drh(r)Ĥ0(r)ψ2(r) . (A.70)

δI

δψ∗2
= Ĥ0(r)ψ2(r) . (A.71)

and so on...

Applying this procedure to all terms of the equation (A.63) and then conditions

(A.66) we get:

δL

δψ∗1
= Ĥ0(r)ψ1(r) +

∫
dr′
|ψ2(r′)|2

|r− r|
ψ1(r)−

∫
dr′
ψ∗2(r′)ψ2(r)

|r− r|
ψ1(r′)− λ11ψ1(r)−

λ12ψ2(r).
δL

δψ∗2
=

Ĥ0(r)ψ2(r) +

∫
dr′
|ψ1(r′)|2

|r− r|
ψ2(r)−

∫
dr′
ψ∗1(r′)ψ1(r)

|r− r|
ψ2(r′)− λ21ψ1(r)− λ22ψ2(r).

δL

δλij
=

δij − {ψi|ψj〉 for any i, j=1,2.

(A.72)

By setting all these derivatives to zero we obtain the conditions that the functions

ψ1 and ψ2 have to satisfy in order to minimize the energy:

Ĥ0(r)ψ1(r) +

∫
dr′
|ψ2(r′)|2

|r− r|
ψ1(r)−

∫
dr′
ψ∗2(r′)ψ2(r)

|r− r|
ψ1(r′) = λ11ψ1(r) + λ12ψ2(r)

(A.73)

Ĥ0(r)ψ2(r) +

∫
dr′
|ψ1(r′)|2

|r− r|
ψ2(r)−

∫
dr′
ψ∗1(r′)ψ1(r)

|r− r|
ψ2(r′) = λ21ψ1(r) + λ22ψ2(r)

(A.74)

∫
drψ∗i (r)ψj(r) = δij for any i,j=1,2. (A.75)

If we set:

VH(r) =
∑
j

∫
dr′
|ψj(r′)|2

|r− r|
, (A.76)

VX(r, r′) = −
∑
j

ψ∗j (r
′)ψj(r)

|r− r|
, (A.77)

with j = 1, 2 and return it to equations (A.73) and (A.74) we get:
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[−∇
2

2
+ Vn(r) + VH(r)]ψ1(r) +

∫
dr′VX(r, r′)ψ1(r′) = λ11ψ1(r) + λ12ψ2(r) (A.78)

[−∇
2

2
+ Vn(r) + VH(r)]ψ2(r) +

∫
dr′VX(r, r′)ψ2(r′) = λ21ψ1(r) + λ22ψ2(r) (A.79)

To eliminate one of the two functions on the right-hand side of both equations we

introducing a 2 × 2 matrix, S, which diagonalizes the Lagrange multipliers:

(
λ11 λ12

λ21 λ22

)
S−1 =

(
ε1 0

0 ε2

)
(A.80)

Since the Hamiltonian, Ĥ, is Hermitian, the Lagrange multipliers are also Her-

mitian, i.e. λ∗ij = λji making S a unitary matrix and the eigenvalues ε1, ε2 real

numbers.

Now define new wavefunctions, φ1 and φ2, as follows:

φi =
∑
j

Sijψj,

we can rewrite equations (A.73) and (A.74) as:

[− ∇
2

2
+ Vn(r) + VH(r)]φ1(r) +

∫
dr′VX(r, r′)φ1(r′) = ε1φ1(r) (A.81)

[−∇
2

2
+ Vn(r) + VH(r)]φ2(r) +

∫
dr′VX(r, r′)φ2(r′) = ε2φ2(r) (A.82)

Because of the fact S is a unitary matrix it makes the orthonormality condition

for φ1 and φ2, as:

∫
drφ∗i (r)φj(r) = δij for i, j=1,2 (A.83)

And Hartree and exchange potentials are:

VH(r) =
∑
j

∫
dr′
|φj(r′)|2

|r− r|
, (A.84)

VX(r, r′) = −
∑
j

φ∗j(r
′)φj(r)

|r− r|
(A.85)

This way we obtained the Hartree-Fock equations.
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A.3.2. Proof of the first HK Theorem

We suppose two external potentials V ext
1 and V ext

2 and they differ by more than

a constant and give rise to the same electron density n(r). This two potentials

are associated with two Hamiltonians, H1 and H2, and wavefunctions Φ1 and Φ2,

respectively. According to the variationaal principle, only ground state wavefunction

gives the lowest energy, such that:

E1 = 〈Φ1|Ĥ1|Φ1〉 < 〈Φ2|Ĥ1|Φ2〉 (A.86)

Assuming non-degenerate ground state, this statement strictly holds. As the two

Hamiltonians are related to an identical ground state density, there is:

〈Φ2|Ĥ1|Φ2〉 = 〈Φ2|Ĥ2|Φ2〉+ 〈Φ2|Ĥ1 − Ĥ2|Φ2〉 = E2 +

∫
[V ext

1 (r)− V ext
2 (r)]n(r)dr

(A.87)

The same goes for:

〈Φ1|Ĥ2|Φ1〉 = E1 +

∫
[V ext

2 (r)− V ext
1 (r)]n(r)dr (A.88)

When we add those two expressions, we get:

E1 + E2 < E2 + E1 (A.89)

Which is nonsense and thus we have proven that for external potential V, there is a

single ground state.
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A.3.3. Proof of the second HK Theorem

Supposing there is n(r), an electron density other than the ground state one, associ-

ated to the wavefunction Φ. By using the variational principle for the wavefunction,

there is:

E[n] = 〈Φ|Ĥ|Φ〉 < 〈Φ′|Ĥ|Φ′〉 = E[n′] (A.90)

Therefore the evaluation of E[n] at the ground state electron density yields the

lowest energy value. Although HK theorems put particle density n(r) as the basic

variable, it is still impossible to calculate any property of a system because the

universal functional F[n(r)] is unknown. This difficulty was overcome by Kohn and

Sham [206] in 1965, who proposed the well-known Kohn-Sham scheme.
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A.3.4. Derivation of the Kohn-Sham equations

From the Hohenberg-Kohn theorem we know that the total energy, E, in the elec-

tronic ground state is a functional of the electron charge density, n(r), E = F [n].

In the Kohn-Sham approach the functional F is decomposed as :

E = F [n] =

∫
dr n(r)Vn(r)−

∑
i

∫
dr φ∗i (r)

∇2

2
φi(r)+

1

2

∫ ∫
dr dr′

n(r)n′(r)

|r − r′|
+Exc[n]

(A.91)

The first term is the external potential that describes interaction of the electrons

with the nuclei, the second is kinetic energy, the third is Hartree energy and the

fourth is exchange-correlation energy. The index i runs over N wavefunctions

The density, n(r) , is expressed in terms of the Kohn-Sham wavefunction as:

n(r) =
∑
i

|ψi(r)|2 (A.92)

From the Hohenberg-Kohn theorem it is known that the total energy, E, reaches

its minimum value in correspondence with the ground-state electron density. This

can be expressed using a functional derivative as:

δF

δn
= 0 (A.93)

Functional derivative is:∫
drh(r)

∂F

∂g
(r) =

d

dε
F [g(r) + εh(r)]

∣∣∣∣
ε=0

(A.94)

We apply the chain rule to the functional derivative of F with respect to any of

the wavefunctions, ψi∗, and we get:

δF

δψ∗i
=
δF

δn

δn

δψ∗i
=
δF

δn
ψi, (A.95)

The derivatives with respect to ψi or ψ∗i can be treated as independent. By

combining above two equations, we see that the Kohn-Sham orbitals must satisfy:

δF

δψ∗i
= 0 (A.96)

The Kohn-Sham wavefunctions must satisfy the orthonormality constraints as:

{ψi|ψj〉 = δij, (A.97)
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which guarantees that the density we defined in the beginins, is correctly normal-

ized to N electrons. This is the problem of constrained minimization and as shown

in derivation of Hartree-Fock equation we use the method of Lagrange multipliers.

L = F −
∑
ij

λij[{ψi|ψj} − δij], (A.98)

with λij the Lagrange multipliers.

δL

δψ∗i
= 0→ δF

δψ∗i
=
∑
j

λijψj. (A.99)

The functional derivatives δF/δψ∗i is:

− ∇
2

2
ψi(r)+

δ

δn
{
∫
drn(r)Vn(r)+

1

2

∫∫
drdr′

n(r)n(r′)

|r− r|
+Exc[n]}ψi(r) =

∑
j

λijψj(r).

(A.100)

By using the definition of functional derivative this equation can be written:

[−∇
2

2
+ Vn(r) +

∫
dr′

n(r′)

|r− r|
+
δExc
δn

]ψi(r) =
∑
j

λijψj(r) (A.101)

The third term is the Hartree potential, VH(r) , and the fourt is exchange and

correlation potential, Vxc(r). The matrix λij of the Lagrange multipliers can be

diagonalized. Introducing the 2x2 matrix, that diagonalize Lagrange multipliers as:

(
λ11 λ12

λ21 λ22

)
S−1 =

(
ε1 0

0 ε2

)
(A.102)

The Hamiltonian, Ĥ, is Hermitian, the Lagrange multipliers are also Hermitian,

i.e. λ∗ij = λji making S a unitary matrix.

We define wavefunctions, φ1 and φ2, as follows:

φi =
∑
j

Sijψj,

we can rewrite equations above and obtain Kohn-Sham equations:

[−1

2
∇2 + Vn(r) + VH(r) + Vxc(r)]φi(r) = εiφi(r) (A.103)
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B. Quantum ESPRESSO inputs

In this appendix are presented the most relevant inputs for Quantum Espresso calcu-

lations of doped graphene. Here are presented inputs for the run for electron-phonon

interaction,superconductivity and phonon dispersion and dos in LiC6-mono. Other

calculations (Ba, Ca-doped graphene) are made according to this model.

B.1. Li-doped graphene

QE run: Superconductivity in LiC6.

1. SCF run on fine grid of kpoints:

mpirun np -8 /home/...path-to-qe-directroy.../bin/pw.x <lic6.scf.fine.in>

lic6.scf.fine.out

&control

calculation= ’scf’,

restart_mode=’from_scratch’,

prefix= ’lic6’,

pseudo_dir = ’./’,

outdir = ’./’,

tstress = .true.,

tprnfor = .true.,

verbosity= ’high’,

wf_collect= .true.,

/

&system

ibrav = 4, celldm(1)=8.05, celldm(3)=2.8,

nat= 7, ntyp= 2,

ecutwfc = 65,

occupations = "smearing",

smearing = "fd",
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degauss = 0.01,

la2F=.true.,

/

&electrons

mixing_beta = 0.7

conv_thr = 1.0d-12

/

&IONS

ion_dynamics = ’bfgs’,

/

&CELL

cell_dynamics = ’bfgs’,

/

ATOMIC_SPECIES

Li 6.914 Li.pz-n-vbc.UPF

C 12.0107 C.pz-vbc.UPF

ATOMIC_POSITIONS {crystal}

Li 0.666666667 0.666666660 0.143500000

C 0.000090063 0.000090063 0.001279709

C 0.666666667 0.000090063 0.001279709

C 0.333243270 0.333243270 0.001279709

C 0.666666667 0.333243270 0.001279709

C 0.000090063 0.666666667 0.001279709

C 0.333243270 0.666666667 0.001279709

K_POINTS AUTOMATIC

48 48 1 0 0 0

2. SCF calculation on the coarse grid of kpoints:

mpirun np -8 /home/...path-to-qe-directroy.../bin/pw.x <lic6.scf.in>

lic6.scf.out

&control

calculation= ’scf’,

restart_mode=’from_scratch’,

prefix= ’lic6’,

pseudo_dir = ’./’,

outdir = ’./’,
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tstress = .true.,

tprnfor = .true.,

verbosity= ’high’,

wf_collect= .true.,

/

&system

ibrav = 4, celldm(1)=8.05, celldm(3)=2.8,

nat= 7, ntyp= 2,

ecutwfc = 65,

occupations = "smearing",

smearing = "fd",

degauss = 0.01,

/

&electrons

mixing_beta = 0.7

conv_thr = 1.0d-12

/

&IONS

ion_dynamics = ’bfgs’,

/

&CELL

cell_dynamics = ’bfgs’,

/

ATOMIC_SPECIES

Li 6.914 Li.pz-n-vbc.UPF

C 12.0107 C.pz-vbc.UPF

ATOMIC_POSITIONS {crystal}

Li 0.666666667 0.666666660 0.143500000

C 0.000090063 0.000090063 0.001279709

C 0.666666667 0.000090063 0.001279709

C 0.333243270 0.333243270 0.001279709

C 0.666666667 0.333243270 0.001279709

C 0.000090063 0.666666667 0.001279709

C 0.333243270 0.666666667 0.001279709

K_POINTS AUTOMATIC

24 24 1 0 0 0
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3. PHonon run on the q-points grid with ”electron phonon= interpolated”

mpirun np -8 /home/...path-to-qe-directroy.../bin/ph.x <lic6.ph.in>

lic6.ph.out

Electron-phonon coefficients for LiC$_6$-monolayer

&inputph

prefix= ’lic6’,

tr2_ph=1.0d-15,

fildvscf=’lic6fildvscf’,

amass(1)=6.914,

amass(2)=12.0107,

outdir=’./’,

fildyn=’lic6.dyn’,

electron_phonon= ’interpolated’,

trans=.true.,

ldisp=.true.

nq1=24, nq2=24, nq3=1

/

4. q2r.x reads the dynamical matrices produced in the preceding step and Fourier-

transform them, writing a file of Interatomic Force Constants in real space

mpirun np -8 /home/...path-to-qe-directroy.../bin/q2r.x <q2r.in> q2r.out

&INPUT

zasr= ’crystal’,

fildyn= ’lic6.dyn’,

flfrc=’lic6.fc’,

la2F= .true.

/

4. matdyn produce phonon modes and frequencies at any q using the Interatomic

Force Constants file as input

a) phonon dos:

mpirun np -8 /home/...path-to-qe-directroy.../matdyn.x <matdyn.dos.in>

matdyn.dos.out
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&INPUT

asr= ’crystal’,

amass(1)= 6.914,

amass(2)= 12.0107,

flfrc= ’lic6.fc’,

flfrq= ’lic6.freq’,

dos= .true.,

fldos= ’phonon.dos’,

la2F= .true.,

nk1=16, nk2=16, nk3=1, ndos=500

/

b) phonon dispersion:

mpirun np -8 /home/...path-to-qe-directroy.../bin/matdyn.x

<matdyn.freq.in> matdyn.freq.out

&INPUT

asr= ’simple’,

amass(1)= 6.914 ,

amass(2)= 12.0107,

flfrc= ’lic6.fc’,

flfrq= ’lic6.freq’,

dos= .false.,

/

200

0.0000000 0.0000000 0.0000000 0.0

0.0068493 0.0039545 0.0000000 0.0

0.0136986 0.0079089 0.0000000 0.0

...

.....

/

5. Using lambda.x we calculate α2F function, the electron-phonon coefficien λ

and and an estimate of the critical temperature Tc

/home/\textit{...path-to-qe-directroy...}/lambda.x <lambda.in> lambda.out
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50 0.12 1

10

0.0000000 0.0000000 0.0000000 1.00

0.1250000 0.0721688 0.0000000 6.00

0.2500000 0.1443376 0.0000000 6.00

0.3750000 0.2165064 0.0000000 6.00

0.5000000 0.2886751 0.0000000 3.00

0.1250000 0.2165064 0.0000000 6.00

0.2500000 0.2886751 0.0000000 12.00

0.3750000 0.3608439 0.0000000 12.00

0.2500000 0.4330127 0.0000000 6.00

0.3750000 0.5051815 0.0000000 6.00

elph. 0.000000. 0.000000. 0.000000

elph. 0.000000. 0.144338. 0.000000

elph. 0.000000. 0.288675. 0.000000

elph. 0.000000. 0.433013. 0.000000

elph. 0.000000.-0.577350. 0.000000

elph. 0.125000. 0.216506. 0.000000

elph. 0.125000. 0.360844. 0.000000

elph. 0.125000. 0.505181. 0.000000

elph. 0.250000. 0.433013. 0.000000

elph. 0.250000. 0.577350. 0.000000

0.112

! INPUT from standard input:

! emax degaussq ngaussq

! nks

! q(1,1) q(2,1) q(3,1) wk(1)

! ... ... ... ...

! q(1,nks) q(2,nks) q(3,nks) wk(nks)

! filelph(1)

! ...

! filelph(nks)

!

! emax (THz) : alpha2F is plotted from 0 to "emax" in "nex" steps

! degaussq (THz): gaussian smearing for sum over q
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! NB: not the same used in phonon !

! ngaussq : 0 for simple gaussian, 1 for Methfessel-Paxton etc.

! nks : number of q-points used in the sum

! q, wk : q-points and weights

! filelph : output files from phonon, one for each q-point

! May contain "nsig" calculations done with different

! broadenings for the sum over k - all of them are used

!
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