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Risken-Nummedal-Graham-Haken instabilities and self-pulsing

in quantum cascade lasers

Abstract

A theoretical study on low-threshold multimode instabilities in quantum
cascade lasers (QCLs) with Fabry-Pérot cavity is presented. Previously, low
threshold Risken-Nummedal-Graham-Haken (RNGH) instabilities were
reported in several experimental investigations of QCLs. They were attributed
so far to the combined effect of the induced grating of carrier population and
of a built-in saturable absorption feature that may be present in the monolithic
single-section cavity of QCLs. Here we show that low-threshold RNGH
instabilities in QCLs occur due to a combined effect of the carrier coherence
grating and carrier population grating induced in the gain medium and not
due to an intracavity saturable absorption. We find that QCLs with a few mm
long cavity exhibit intermittent RNGH self-pulsations while regular self-
pulsations are possible in short-cavity QCLs, with the cavity length of 100 um
or smaller. We examine a transient behavior to RNGH self-pulsations in short-
cavity QCLs and find features that resemble cooperative superradiance. Our
findings open a practical way of achieving ultra-short pulse production
regimes in the mid-infrared spectral range. Applying same approach to
semiconductor laser diodes (LDs) we explain the absence of RNGH self-
pulsation in single-section LDs based on a quantum well gain media, while
practically established method for reaching the ultrafast coherent emission
regimes in LDs is to incorporate a separately contacted saturable absorber

section in the LD cavity.

Furthermore, we have obtained a closed-form expression for the threshold of

RNGH multimode instability in a Fabry-Pérot (FP) cavity quantum cascade



laser which can easily be applied in practical situations which require analysis
of QCL dynamic behavior and estimation of its RNGH multimode instability
threshold. In the model, the RNGH instability threshold is analyzed using a
second-order biorthogonal perturbation theory and we confirm our analytical
solution by a comparison with the numerical simulations and experimental

data available in the literature.

In this dissertation RNGH self-pulsations in external cavity QCLs are also
analyzed. On one hand, the propagation time in the external cavity (the pulse
delay time) serves to provide a memory effect and is thus expected to improve
coherence for long QCL samples otherwise suffering from formation of
incoherent domains. On the other hand, in short QCL chips, the external

cavity is expected to reduce the repetition rate of self-pulsations.

Keywords: Quantum cascade laser, laser stability, instabilities and chaos,

ultrafast nonlinear optics, external cavity
Scientific field: Electrical and Computer Engineering
Specific topic: Nanoelectronics and Photonics
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Pucken-Hymedaa-I'paxam-Xaxen necmabuirnocmu u camo-

nyacuparse Yy KBAHMHUM KACKAOHUM AAcepuma

Caxxerak

IIpykaszaHO je TeOpPUjCKO WCTpaXkKmBaH-e MYJITVMMOOHVX HecTaOWIHOCTM ca
HUCKVM ITIparoM y KBaHTHMM KackagHuM siacepuma (KKIJT). ITperxomno cy y
BuIlle ekcrepumenTanHMx cryauja o KKJI-y yodene HecrabwiHoctn Pricken-
Hywmenan-I'paxam-Xaken (PHI'X) Turma masio n3Hap jtacepcekor mpara. o cama
je IuxoBa IIOjaBa IIpUIMCHMBaHa KOMOMHOBaHOM edeKTy WHIyKOBaHe
pellleTKe TIomyJlallyje HOCWIalla ¥ caTypaOwiIHOM arcopbepy koju je
MpUCyTaH y MOHOJIUTHO]j Jlacepckoj myrubuHy ®abdpu-Tlepo Tumna caunmbeHoj
on jemHe cekumje. Y pgucepramju he Owrm mokasaHo ma ce PHIX
HecTabwriHOCTN ca HuckuM mparoM kox KKJI-a jaBpajy ycien xkomOmHOBaHOT
edekTa peleTke Iojiapusalyje HoCWIala v pelleTke IoNyJslalyje Hoculara
KOje Cy MHOyKOBaHe y II0ja4aBadykoM MeIVjyMy, a He ycJlell caTypaOwiHe
aricoprmyje y sacepckoj myrusnHn. [lokasahe ce ma KKIJI umja je mmacepcka
HIyIUbMHA Jyradyka HEKOJIMKO MwIMMeTapa wchnosjbaBa HeperynapHe PHI'X
caMmo-IIyJicaliije, AOK Cy peryiapHe camo-iryscamyuje moryhe xom KKJI ca
KpaTKOM JIacCepCcKOM INyIUBMHOM umuja je myxkmHa 100 pm wm kpaha.
Vlcimryjemo TpaHsujenTHM pexum no PHI'X camo-myncanyja xop KKJT ca
KpaTKOM JIacepCKOM IIyIUbMHOM U IIpOHaIa3/MO IOHalllakbe Koje mofceha Ha
KoomepaTuBHy cyneppanujaHcy. Hama mcrpaxmBama oTBapajy IIpakTU4He
MoryhHOCTI 3a OCTBapuBarbe peXuMa yJITpa-KpaTKMX VIMITyJIca Y CpelrbeM
uHdpalpBeHoM ey cHekTpa. Kama wmcTu mHpucTyn HpuMeHMMO Ha
MIOJTyIIpOBOAHMYKe Jjlacepcke awmope (JII) moxemo ma oOjacHMMO OfCyCTBO
PHI'X camo-1ryscaryja Kofi JlacepCcKMX AVOa CauuibeHMX Off je[iHe ceKIluje
OasupaHe Ha Il0jadyaBaykoOM MeIMjyMy caulibeHOM Oj] KBaHTHMX jaMa, JIOK je

IIpOBepeHN MeTO[] 3a peajM3allujy YJITpa-Op3e KoxepeHTHe emwmcuje kop JI/T



Jla ce MHKOpIopupa ItocebHa ceKIMja ca caTypabIHMM aricopbepoM yHyTap

IIyIUbMHE JIacepCKe AMoe.

ITopen Tora, w3Besy CMO M3pas3 3a IIpar MyJITUMOIHMX HectabmtHoct PHI'X
tna kox KKJI-a ca @abpu-Ilepo mryrpmMHOM, Koju ce MOXe jeTHOCTaBHO
OpUMEHUTU y IIpaKTUUYHMM CHUTyallMjaMa Koje 3axTeBajy aHaJIUM3y
nvHamyakor noHamarsa KKJI-a m mpoueny mpara PHI'X mynrMopmix
HectabwiHocTn. Y Mopeny je mpar 3a PHI'X mecraOmiHocTM aHaymsmpaH
KopuithereM OuopTOroHajiHe Teopuje IepTypballja ¥ IOTBpbeHa je
BJIVIHOCT  aHAIUTUYKOT  pelllerba  IopebereM ca  HyMepwYKuUM

CUMyJIallyjaMa ¥ eKCIIepUMeHTaIHVIM IToaliMa JOCTYIIHVIM Y JIUTepaTy pu.

Y oBoj aucepraumju cy aHanmsupane 1 caMo-mrysicanyje PHI'X trma xom KKJI-
a y KoHurypamuju ca eKcTepHoM JiacepckoM IyrubnHoM. Ca jeHe cTpaHe,
BpeMe Iporaraiyje y eKCTepHOj HIyIUBMHM (BpeMe KalllFbeFba VIMITyJIca)
CJIyXM Ja 00e3benyt MeMopujckn edekat 1 odeKyje ce 1a MOXe Aa I100osbIIa
KoxepeHuMjy Kopm nyrux ysopaka KKJI-a koju mHaue mmajy HeENOrogHOCT
y3poKkoBaHy dopmupameM HeKoxepeHTHMXx gomeHa. Ca gpyre cTpaHe, KOf
kpatkmx KKJI wuwnrosa odekyje ce [a eKcTepHa IIyIUbMHA CMarby

dpexBeHIINjy camo-ITyJicariyja.

Krpyane peum: KsaHTHM KackagHu Jlacep, CTaOWIHOCT Jlacepa,

HeCcTaOWIHOCTM U Xaoc, yITpabp3a HelMHeapHa OITMKa, eKCTepHa IIyIUbMHa
Hayuna o6act: EnexrporexHuka v padyHapCcTBO

Y>ka HayuHa obsact: HanoesrekrpoHmka 1 poToHMKa

YK 6poj: 621.3
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1. Introduction

Following the first demonstration at Bell Labs in 1994 by F. Capasso and J.
Faist [1], quantum cascade lasers (QCLs) have experienced rapid and dramatic
improvements in operating temperature [2], output power [3], efficiency and
wavelength span [4], [5]. At room temperature, continuous wave output
powers of several W can now routinely be achieved in the mid-infrared (MIR)
spectral range [3], and widely tunable designs are available [6]. Wall-plug
efficiencies of 50% have been demonstrated at cryogenic temperatures [7], [8]
and up to 27% at room temperature [3]. Commercial QCLs and QCL-based
systems are already available from various companies [9], [10], [11].
Continuously operating QCLs in the MIR (3.5-20 pm) have important
applications in security, health, gas sensing and gas analysis [10], [12].
Production of frequency combs in QCLs has been demonstrated and proven to
be very promising for spectroscopic applications [13]. Yet, QCL potential as a
versatile spectroscopic tool could be significantly enhanced if operation in the
ultra-short pulse regime would be possible. Such regime would enable time-
resolved spectroscopic measurements in MIR and far-infrared (FIR) ranges for
a wide spread of applications such as LIDARs (LIght Detection and Ranging),
Earth observation, environmental remote sensing of molecules, in particular,
of greenhouse gases, high-speed QCL based communications utilizing the
atmospheric transmission windows of 3-5 pm or 8-12 pm and many more

[14]-[20].



However, ultrafast carrier relaxation at picosecond time scale prohibits
passive mode-locking or Q-switching operation in QCLs because of the cavity
round-trip time being longer than the gain recovery time [21]-[23]. Therefore
gain switched pulse production has been attempted, yielding 120 ps pulse
width [24]. On the other hand, active mode-locking was achieved in QCLs
utilizing diagonal transition ( “superdiagonal” gain structure ), with the upper
state lifetime being increased to 50 ps so as to match the cavity round-trip time
[25], [26]. Stable operation with these devices was obtained by current
modulation of only a short section of the waveguide, while the whole
waveguide was biased slightly above threshold (see also [27]). Nevertheless,
the diagonal transition renders QCL operation temperature out of the practical
use. Self-induced transparency together with a fast saturable absorber was

proposed in [28] to be used to passively mode lock QCLs.

Another promising approach to generate short MIR pulses has emerged from
experimental observations that some of CW operating QCL samples exhibit
features of low-threshold [29] Risken-Nummedal-Graham-Haken (RNGH)
multimode instabilities [30], [31] and hence they might be capable of
producing  ultra-fast  self-pulsations. =~ However, the second-order
interferometric autocorrelation measurements have shown that the output
optical pulses have significant stochastic constituent [26], if these
autocorrelation traces should be attributed to coherence spikes at all . In order
to confirm RNGH instability and to understand conditions for reaching
regular self-pulsation in QCLs, one should figure out the origin of such low

second threshold in these lasers.

In general, the multimode RNGH instabilities are related to a non-adiabatic
[32] behavior of the medium polarization, excitation of rapid coupled
oscillations of the medium polarization P and population inversion N. They

show up as self-pulsations in the output laser emission, whereas the optical



spectrum is expected to be split in two mode clusters (sidebands) with

frequency separation of the order of the Rabi oscillation frequency.

Below the RNGH instability threshold, the optical mode is fully controlled by
the laser cavity. The buildup of Rabi oscillations at above the second threshold
indicates that now a medium macroscopic polarization (coherence) has the
major impact on the optical field in the laser cavity. The original RNGH
theory, which was established for a CW operating unidirectional ring laser,
requires the pump rates of at least 9 times above the lasing threshold in order

for multimode instability to occur.

However, the experiments revealed a different second threshold behavior. In
[33], a ring-cavity dye laser with homogeneously broadened gain line has
shown RNGH-like multimode instability at small excess above the lasing
threshold. More specifically, quenching of the main lasing mode and
excitation of two optical sidebands was observed at 1.2 times above the lasing
threshold. The frequency separation of the sidebands was close to the Rabi
oscillation frequency or one of its sub-harmonics and it was increasing with
the pump rate. Later on, there were several claims on RNGH instabilities in
CW operating Er®* doped ring fiber lasers [34], [35], [36], and ring Nd:YAG
lasers [37]. However, interpretation of these experimental observations
remained doubtful. Since the period of self-pulsations was close to the cavity
round-trip time they were attributed to mode-locking phenomena. Most
unexpectedly, the self-pulsations were occurring almost at the lasing
threshold, contrary to the theoretical predictions for at least 9-fold excess
above the lasing threshold. Note that the relaxation T7 and dephasing T> times
in the active gain media of these lasers are relatively long as compared to their
semiconductor counterparts and hence their Rabi oscillation frequencies are
low. It was understood that (i) the cavity length must be made very long in

order to match the intermodal frequency separation to that of the Rabi



oscillations, and (ii) the lowering of second threshold in Er3* doped ring fiber
lasers can be attributed to a 3-level structure of the optical transitions in Er3*
ions [38]. Nevertheless, the fact of experimental observation of RNGH

instability remained debatable.

Ten years later, a clear Rabi frequency splitting between two clusters of modes
was observed in the lasing spectra of CW operating QCLs [29], indicating
multimode RNGH instability in these Fabry-Pérot (FP) cavity lasers.
Interestingly, the RNGH instability was observed both in ridge waveguide
QCLs and in buried heterostructure QCLs. Although the role of spatial hole
burning (SHB) effect in lowering the second threshold was understood, it was
thought [39] that the low-threshold RNGH instability does not occur just as a
result of the induced grating of carrier population. Therefore, an additional
assumption was made in [39] on a built-in saturable absorber in the cavity of
QCL, allowing for a reduction of the 2nd threshold from 9-fold excess to about
1.1 times above the lasing threshold. As a matter of fact, the saturable absorber
has been shown to lower the instability threshold in a CW ring laser [40].
However, the nature of saturable absorption in QCLs has never been fully
clarified [12]. In particular, the authors in [39] have evoked the Kerr lensing
effect as a possible mechanism responsible for the saturable absorption. In case
of narrow ridge waveguide lasers, due to overlap of the waveguide mode tails
and the metal contact deposited on the waveguide, the Kerr lensing may
indeed lead to saturable absorption. However, it cannot produce the saturable
absorption effect of the same strength in buried heterostructure QCLs. At the
same time low-threshold RNGH instability was observed in both ridge

waveguide and buried heterostructure QCLs.

An alternative approach to explain the unusually low RNGH instability
threshold in QCLs was proposed in [41]. The idea stems from a parametric

gain picture yielding instability of the main cavity mode, along the line of



comb generation in optically pumped dielectric micro-disk resonators with
third-order x©® non-linearity. MIR intersubband transitions in semiconductor
QWs do produce strong third-order nonlinearity [42], [43]. However, optically
passive microdisk resonators have special cavity design in order to reach
parametric instability threshold. In particular they employ whispering gallery
modes with very small transverse size, very high quality factor (Q~108) and
operate with circulating pump power in the resonator on the order of several
hundreds of watts [44]. Electrically pumped MIR QCLs with FP cavities
cannot reproduce such environment and reach parametric instability caused

by material third-order nonlinearity x®.

The origin of instability in [41] was attributed to parametric gain for an offset
frequency wavelets co-propagating in the gain medium which is subjected to
saturation by the main lasing mode. Essentially this consideration is based on
a lumped gain rate equation model for a laser in which spatial hole burning is
introduced in a phenomenological way. Apart from a lumped gain picture,
this approach is conceptually identical to the original one by Risken and
Nummedal [30] who consider propagation of perturbation wavelets in the
traveling wave picture. The results reported in [41] agree with experimental
observations, however, phenomenologically introduced spatial hole burning
effect masks certain important points of the analysis and hence it leaves space

for further study of the subject.

In this dissertation, another alternative model for low-threshold multimode
RNGH instability in a QCL without saturable absorber is presented [45], [46]. The
model provides a strict consideration of the saturation and spatial modulation effects
in the traveling wave picture. This is a more realistic representation for a
monolithic single-section FP cavity laser. Technically, a set of important
corrections to the original treatment [30], [31], [39] was made. It consists in (i)

accounting for the induced carrier coherence grating alongside with the carrier



population grating and in (ii) accounting for the carrier diffusion process that
leads to relaxation of both gratings. In contrast to the lumped gain in [41], we
will utilize travelling wave picture and clarify the role of carrier coherence

grating.

The outcomes of the analysis for the second threshold in QCLs are in perfect
agreement with the numerical simulations based on a travelling wave (TW)
rate equation model [45], [47] as well as with the experimental data available
in the literature [29], [39], [48]. Interestingly, we find that regular self-
pulsations at picosecond time scale are possible in short-cavity QCLs. Our
model also explains the nonexistence of multimode RNGH instability in

quantum well (QW) laser diodes (LDs).

The model can also be adapted for the case of external cavity configuration,
following the approach from [47] where one section provides description for
the pulse propagation and amplification in the gain chip and another one
describes pulse propagation in external cavity without interaction with the
active medium [49], [50]. In this dissertation we propose to use external cavity
(EC) QCLs in order to obtain regular RNGH self-pulsations with lower

repetition rate compared to the case of monolithic QCL chip.

This dissertation is organized in the following manner: In Chapter 2 we
introduce QCL as a model system and start from the Maxwell-Bloch equations
for a Fabri-Perot cavity and use approximation of coupled mode model.
Chapter 3 addresses the second threshold conditions and discusses the RNGH
instability in long-cavity and short-cavity devices, as well as the importance of
the carrier diffusion effects in QCLs and conventional LDs. In Chapter 4 we
derive an analytical expression for RNGH threshold in QCL and make a link
with the original theory. In Chapter 5 we elucidate the possibility of regular

RNGH self-pulsations in external cavity quantum cascade laser and analyze



the periodicity of the output power waveforms. Chapter 6 summarizes the

results presented in the dissertation.



2. Model description

2.1. QCL laser as a model system for RNGH instabilities

A quantum cascade laser is a unipolar device based on intersubband
transitions. Its active region consists of a large number of periodically repeated
epilayers. Each period (stage) comprises a gain and injection/relaxation
regions. While the gain region serves to create a population inversion between
the two levels of the lasing transition, the purpose of the injection/relaxation
region is to depopulate the lower lasing level and to provide injection of

electrons in the upper lasing level of the next stage [11], [12].

A careful design of the quantized states in the QCL heterostructure is essential
for the development and optimization of experimental QCLs since the lasing
frequency is determined by the energy difference between the upper and
lower laser level and a careful energy alignment of the levels is necessary for
an efficient injection into the upper (laser) level and depopulation of the lower
level. Likewise, careful engineering of the wave functions is necessary because
it governs the strength of both the optical and nonradiative transitions. The
eigenenergies and wave functions are determined by solving the stationary
Schrodinger equation or, if space charge effects are taken into account, the
Schrodinger-Poisson equation system [11]. Widely used numerical approaches

for solving the one-dimensional effective mass Schrodinger equation include



the transfer matrix method [11], [51], [52] and finite difference scheme [11],
[53]. Effects such as nonparabolicity [54] can be included more easily into the

transfer matrix approach [55], [56].

Although QCLs have a complicated structure of epilayers, it was understood
and confirmed experimentally that the internal structure does not alter
directly the appearance of multimode RNGH instabilities and that a
semiclassical model with effective parameters of the laser gain medium

suffices [27], [39].

Alongside with the studies of RNGH instabilities in InGaAs QCLs, we will
apply our analytic model [46] (see Chapter 4) to QW LDs based on AlGaAs
and InGaN alloys. For all of them we assume a simple single-section Fabry-
Pérot (FP) cavity design. The parameters of the model for three types of lasers

considered here are summarized in Table 1.

Table 1. Dynamic model parameters for QCL and QW LDs considered in this study [45], [57].

Parameter Name InGaAs AlGaAs QW InGaN QW
QCL LD LD
A Lasing wavelength 10 um 850 nm 420 nm
T, Carrier lifetime 1.3 ps 1-2 ns
T, Carrier dephasing time 140 fs 100 fs
T ot Effective carrier dephasing 138 fs 86 fs 84 fs
time in the presence of
diffusion
T, Relaxation time of the 0.927 ps 0.158 ps 0.13 ps

carrier population grating

T, , Relaxation time of the 128 fs 41 fs 37 fs
coherence grating

o Intrinsic material loss 24 cm’! 5cm’! 35cm’!



D Diffusion coefficient 180 cm?/s 20 cm?/s 7 cm?/s
(ambipolar) (ambipolar)

ng Group refractive index 33 3.8 3.5
R, R, Cavity facet reflection 27% 27% 18 %
coefficients
r Optical mode confinement 0.5 0.01 0.02
factor
dg/on Differential material gain 2.1x10" 1x10° cm?/s 2.2x10°
cm’/s cm’/s
ng Transparency carrier density 7x10" em™ 2x10" cm™ 1.6x10"
3
cm

As a model system for RNGH instability, we consider an InGaAs QCL with a
direct transition, having the carrier lifetime (longitudinal relaxation time) T; of
about one picosecond. This is much smaller than the cavity round-trip time.
As in the case of heterostructure epilayers, we do not examine any particular
lateral cavity design since it was shown experimentally that the laser design
(ridge waveguide [39] or buried heterostructure [29]) has no or little impact on
the RNGH instability in QCLs. Although our QCL model parameters are
slightly different from the ones in Ref. [39], this difference has no impact on
the main conclusions of the dissertation, in particular, regarding the
occurrence of low-threshold RNGH instability. In the table, the optical mode
confinement factor and transparency carrier density for QCL are defined using
the overall thickness of epilayers in the period. In Section 3.6 we apply our
model to AlGaAs QW LDs and InGaN QW LDs (last two columns in Table 1)
with the objective to verify the model agreement with experimental
observations that single-section QW LDs do not reveal any feature of RNGH
instability [45], [46], [58].

For all model systems considered here, the photon lifetime in the cavity

exceeds the dephasing time (transverse relaxation time) T, so the dynamic

10



behavior reported here is intrinsically different from the Class-D laser

dynamics discussed in [59], [60].

2.2. Travelling wave rate equation model

As a starting point of our analysis we use semiclassical Maxwell-Bloch (MB)
equations for a two-level system. Following along the lines of the approaches
in [61], [62] and accounting for the diffusion term in the Schrédinger equation

[63], we obtain the following system of rate equations (see Appendix A):

atpah =ia)pah+iﬂ_EA_&+Da§pah (21>
oo,
. A —-A
8,A=222 (g, — )+ 222 4 Do 22)
i T

2 ’

. l
PE-E =T o+ p, )+ 200 E (23)

c E,C c

where p, =p,, is the off-diagonal element of the density matrix, the non-
equilibrium carrier density NA=N(p,, —p,,) is represented as the population
inversion between the upper (index “bb”) and lower (index “aa”) levels of the
lasing transition, Nu(p,,+p,) is the active medium polarization
(“coherence”). Furthermore, ® and u denote the resonant frequency and the
dipole matrix element of the lasing transition, respectively, T1 and T> are the

longitudinal and transverse relaxation times, NA /T is the pump rate due

pump
to injection of electrons into the upper lasing level, N is defined by the doping
density in the injector region and D is the diffusion coefficient for electrons in
the plane of active QWs of the QCL structure (for a LD, the ambipolar

diffusion coefficient for the holes and electrons is used instead). E, I and n,
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stand for the cavity mode electric field, the overlap between the optical mode

and the active region, and the group refractive index for the cavity mode,
respectively. Note that the differential material gain is dg/dn=a@lu’/hnle,

and [; is the linear loss coefficient. The difference between our MB equations
for QCLs and equations used in [27], [39] is the coherence diffusion term
Do’p,, that appears in (2.1). Numerical simulations with the travelling wave

rate equation model reported below were accomplished by introducing in (2.1)
-(2.3) two slowly varying amplitudes for the counter propagating waves in the
Fabry-Perot (FP) cavity and distinguishing the medium’s polarizations

associated with the forward and backward traveling waves as in [47].

2.3. Approximation of coupled-mode rate equation model

The system of MB equations (2.1)-(2.3) is not ideally suited for analytical study
on multimode RNGH instability. In Ref [64] a comprehensive approach for
analysis of multimode instabilities in a ring laser was established using a
truncated set of coupled-mode equations. A similar approach was applied in
[39] for the case of FP-cavity QCLs. However, the key point of such truncated
modal expansion is to take into account all coupled harmonics in a self-
consistent way [64]. We argue that the previous theoretical treatment of RNGH
instabilities in QCLs [39] does not take into account the spatial harmonics of
induced macroscopic polarization of the gain medium in the FP-cavity laser or
bidirectional ring laser. As a result, in the limit of adiabatic elimination of the
medium polarization, the truncated set of coupled-mode equations from [39]
does not agree with well-established models for a Class-B laser dynamics [65].
(See discussion of equations (2.7)-(2.11) below and also the Appendix B. We
stress that our considerations for bidirectional ring lasers and FP cavity lasers can

by no means be applied to the unidirectional ring laser considered in Refs. [30],
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[31]. Furthermore, in order to match the experimentally measured second
threshold of ~1.1 1w (I is the lasing threshold pump current), the model in
[39] assumes that there is a built-in saturable absorber in the monolithic cavity
of QCL due to the Kerr lensing effect. As a matter of fact, the saturable
absorber does lower the RNGH instability threshold in a CW laser [40].
However, in the buried heterostructure QCLs, which also exhibit low second
threshold, the proposed Kerr-lensing mechanism for saturable absorption has

never been unambiguously confirmed [12].

In order to elucidate another possible origin of the low-threshold RNGH
instability, we have expanded the MB equations (2.1)-(2.3) into a truncated set
of self-consistent coupled mode equations. The waves traveling in the two
directions are coupled as they share the same gain medium and this gives rise
to SHB effect [66]: the standing wave formed by a cavity mode imprints a
grating in the gain medium through gain saturation resulting in other modes
becoming more favorable for lasing and triggering of multimode operation.

Our analysis of the SHB effect has shown that as soon as the spatial grating of
carrier population is taken into account (the terms A; below), the third-order

spatial harmonics of the induced macroscopic polarization grating (the terms

n., and 7__ below) have to be accounted for in the coupled-mode expansion:

E(z,t)= %[Ei (z, t)e*i(a)t—kz) +E,(z, t)ei(wt—kz):'

! (2.4)
+— E* it —i(wt+kz) +E 1 i(wt+kz)
y L (z0e (20 |
P (2.0 = (1. (2.0) 417, (z.0)e ™ ) @)
) (2.5)
+(77—(Za t)+ 7777 (Z, t)ebkz )el(alt+kz)
A(z,6) = Ay (2,0)+ AL (2,0 + A (z,0)e ™, 26)
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where E(z,t) and A(z,t) are real-valued variables (A} =A)) and the

amplitudes E,, 1,,7,,, A, and A; vary slowly in time and space as compared

to the plane wave carriers. The + and - subscripts label the two directions of

propagation. The spatially dependent inversion is written as a sum of three
terms, where A, is the average inversion and A, is the amplitude of the

inversion grating. The two optical carrier waves propagating at frequency

and wavenumbers +k stand for the initial lasing mode in the cavity.

Substitution of Egs. (2.4)-(2.6) in MB equations (2.1)-(2.3) leads to the following
coupled-mode equations in the slowly varying envelope approximation

(SVEA) [45]:

Nl 1

28,Ei =Fd.E, —i n.——LE, , (2.7)
c cn €, 2
an, = ;—‘};(AOEi +AIE,) —% —¥*Dn, , (2.8)
A1, = ;—;EiAg —% _oDk7,,, (2.9)
0,A, = A”%I_AO#?’U(E:?L +E7n_—cc), (2.10)
9,47 = %(Eim —E, —Edl. +E.. ) —A%—‘WDAi : (211)

1

where [ is the cavity loss coefficient that comprises intrinsic material losses

and output coupling losses. In order to verify our coupled-mode expansion
(2.4)-(2.6), we have performed the adiabatic-following approximation test [32]
(see Appendix B) and found that the adiabatic approximation for our set of

equations is in excellent agreement with the well-established Class-B laser
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model. Note that this is not the case for a set of coupled-mode equations used
in [39]. The second important difference is that our coupled-mode system
(2.7) -(2.11) shows high-frequency instabilities at Rabi oscillation frequency
while the one of Ref. [39] shows instabilities at much lower frequency (see

Section 3.7).

2.4. Linear stability analysis

In this Section we carry out a linear stability analysis of our model system

(2.7) -(2.11). We introduce the effective relaxation times that account for the

-1

contribution from the diffusion terms 7, =(7,"' +4Dk’ )71, T, ,=(T," +9Dk*)

and 7, , = (Tz’1 + Dk’ )71 (these relaxation times are quoted in Table 1). We also

define new variables e, = E.u/h, 7 =n1,/(A,T, ), ny=420 /AT, ),
n.=AJl/(A,T, ;). The pump rate is accounted for by the parameter
p=A

oump ! Dy, Which measures the pump rate normalized to the lasing

threshold in the absence of SHB, and NA, =chégn,l, / Tawl, ,u° is the carrier

density at the lasing threshold.

We obtain the steady-state solution of Egs. (2.7)-(2.11) assuming an arbitrary
initial phase 0 of the wave propagating in the positive z-axis direction

(forward wave). Because the optical mode field E(z,r) and the population
parameter A(z,t) in Egs. (2.4)-(2.6) are the real-valued variables, the phase of
the wave propagating in the backward direction is -0, yielding the following

solution for CW lasing regime [45]:
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ei — eiiﬁlog

_ Fi26 _1
py =ty =2 btD (2.12)
Ly L o

] +i0 7127g [ +i360
n,=—e"lE, m =~ —W,-De"",E
2 2 _eff

where

g= [P=% (2.13)

27—1]127917

is the normalized field amplitude. Note that variables n =n,, e =e,, are

complex conjugate while the variables 7" =-z,, 7'_=-7,, are anti-conjugate.

The SHB effect increases the effective lasing threshold and reduces the slope
efficiency. To account for this effect, we introduce an additional parameter

v,=A,/A,, which is the ratio of the fundamental harmonic of the average
carrier density NA, to its value at the lasing threshold NA, (at p=1), when

SHB does not yet settle-in. We obtain the following expression for v, [45]:

Vo:l p+1+Tz_5iff+2];TZ_q;f
2 TZ_S’ TgT2_g
2 (2.14)
- p+1+—T2*‘7ﬁ'+—2T’T2—‘fﬁ' _p 14 b |2
4 L, TTL, T,,) TT,,

At lasing threshold, v, =1 and it increases above the threshold (at p>1). At
very high pump rate (p>1), v, asymptotically approaches the value of

1+7

2_ef /T2,g :

The linear stability analysis of the steady-state solution (2.12)-(2.14) is

performed by introducing small perturbations de, = de, +ide,, or, =r, +ior,,
or,, =—(or,, +iorm,), on, and on, = On,+idn, in the corresponding variables of
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the coupled-mode equations (2.7)-(2.11). Taking into account the complex

conjugate and anti-conjugate relationships between the variables dn_=dn.,

de_=0de,, on_=-0r,, om_=-0r,

+7 — ++7

we obtain the following linearized system

of differential equations:

3. (67 )+ (67,) = (_ Es1n(¢9)j5n0 N Edn, cos(0) N Eon, sin(0)
= ? ? ? (2.15)
_lBe [v, +c0s20)v, D] 1, 8e, sin(28)(v, ~1) '
2T27€f] 2T27eff
3. (m,)+ 1 (67,) = (_ Es1n(9)j5ni N Edn, cos(6) N Edn, cos(0)
= ? ’ ? (2.16)
, lode,[vy —cos20)(v, ~D] _1,5e, sin(20)(v, ~1) '
21;_@}’ 27;_5ﬁ
2. (67.)+ 1 (67, )= (_ ECOS(Q)j&% N Edn, sin(0)
T, , 2 2
- _ (2.17)
_1,0¢,cos(20)(v, —1) [,de, sin(20)(v, —1)
21, o 21,
2.(57, )+ 1 (o7,) = (_ Ecos(@)jé.nr N I,0e. cos(260)(v, —1)
T, 2 2T (2.18)
_Edn;sin(0) _I,5e,sin(26)(v, 1) '
2 2T, 4
0,(0n,) =4Eor, sin(@)—4Eor, cos(6)—2El de, cos(6)—2El de, sin(6)— 5;0 (2.19)
1
9,(6n,) = de,El, [sin(0) + (v, —1)sin(36) |+ 2E7, cos(8) — 2E S, cos(6)
T
—2Edr, sin(@) —2Edr,, sin() — El,de, | cos(8) —cos(30)—==- (v, —1) |- on,
2_ef g
(2.20)
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d,(0n,) = be, EL, [sin(0) — (v, —1)sin(30)|+ 2Edx,, cos(6) —2ESr, cos(6)

T, on
. . 2 ;
+2Eor, sin(6) + 2Eor, sin(0) + El Je, | cos(8) +cos(30)—=- (v, —1) |-—+
T
2_eff g
(2.21)
3.(Se )+ 19 (e )= m — -1 Se (2.22)
z r t r) i 0% .
c 2
3.(5e)+™3 (5e)=—bm - 115 (2.23)
z ei t ei - r 0 ei .
c 2
which can be recast in the following matrix form:
1 Vv, — (v, —1)cos 26 Ecosf  Ecosl 0 0 (v, —1)sin 260 Esinf 0
TZ,U/f ZTE,U" 2 2 2T3,<‘77 2
1 7ifiQ 0 0 0 0 0 0 0
T 27
[or ] —4E cos —2& cos 6 —TL‘ 0 0 4Esind —2&sinf 0 0 M on, ]
e, T 1 T Je,
on, —2&cosf | (v,-1) TZ’" cos36—cosb |E 0 T 2Ecos@ —2&sinf | (v,-1) TZ’" sin30+siné |E 0 —2Esiné on,
2 eff g 2_eff
on on
4 (v, —1)cos26 _Ecosd 1 (v, —1)sin26 Esinf "
om0 o, ‘ P o, F N K
or, - . . N E ) or,
Se 0 (v, —1)sin26 Esind  Esinf 0 1 Vot (v —1)cos26 Ecosb 0 Se
! 2T2 eff 2 2 TZ eff 2T3 eff 2 '
on, - - - on,
o, 0 0 0 0 0 -1 Lo 0 o |lox
=T T 27 e
2&sinf | —(v,-1) L sin36+sinf |E 0 0 2Esin@ -2Ecosf |(v,-1) L cos36+cosb |E L 2Ecos@
Tz,u// Tz,orr T;
0 _(vy—Dsin26 0 Esind 0 0 (v, —1)cos 26 Ecosf 1
2T27L/7 2 21—2,«// 2 TzJJ ]
(2.24)

where 7=n,/c}, is the photon lifetime in the cavity.

Using the ansatz from Ref. [31], we recast all perturbations 6X to the main
lasing mode in the form of propagating wavelets JX o exp(in,Qz/c+At),
where A can be interpreted as the Lyapunov exponent, Qn, /¢ is the detuning
of the propagation constant from the one of the lasing mode and —Im(A) is
the frequency offset. Note that among all possible solutions A(Q) of the
dispersion equation that follows from Eq. (2.24), only the solutions with
positive increment Re(A)>0 will build-up in the cavity after several round-
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trips, which fulfills the cavity round-trip phase self-repetition condition

2QLn,/c=2zn, where L is the cavity length and 7 is an integer number.

Nevertheless, it is convenient to carry out our stability analysis considering €2
as a continuous parameter. It can be regarded as the offset frequency from the
lasing mode because for all practical situations of interest in this study, the

approximation Im(A) =-Q suffices.

Numerical solution of Eq. (2.24) reveals that only one Lyapunov exponent of
the 9x9 linear stability matrix may have positive real part and thus may lead
to a multimode instability in the practical range of pump rates considered here

(see Fig. 2.1 below and related discussion).

Via a transformation of variables, the 9x9 matrix in Eq. (2.24) can always be
altered into a block-diagonal form with 5x5 and 4x4 blocks, as depicted in
Eq. (2.25) below [45], [58]. Out of these two matrices, only the smaller-size
matrix may exhibit Lyapunov exponent with the positive real part in the
practically feasible range of pump currents (see discussion to Fig. 2.1 below).
The required transformation, and hence the set of variables responsible for
instability, are both changing with the initial phase of the mode 6. However,
the instability increment Re(A) remains fixed, attesting that the initial phase
has no impact on the occurrence of instability. For simplicity, in what follows
we assume that the laser initially operates in a CW lasing regime and the
phase of the mode is 8=0. Such transformation is straightforward, yielding the

following eigenproblem [45]:
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(2.25)

(2.26)

We find that only one eigenvalue of the lower 4x4 block may have Re(A)>0

and may lead to unstable CW lasing regime observed in experiment. The
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upper 5x5 block shows only stable solutions in a large range of pump rates
above the lasing threshold. Thus for a QCL from Table 1, this behavior is
observed up to p~60 times above the lasing threshold (Fig. 2.1). For AlGaAs
QW LD from Table 1, it continuous up to p~1100. In what follows the
discussion will be limited to this sufficiently large range of pump rates when

only one eigenvalue in Eq. (2.25) may lead to a multimode instability.

The instability in Eq. (2.25) is related to variables or,, de,, on, and oz, . When
the initial phase of the mode 0 is detuned from 6=0, the variables associated
with the lower 4x4 block are altered. For example, for 8 =7 /2, the instability
is due to perturbations or,, de,, on, and Jr,. Therefore, it is not possible to
identify the nature of instability (RNGH-like or of a different kind) from the
set of variables involved. At the same time we find that whatever the initial

phase 0, the offset frequency Q_  at the maximum increment Re(A) is close to

X

the Rabi oscillation frequency Q, . = \/( p—Vv,)/TT, , (see Section 3.3 below).

This allows us to attribute this instability to the RNGH-like behavior discussed
in Refs. [30], [31].

This behavior should be contrasted with the one reported in [39], where (i) the
carrier coherence grating given by Eq. (2.9) has not been taken into account
and (ii) truncated coupled mode equations for carrier population grating and
medium polarization contained errors (see our discussion to Egs. (2.7)-(2.11),
Appendix B and analytical solution [46] obtained in Section 4.1). If one omits
the variables oz, and dz, associated with the carrier coherence grating, the
lower 4x4 matrix block in Eq. (2.26) simply becomes of 3x3 size [45]. It still
exhibits an instability at small pump rate above the lasing threshold.

According to [39] the instability occurs at significantly lower frequencies

around Q,, = \/Tl_]\/(p ~1)/30T, ~\[Q,,, /T, /{3 . Therefore, this instability

has been attributed in [39] to the SHB effect. It will be shown below that this
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instability occurs, in fact, at a much higher frequency close to Q,,.. These

outcomes of our numerical studies [45] agree very well with our analytic

solution reported in [46] (see Section 4.1).
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< 1.0x10" : - T . T . T
L 1 ——A,, from 4x4 matrix |
- 10
g 5.0x1074 ——A,, from 5x5 matrix ]
(=] N 4
=3 00fc-=======f R — === === === =
g «
S -5,0x10" 1
f=%
g ]
= -1,0x10"" 1
[ 4
S
& -1.5x10" -
® |
b -2,0x10"" A
% 1 -—/ 1x10" \
o -2,5x10 " A 2,4x10" 2,5x10° ]
© y T v T v T . T
) . : .
i3 0 1x10" 2x10" 3x10" 4x10"
(b) Q[Hz]
< 1,0x10" T T . T . r
oy i ——A,, from 4x4 matrix 4
§ 5.0x10°4 P=80 ——A,, from 5x5 matrix |
o 1 g
3 N R e el - G
g -
S -5,0x10" -
Q.
g ]
= -1,0x10"" 1
w
g 1" ]
= -1,5x10" " 4
2 Y S N N 1 i e
= -2,0x10"" -
° =
= 10
8 -2,5x10" 4 '1'OX1z06x10“ 2,7x10% 4
g T T T T T T v T
(4 0 1x10" 2x10" 3x10" 4x10"
0 [Hz]

Fig. 2.1. Spectra of instability increments (largest real parts of the Lyapunov exponents) of the

4x4 (red curves) and 5x5 matrix (blue curves) blocks at p=50 (panel (a)) and p=60 (panel (b))

for QCL with parameters from Table 1.
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The upper 5x5 matrix block in (2.26), which shows only stable solutions in the
presence of the carrier coherence grating (2.9) and in the reasonable range of
pump rates, takes the form of a 4x4 matrix after dropping out the variables

or, and oOr,. Our analysis shows that it may lead to RNGH instability at the

pump rate approximately 10 times above the lasing threshold, in agreement
with the theoretical predictions from [30], [31]. The second threshold always
remains that high unless a saturable absorber is introduced to the model

system [40], the possibility which was studied in [39].

We thus argue that inclusion of both grating terms (2.9) and (2.11) allows one
to obtain low-threshold RNGH instability in a FP cavity laser (or bidirectional
ring laser) without saturable absorber. This instability is of different origin
from the one discussed in Ref. [39]. In our case it originates from the lower 4x4
matrix block in Eq. (2.26) and not from the upper 5x5 block. The coherence
grating (2.9) renders the second threshold associated with the 5x5 block
prohibitively higher (at p~60 instead of the initial value of p~9-10 in the
original RNGH instability case for a unidirectional ring laser without SHB
effect), see Fig. 2.1. Note that it is impossible to make similar parallels with the
treatment from [41] because it utilizes the laser rate equation model in the
lumped gain picture. In the following sections these points will be elucidated

in further detail.
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3. RNGH self-pulsations in monolithic QCL chip

3.1. RNGH instability threshold

For QCLs that have the (standard) cavity length of 2-4 mm, our linear stability
analysis (Section 2.4) predicts the multimode RNGH instability at a pump rate
of a few percent above the lasing threshold. This prediction is in agreement
with numerous experimental data available in the literature [29], [39], [48]. The
numerical simulations based on TW rate equation model [45], [47] also
confirm this behavior and the transition to multimode operation at just above

the lasing threshold (see Section 3.3).

In the case of a short-cavity single-section QCL of just 100 pm long, our
numerical simulations (see Section 3.4) reveal stable CW operation regime up
to the pump rate of 2-2.5 times above the lasing threshold [45], [46], [58]. The
RNGH-like self-pulsations occur above the second threshold of pm2~2.5 (see
below). However, the linear stability analysis based on Eq.(2.26), 4x4
determinant, shows that the real part of the Lyapunov exponent Re(A)
becomes positive at the pump rate p just slightly above 1 (lasing threshold,
tirst threshold). Moreover, with increasing p, the instability increment Re(A)

increases monotonically, without revealing any specific behavior at p,,.

Therefore it is necessary to examine the spectral behavior of the increment
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Re(A) and we arrive to a new insight into the second threshold condition,

which is presented below.

Fig. 3.1 illustrates the spectral behavior of the increment Re(A) in a QCL with
the cavity length of 100 pm. Only positive offset frequencies are shown,
because the spectral shape of Re(A) is an even function of Q. The instability
increment is plotted normalized to the cavity mode separation, which yields
us the spectrum of the round-trip gain coefficient 2Re(A)ngL/c for various
cavity modes. In the figure, the instability gain spectra are depicted at three
different pump rates of p=1.1, 1.2 and 3 (green, red and blue curves,
respectively). The locations of a few cavity modes are indicated by plotting the
Airy function of the “cold cavity” (black curve, not in scale). The zero offset
frequency corresponds to the initially lasing mode.

main lasing mode
(cavity mode n) n+1 cavity mode n+2 cavity mode

p=1.1
— n=1.3
— =3

——FP spectrum

Qmax12n>c12ngL
gain maximum

o
A
1

Roundtrip gain for instability,
Re{A}l(c/anL)

o
o
1

d T d T d T d T d
0,0 0,5 1,0 1,5 2,0 25

Normalized Fourier frequency, (Q/Zn:)/(c/anL)
Fig. 3.1. Positive offset frequency part of the spectrum of the round-trip gain for instability in a
100 pm long QCL at normalized pump rate of p=1.1 (green curve), p=1.3 (red curve) and p=3.

The black curve indicates the Airy function of the cold cavity (not in scale). Other QCL
parameters are given in Table 1. © 2017 IEEE. Reprinted, with permission, from [45].
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The RNGH condition [30], [31] for multimode instability in a CW operating
single-mode laser requires that the instability increment is positive at a
frequency of another cavity mode. An example that matches this definition is
the instability gain curve plotted in Fig. 3.1 for p=1.3 (red curve). It shows a
positive gain for the first two adjacent cavity modes at the offset frequencies

Q/2r=%c/2n,L. InFig. 3.2, this gain coefficient is plotted as a function of the

pump rate (dashed blue curve). According to the conventional definition of
the second threshold, the multimode RNGH instability should occur at p=1.25,
when the gain for instability becomes positive at some of the non-lasing cavity

modes (blue dashed curve in Fig. 3.2).

Although the positive increment for instability of single mode CW lasing
regime in Eq. (2.26) indicates the instability of the lasing mode, it does not
imply that RNGH self-pulsations will occur (not every small-amplitude
instability necessarily develops into large-amplitude RNGH self-pulsations)
[45], [46]. The laser may just switch to another mode, which is also unstable.
The increment for instability of the mode is small [e.g. see the red curve in Fig.
3.1 obtained at p=1.3] so the switching process will be slow and may be driven
by technical noise. A classic example is a ring laser with reciprocal cavity for
counter-propagating modes and absence of mode coupling via backscattering
in the cavity: it shows sporadic switching of the lasing direction (spontaneous
mode-jumps) at times much longer than the characteristic times T1, T> and
[64]. A FP cavity laser may also exhibit such spontaneous mode-jumps [67]
and the linear stability analysis in Eq. (2.26) does not exclude such possibility.
Other possibility is related to multimode phase instability in semiconductor
laser which admits adiabatic approximation for the medium polarization [68],
[67]. Note that since RNGH instability is the multimode amplitude instability
[69], our numeric model utilizes slowly varying envelope approximation for
the field amplitude [47] and therefore it cannot reproduce spontaneous mode-
jumps or slow phase instabilities. The main difference between RNGH
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instability and all other instabilities is that, when the regime of RNGH self-
pulsations sets in, the medium polarization does not follow adiabatically the
optical field in the cavity. However, at the initial stage when the CW single-
mode lasing regime just becomes unstable, there is only a small-amplitude
perturbation of the optical field circulating in the cavity. In the most general
case it has the form of an optical pulse. The interaction of the active medium
with such a small-amplitude perturbation is still governed by adiabatic
approximation [32] and does not necessarily give rise to a non-adiabatic

behavior at a later stage [45].

3,0 -
= 2,54
F= ] 4 mm
© .
35 2 100 um
=& ] 100 um, Risken [30]
'9 B 155-
c X ]
£3
ag 10
= ]
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o .
2

0,0

1,0 1,5 2,0 2,5 3,0

Pump normalized to lasing threshold, p

Fig. 3.2. Lyapunov stability analysis: round-trip gain for RNGH instability vs. pump excess
above threshold for the QCLs with the cavity lengths of 4 mm (red curve) and 100 pm (solid
blue curve). For explanations on the dashed blue curve, see discussion in the text. In long-
cavity QCL, the second threshold is very low, at pu2=1.05, while pn2=2.35 in the short-cavity
QCL. Other QCL parameters are given in Table 1.
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In order to verify the RNGH threshold condition, we perform a series of
numerical simulations based on the travelling wave rate equation model [45].
Our model is adapted from [47] by removing saturable absorber section. It
utilizes slowly varying envelope approximation for the field amplitude, which
is a real valued variable in the model. It cannot reproduce mode jumps, while
the amplitude instabilities can be detected by examining the simulated
waveforms. As a model system we use a short-cavity single-section sample
(L=100 pm). The travelling wave model incorporates Langevin force terms
that seed the spontaneous polarization noise into the system (these terms are
not indicated in Egs. (2.1)-(2.3), but an example can be found in [47]). We
examine several different power levels of the noise injected into the system.
Fig. 3.3 shows that the output power of amplified spontaneous emission Psp
varies over 6 orders of magnitude, from eight to two orders below the
polarization noise level in homogeneously broadened ensemble of two-level

quantum oscillators [45], [46], [70].

—P,=8nW

— P,=81pW
Psp:0.8 pW

1000 — Ps =8 fW

o

Output power in ASE [pW]
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1E-3

0 ' 100 ' 200
Time [ps]

Fig. 3.3. Output power variation in amplified spontaneous emission (ASE) regime below the
lasing threshold (p=0.9) for different levels of spontaneous polarization noise used in the

numerical simulations. QCL cavity length is 100 pm. Other parameters are given in Table 1.
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In Fig. 3.4, for each set of parameters (p, Psp) we perform a series of 20
simulations and calculate the probability of occurrence of the RNGH like self-
pulsations (example of the waveforms can be found in Fig. 3.11 below). These
statistical data are displayed in Fig. 3.4 as vertical bars with the color
corresponding to the spontaneous polarization noise power in Fig. 3.3. It
follows that there are no systematic correlations between the occurrence of
RNGH instability and spontaneous noise power P injected into the system.
We have not seen the impact of the noise power on the lasing regime, only the
delay time to the onset of emission was changing. The noise power that we
will use in all the simulations throughout the rest of the manuscript is Psp=81
pW (red trace in Fig. 3.3 and Fig. 3.4). In Fig. 3.4 we also plot the average
probability over all 80 realizations at different Psp (solid curve). It has the

dispersion of +0.056, which is indicated in Fig. 3.4 by the error bars.

The data in Fig. 3.4 attest that there is no multimode RNGH instability at the
pump rate p=1.5. This is in contradiction with the conventional definition of

the second threshold, foreseeing p,,=1.25 (Fig. 3.2, dashed blue curve). At

p=2, only a few realizations have resulted in RNGH self-pulsations [45]. The
average probability of these is of 0.04, which is below the uncertainty limit.
The RNGH instability develops at p between 2 and 2.5, with p=2.5 being the

first point in Fig. 3.4 for which the probability exceeds the uncertainty range.

Clearly the results of our numerical simulations are not in agreement with the
second threshold condition as originally proposed by Risken and Nummedal
[30], and Graham and Haken [31]. Analyzing the data in Fig. 3.4, we find that

RNGH instability occurs when the instability gain maxima located at the offset

frequencies €2, ~*Q, . are either on resonance with the nearest-neighbor
cavity modes at *cz/n,L or at a higher frequency offset as in the case

indicated by the blue curve in Fig. 3.1.
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The RNGH instability gain coefficient corresponding to this refinement of the
second threshold is plotted in Fig. 3.2 as a function of the pump rate (solid
blue curve). It reveals an abrupt switching-on behavior for the RNGH
instability, the feature which is not seen in long-cavity QCLs because of the
small frequency separation between the cavity modes (Fig. 3.2 red curve). The
numerical results in Fig 5 are in reasonable agreement with the second
threshold value of pm2=2.35 in Fig. 3.2 (solid blue curve) obtained using our

modified second threshold condition [45], [46].

P =8 nW
o8- | I P,=81pW

/= PS,,:O-S pwW

B P =8 fW
06 |—=—average

Probability of RNGH self-pulsations

2 4 6
Pump excess above threshold, p

Fig. 3.4. Probability of occurrence for RNGH self-pulsations is plotted as a function of the
pump excess above lasing threshold p for different levels of spontaneous polarization noise
shown in Fig. 3.3 (bars) as well as for the average over all realizations (green curve). QCL

cavity length is 100 pm. Other parameters are given in Table 1. See further details in the text.

The proposed refinement for the second threshold has a clear physical
meaning. Recall that RNGH instability in a CW single-mode laser arises due to
Rabi splitting of the lasing transition induced by the lasing mode. As a result

of such spectral broadening and reshaping of the gain curve, the laser can
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provide sufficient optical gain to other longitudinal modes at the early stage of
instability [71]. Most importantly, this shall lead to large-amplitude self-
pulsations at a later stage such that the medium polarization does not simply
follow adiabatically the optical field but instead it becomes a leading variable
of this dynamical system [31]. Therefore we assume that the initial
perturbation to the lasing mode has a pulse shape and we apply the pulse area
theorem for non-adiabatic pulse propagation [32], [72]. In the most general
case, the characteristic time of such perturbation pulse is roughly a half of the

cavity round-trip time 7,~ Ln,/c. From the pulse area theorem, we have

noticed that a perturbation in the form of an optical pulse is unstable and the
pulse area grows so as the fast (non-adiabatic) medium polarization dynamics

becomes possible if, initially, €., 7,>7. Because the maximum gain for

RNGH instability is located at the offset frequency Q_  ~+Q, . , we conclude

max —=®Rabi

that the multimode RNGH instability occurs only when [45]:
Q.. |/ 222 ¢/2Ln, (3.1)

The blue curve in Fig. 3.1 satisfies this condition while the red one does not.
This condition has minor impact on QCLs with long cavities. However, it
raises the second threshold considerably in short-cavity devices because of the
large frequency separation between the cavity modes. In Ref. [46] and in
Section 3.1 we have obtained an analytic expression for the pump rate at

RNGH self-pulsations threshold (3.1).

3.2. Experimental observations of RNGH instability in QCLs

In Section 3.1 we have refined the necessary conditions for occurrence of
multimode RNGH instability. The numerical simulations reveal regimes with

either regular or chaotic self-pulsations (Sections 3.3 and 3.4 below). Therefore,
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it is useful to clarify at this point which features provide an evidence for

RNGH instability.

The experimental data available in the literature attest that RNGH instability
does not always lead to observation of a clear Rabi splitting in the optical
mode spectrum of a QCL. In some experimental realizations, RNGH
instability causes just a broadening of the lasing spectrum to the offset
frequencies of the order of the Rabi oscillation frequency. Indeed, the
appearance of Rabi splitting in the optical spectrum can be tailored by
changing the sample temperature [29], [39], [48]. For example, in [39] at low
temperatures (80-150 K) the measured lasing spectra in a buried
heterostructure QCL sample are just simply broadened, but with increasing
temperature, the Rabi splitting between mode clusters becomes more
apparent. At room temperature conditions, two distinct mode clusters emerge
in the optical spectrum. Because temperature dependence of carrier diffusion
has been found to produce a too weak contrast change in the SHB grating [39],
the thermal population of injector levels yielding temperature-dependent
saturable absorption has been suggested as one of the possible mechanisms.
However, in [48], QCL samples show totally opposite spectral behavior with
the temperature. The optical spectra reveal lasing mode clusters with
separation of ~20-30 cm at liquid He temperature (6 K) while at an increased
temperature of 77 K, no clear spectral splitting is observed in the broad
multimode emission spectrum. Although available experimental reports do
not elucidate the nature of the temperature effect, most importantly they
allows us to spot one common feature: once a laser sample exhibits clear Rabi
splitting at some temperature, it also reveals very broad multimode emission
at other temperatures, which can be with or without mode clustering [45]. The
overall spectral width of such multimode emission practically does not change
with the temperature, reaching ~35-40 cm! at the pump rate of p~1.7-1.8 times
above lasing threshold and the width of ~60 cm for p~3.5-3.6. Therefore we

32



conclude that the multimode dynamics responsible for such large spectral
broadening at different temperatures is governed by the same processes.

Hence an observation of large spectral broadening on the order of Q,,

already provides an indication of multimode RNGH instability, whilst the
optical spectrum might not be split in two distinct mode clusters. This

conclusion is in agreement with experimentally measured QCL spectra in [41].

Even if the two distinct mode clusters appear in the lasing spectrum, their

frequency spitting is not necessary equal to 2Q, ,.. The pump rate dependence

Rabi
of the Rabi frequency [see Eq.(3.2) below] assumes that this splitting is
proportional to the square root of the output power. In [29], [39] this behavior
is confirmed for the range of QCL output power up to 36 mW and the
frequency splitting up to 1THz is observed in 3 pm-wide buried
heterostructure lasers. However, for 10-15 pm wide ridge waveguide lasers
from [39] and [48], the spectral splitting is clamped at about 0.8 THz for the
output power of ~25 mW and higher. This is not surprising because the notion
of the Rabi splitting in the gain spectrum of a laser is introduced considering
small-amplitude perturbations to the initial optical field in the cavity [45]. This
small-signal picture is very different from the situation in the laser undergoing
large-amplitude self-pulsations. At high pump rates, the overall spectral

broadening due to multimode RNGH instability can be smaller than 2Q, ,..

In the cited works, the complex structure of the lasing transition in QCL is
usually not taken into account in the interpretation of experimental results. At
the same time inhomogeneous features in the optical gain curve or dispersive
characteristics of the cavity (e.g due to backscattering from microcracks [73])
may significantly reshape the spectral envelop of multimode RNGH emission

[45].
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All experimental studies cited here are limited to long-cavity QCL samples of
1.5-4 mm length. The data reported in [48] might lead to a conjecture that
sample length has an impact on the appearance of the two distinct mode
clusters. Unfortunately no detailed experimental study on the effect of the

sample length on RNGH instability has been reported.

In [74] authors report on experimental observation of excitation and
suppression of low-threshold RNGH instability in mid-infrared
InGaAs/InAlAs QCLs with level alignment and resonant tunneling between
injector and active quantum wells (QWs). They have identified two different
mechanisms that can be used for tailoring RNGH instability with applied bias
field and/or optical excitation of free carriers. The first mechanism is due to
switching between a diagonal transition from injector to active region and a
vertical transition within active QWs during a transient turning-on process.
The second mechanism is based on unstable electric field domain (EFD)
formation [75], [76] when the applied bias field is greater than that at the
tunneling resonance. Note that their experimental results are in agreement
with the analysis developed in this dissertation and [45], [46] that attribute the
low-threshold RNGH instability in QCLs to the gratings of population
inversion and coherences (medium polarization) induced by the standing
cavity mode pattern. The authors attribute the onset of the RNGH instability

at the turning-on process to the difference in the gain relaxation times 7, on

the diagonal (injector-active QWSs) and vertical (within active QWs)
transitions. On the other hand, the suppression of RNGH instability under
EFD formation is explained by the washing out of the induced gratings by the
inhomogeneous bias field and carrier distributions. In addition, in [74] is
stated that the formation of a broad multimode emission (or a comb) with the
overall spectral width of ~2Q, . (as opposed to the appearance of the mode
clusters on the Rabi-frequency sidebands) is governed by the group delay

dispersion in the cavity. Most importantly, in both cases the origin of the
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multimode emission is related to RNGH instability. For spectroscopic
applications of QCL combs [13], serious design efforts have been made to
optimize active QWs, reduce group velocity dispersion and enlarge the
spectral width of the gain curve on the active vertical transitions by

incorporating several QWs with different transition energies.

The mechanism of instability in single-section QCLs that was proposed in [41]
was linked to a parametric four-wave mixing gain instability, in full analogy
with the phase-locked comb production in high-finesse optically pumped
micro-cavities. Interestingly, as pointed out in [74] this mechanism should lead
to a soliton formation in the time domain [44]. Nevertheless, very few
measurements of the second-order interferometric autocorrelation (IAC) traces
(see Appendix C) have been reported for QCLs [29], [39] and they don’t
provide an unambiguous conclusion about the output QCL waveform and
eventually about the pulse shape. In addition, none of the previous reports
indicated IAC variation in function of the pump current which otherwise
would greatly streamline the identification of the dynamic behavior of QCLs

in the time domain.

Note that all second-order IAC traces (see Appendix C) in DC-driven single-
section FP cavity QCLs reported so far show the peak to background ratio
close to 8:3, attesting rather a noisy (multimode) continuous wave (CW) lasing
behavior [77] as opposed to formation of a pure phase-locked comb.
Furthermore, none of the reported RF power spectra of intensity shows a
comb with multiple harmonics of the fundamental cavity frequency- a feature
which would confirm the phase locking of the optical modes [78], [79]. On the
contrary, all RF power spectrum reports are limited to the beat note at

fundamental frequency.
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3.3. RNGH instability in a QCL with long cavity

As a model system for long-cavity devices we assume a single-section QCL
with the cavity length of 4 mm. The linear stability analysis (Section 2.4)
indicates the RNGH self-pulsations threshold [Eq. (3.1)] of p#2=1.05. For the
pump rate p=1.2, which is slightly above the instability threshold, we do
observe a quasi-periodic chaotic behavior in the output power waveform [Fig.
3.5(a)]. Here the cavity round-trip time is 88 ps, much larger than the carrier

lifetime 7, (Table 1). Fig. 3.5(a) shows the first ten and the last ten cavity

round-trips from the entire simulation domain which extends over 100 cavity
round-trips. The laser is initially not pumped and the pump current is
switched on at a time =0 s. The onset of the lasing emission is seen in less than
3 cavity round-trips (at t~200 ps, Fig. 3.5(a)). Comparing the self-pulsations in
the first and last 10 round-trips in Fig. 3.5(a), one can see that after additional 3
cavity round-trips, the system reaches a steady regime of quasi-periodic
(chaotic) self-pulsations, in good agreement with the inverse value of the gain
coefficient in Fig. 3.2 (red curve, yielding 1/0.38=2.6 round-trips). Therefore
the considerations about thousands round-trips required to reach the steady
operation do not apply for our single-section Fabry-Perot cavity laser [45]. In
the original work of Risken and Nummedal [30], the steady regime of self-
pulsations in a unidirectional ring laser is reached in less than 160 cavity round-
trips. The carrier population grating and coherence grating in our Fabry-Perot
laser not only drastically reduce the second threshold but also reduce the time
needed for settlement of the self-pulsations. It is didactic to compare the build-

up time of the lasing emission in Fig. 3.5(a) with an estimate based on the well-
known text book expression that reads 7,/n(P,/P;)/(p—1) (see [66]). For
the case considered in Fig. 3.5, the photon lifetime in the cavity is 7, =4 ps
while the power ratio in the steady lasing regime and in the initial regime of

spontaneous emission (at t=0) is of P, i/ P, =10°. For the pump excess above
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threshold of p=1.2, the estimated build-up time is of 280 ps, which corresponds
to 3 round-trips in the cavity. This estimate agrees very well with the rise time

of the waveforms in Fig. 3.5 [45].

Once the lasing is reached, the round-trip gain coefficient for the multimode
instability at p=1.2 becomes of 0.38 per cavity round-trip (see also [46]). That is,
the amplitude of an unstable non lasing mode increases by a factor of
exp{0.38N} after N round-trips. This process has the characteristic time scale of
1/0.38= 2.6 cavity round-trip. Therefore reaching the steady regime of
multimode self-pulsations just in additional 2-3 round-trips after the onset of

lasing emission (by t~500 ps in Fig. 3.5) appears very reasonable.

In the Fig. 3.5(b) we trace the evolution of the medium polarization P versus
carrier density N. Both P and N values are taken in the vicinity of the laser
facet and are normalized at transparency carrier density [47]. The P-N
attractor has a characteristic butterfly shape typical for a chaotic behavior in a
Lorenz-type system [80]. In total, QCL reaches the steady regime of chaotic
self-pulsations just in 6 cavity round-trips (~530 ps). This time appears too
short for establishing fixed phase relationships between many individual
modes as in the case of actively mode-locked (ML) QCLs with built-in
electroabsorber sections [81], [82]. However, the waveform in Fig. 3.5(a) clearly
attests that our single-section QCL does not operate in ML regime. Indeed the
peak to background ratio of IAC trace [corresponding to waveform in Fig.
3.5(a)] in Fig. 3.6 is worse than 8:3 while for a ML regime it should be close to
8:1 [77] (Appendix C). Thus, our quasi-periodic chaotic pulse train from Fig.
3.5 perfectly explains the experimentally measured IAC in [39], including
nontrivial pulse structure in between cavity round-trips. The background-free
intensity AC in Fig. 3.6 has the contrast of 2:1.75. This corresponds to the
literature case of “noisy CW signal” [77]. Appearance of correlation peaks at

cavity round-trips is due to the quasi-periodic nature of the waveform.

37



—
Q
~—

20 +
:
= 00" ==~ =~-as 8750 _ .- “B80C
g
8 10-
5
[=3
E

04

0 800 8000 8400 8800

Time [ps]
(b) All 100 round-trips
1,01 Last 10 round-trips

o

3
2 054

©
N
s

o

o
- 00

Q
o~
T

E
S 054

Normalized carrier density, N

Fig. 3.5. Results of numerical simulations with TW model for 4mm long QCL (cavity round-
trip time is 88 ps): Panel (a) depicts the output power waveform for the first ten and the last
ten (out of 100) round-trips in the cavity with zoom on the last round-trip. (b ) chaotic P-N
attractor. The behavior during all 100 cavity round-trips is depicted with the green curve,
while the orange curve signifies the last 10 round-trips, when the system reaches the steady
regime of quasi-periodic (chaotic) self-pulsations. The QCL is pumped at p=1.2 times above
the lasing threshold. Other parameters are shown in Table 1. © 2017 IEEE. Reprinted, with

permission, from [45].
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In relation to this example of non-regular pulse train we recall that
observation of regular frequency comb in the optical spectrum does not
indicate that the modes have fixed phase relationships and the laser produces
a regular pulse train. With increasing pump rate, the optical field waveform

develops into a quasi-periodic square wave [45].
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Fig. 3.6. Results of numerical simulations with TW model for 4mm long QCL (cavity round-
trip time is 88 ps): Second-order interferometric AC (blue curve, left axis) and background free
intensity AC trace (red curve, right axis) corresponding to the waveform in Fig. 3.5. The QCL
is pumped at p=1.2 times above the lasing threshold. Other parameters are shown in Table 1.

© 2017 IEEE. Reprinted, with permission, from [45].

An example of the temporal behavior of the optical field amplitude, medium
polarization and carrier density is depicted in Fig. 3.7. The optical field
behavior [Fig. 3.7(a), black curve, left axis] appears to be quite similar to the
one predicted by Lugiato et al. in [64] for a long-cavity unidirectional ring laser
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at high pump rates. However, in our case the average field amplitude is zero
due to quenching of the initially CW lasing mode and emergence of the two
symmetric sidebands in the optical spectrum. Like the optical field, the
medium polarization shows the square-wave behavior. However, its
waveform pattern is not identical to that one of the optical field [Fig. 3.7(a), red
curve, right axis]. This is not surprising if one takes into account the scattering
of counter-propagating waves on the induced gratings of carrier coherence
and population. Most importantly, the medium polarization does not follow
the optical field adiabatically. Instead, the medium polarization itself defines

the optical field dynamics [45].

One can see in Fig. 3.7(a) that the pattern of the square wave almost repeats
itself after each round-trip in the cavity (88 ps), indicating that a wave packet
with complex envelope travels back and forth in the cavity. Its envelope just
slightly changes at each round-trip, yielding the quasi-periodic chaotic
behavior. A different pattern is seen in the waveforms of the optical power
and carrier population [Fig. 3.7(b), left and right axis respectively]. These
variables are either quadratic with respect to the optical field or have a
contribution from the product of the optical field amplitude and the medium
polarization [see Egs. (2.7)-(2.11)]. Each waveform in Fig. 3.7(b) exhibits spikes
that are superimposed on a steady level. The spikes are caused by intermittent
behavior of the optical field and polarization, while the steady-state
component attests for the symmetry of the field and polarization square wave
patterns. The period of spikes is roughly a half of that for polarization

waveform, yielding the Lorenz-type attractor as shown in the Fig. 3.5(b) [45].
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Fig. 3.7. Results of numerical simulations with TW model for QCL with the cavity length of 4
mm: The optical field waveform and normalized medium polarization for the wave
propagating in the positive z axis direction (a), output power and normalized carrier density
(b). All values are taken nearby the output facet of the laser cavity. The QCL model
parameters are the same as in Fig. 3.5 but the pump rate is of p=2.2. © 2017 IEEE. Reprinted,

with permission, from [45].
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All these features seen in the time-domain waveforms are directly imprinted
into the optical and radio frequency (RF) spectra. In Fig. 3.8(a) we show
evolution of RF spectra with the pump rate and compare it with the Rabi
oscillation frequency. Due to the standing wave pattern of the optical field in
the cavity and induced carrier coherence and carrier population gratings, there
are several Rabi oscillation modes in the cavity. In order to extract their
frequencies, we have made an additional small-signal analysis of Egs. (2.7)-
(2.11). This time, we keep fixed the amplitude of the optical standing wave in

the cavity. We find that Rabi oscillations are possible at the main frequency

Q

1/2
wy; as well as at the two other frequencies (1+2"”2) Q,, and

(1-27 )1/2 Q,.,;, where [45]:

4
Q,, = [Z=w) (3.2)
i,

Out of these three eigenmodes, only the main one (3.2) is associated with the
gain medium variables in the lower 4x4 matrix block of Eq. (2.26), the one
which is responsible for RNGH instability. In Fig. 3.8, we also compare the

extracted spectra with the evolution of the peak gain frequency Q for

multimode RNGH instability (see Fig. 3.1) as well as with the possible
frequency of multimode instability due SHB effect, which is predicted in [39]

to be well below Q, , and Q  :
1 [p-1
Q= |— 3.3
SHB T; 37—{]-,2 ( )

All these frequencies (Q,,,, Q,,., and Q) are obtained using a small-signal

approach. Because the optical power is o E’ while the carrier dynamics is

governed by terms o< EP, in Fig. 3.8(a) and Fig. 3.8(b) we plot these
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frequencies scaled by a factor of 2. Note that the peak gain frequency Q,  is

quite close to the Rabi oscillation frequency (compare the red and blue curves

in Fig. 3.8).

The evolution of the RF power spectrum in Fig. 3.8(a) almost follows
along the curves for 2Q,, and 2Q _ frequencies, exhibiting the spectral

broadening and the frequency shift of the modulation band that increases with
the pump rate. Note however that it is unrealistically to expect the exact
matching between the numerical simulations for large-amplitude self-
pulsations and the outcomes of the small-signal analysis. At the same time the

spectral broadening and the frequency shift in Fig. 3.8(a) are clearly much

larger than for a possible multimode instability at the frequency Q. due to

SHB [39] (green curve). Therefore we attribute the spectral behavior in Fig.
3.8(a) to RNGH-like instability. Since the output power waveform as in Fig.
3.7(b) can be regarded as a series of ultrafast spikes superimposed on a steady
intensity level, the modulation band seen in the RF power spectrum at the

frequency 2Q, ,. is primarily due to the spiking behavior of the output power

[45].

In Fig. 3.8(b) we plot the frequency-domain representation of the carrier
density dynamics at different values of p. The spectra show broadening and
modulation of the carrier density at frequencies up to twice the Rabi
oscillation frequency. This behavior is similar to the evolution of RF spectra in

Fig. 3.8(a). However, the modulation band nearby 2Q, ,. is less pronounced

and the spectra exhibit almost all frequency components down to Q=0. This
behavior can be attributed to a slow response of the carrier density and carrier
population grating to rapid variations < EP in Egs. (2.10)-(2.11). The cutoff
frequencies are of 1/277,=122GHz and 1/277,=172GHz for the average

density and population grating, respectively.
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Fig. 3.8. Results of numerical simulations with TW model for QCL with the cavity length of 4
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in Fig. 3.5 and Fig. 3.7. © 2017 IEEE. Reprinted, with permission, from [45].
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The optical power spectra and the medium polarization waveforms in the
frequency domain representation are displayed in Fig. 3.9(a) and Fig. 3.9(b),
respectively. As expected, the two sets of spectra show very good
resemblance. In both sets, the initially lasing mode at Q =0 (the carrier wave)
is quenched and the spectra reveal two symmetric sidebands. Since the RF
modulation spectra of the output power exhibit modulation bands at the

frequency 2Q, .. [see Fig. 3.8(a)] one would expect to observe the modulation
sidebands at frequencies +Q, , in the optical spectra as well. However, these
considerations do not take into account large phase variations due to

intermittent behavior of the optical field, as seen in Fig. 3.7(a). Obviously, the

phase of the optical field does not contribute to the RF power spectrum.
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Fig. 3.9. Results of numerical simulations with TW model for QCL with the cavity length of 4
mm: Evolution of QCL (a) optical power and (b) polarization spectra when pumped above the
lasing threshold. The frequency is normalized to longitudinal mode spacing of 11.4 GHz. The
model parameters are the same as in Fig. 3.5 and Fig. 3.7. © 2017 IEEE. Reprinted, with

permission, from [45].

At the same time, the large phase hops of +7 impact directly the overall
optical spectrum, warping its envelope as compare to the envelope of the RF

power spectrum. From the waveform in Fig. 3.7(a) one can see that the

45



average repetition frequency of such phase hops is much lower than the
spectral band of each spike in Fig. 3.7(b). As a result, the modulation
sidebands in the optical spectrum are shifted to lower frequency. Therefore
one of the possible origins for experimentally reported clamping of the optical
spectrum bandwidth (see Sec. 3.2) is that the optical field waveform develops

into a quasi-periodic square wave, showing the intermittent behavior [45].

3.4. RNGH instability in a QCL with short cavity

We now move on to the case of short-cavity QCLs and consider an example of
QCL with the cavity length L=100 um, for which the linear stability analysis
predicts the RNGH threshold [Eq. (3.1)] of p,, =2.35 (see Fig. 3.2, solid blue

line).

The results of TW model simulations for the pump rate of p=1.5, which is

below the second threshold, are shown in Fig. 3.10(a) and Fig. 3.10(b).
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Fig. 3.10. Results of numerical simulations with TW model for QCL with the cavity length of

100 pm: Waveform (a) and P-N attractor (b) in case of p=1.5 (below 2nd threshold), the system

is stable.
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After several round-trips in the cavity, the laser reveals an onset of damped
relaxation oscillations and a transit to CW lasing regime, as can be seen from
both output power waveform [Fig. 3.10(a)] and spiral-shape P-N attractor [Fig.
3.10(b)]. The model simulations are thus in agreement with the predictions of

the linear stability analysis in Fig. 3.2.

The QCL reveals a different behavior when pumped above the second
threshold. At pump rate above the instability threshold, e.g. at p=2.5 as in Fig.
3.11, the first emission burst of high peak power is followed by steady regime
of regular self-pulsations [Fig. 3.11(a)] [45]. The FWHM pulsewidth of the first
emission burst is of 0.5ps while for regular self-pulsations it is of 0.6 ps width.
The system attractor plotted in the P-N plane indicates that the laser transits to
regular self-pulsations (or even self-oscillations) just after a few round-trips in
the cavity [inset of Fig. 3.11(a)] once it is at lasing. The period of regular self-
pulsations is close to the cavity round-trip time of 2.2 ps with the optical field
amplitude (and the medium polarization) changing sign at each half period.
This can be seen from the 8-like shape of P-N attractor in inset of Fig. 3.11(a).
This behavior attests that this is not a usual mode-locking regime. In Fig.
3.11(b) the contrast ratio of the interferometric AC is 8:1.5 (blue curve, left axis)
and the one for background-free intensity AC (red curve, right axis) is of 2:0.6.
Although the process is coherent, the IAC does not reach the peak-to
background ratio of 8:1 (2:0) because intensity pulse width is close to the

period of intensity self-pulsations.

Fig. 3.11(c) and Fig. 3.11(d) show the optical and RF power spectra
respectfully, when the pump rate p is in the range of 2.2 to 3.9 times above the
lasing threshold. In case of short-cavity QCL operating at just above the
instability threshold, only two main frequency components are excited in the
optical spectrum [Fig. 3.11(c)]. With increasing pump rate, the spectrum

remains symmetric with respect to initially lasing mode and the two main
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spectral components are located at the two nearest-neighbor modes. The

multimode RNGH instability occurs when the frequency Q of the

maximum gain for instability is on resonance with the first adjacent cavity

mode [Fig. 3.11(c), blue curve]. However, with increasing pump rate, the

frequency of self-pulsations does not follow the increasing frequency €, . or

Rabi oscillation frequency (red curve). Higher order modes start to appear in
the optical spectrum as opposed to continuous frequency rise. We attribute
this behavior to the cavity round-trip self-repetition condition (see Section 2.4).
With the increase of normalized pump p the waveform is still periodic but it
changes from regular sine-like shape to some more irregular one since more
spectral components are included with the increase of pump p. Eventually it

will become square wave for p~5 (values that are not of practical importance).

Note that the frequency of self-pulsations is slightly lower than the cold cavity
mode spacing due to the group velocity reduction. It can be attributed to
propagation phenomenon of a high-energy pulse in resonant medium, the
process which can be regarded as continual absorption of energy from the

pulse leading edge and re-emission of energy into the pulse trailing edge [72].

A quite similar behavior is reported in [64] for a short-cavity unidirectional
ring laser. However, in case of the ring laser, the optical field does not change
the sign at each half-period. As a consequence, the main lasing mode at Q=0
is not quenched. One can trace a few other similarities between multimode
instability in QCLs discussed here and the RNGH instability in unidirectional
ring lasers from [64]. In particular, one very important question has been
challenged but has not been answered in [64]. More specifically, the
mechanism, which is responsible for regular self-pulsations in case of short-
cavity laser and chaotic pulsations in the long-cavity case, has not been
elucidated. This qualitative change in dynamic behavior becomes even more

wondering if one considers the affinity between the 8-shape attractor in case of

48



regular self-pulsations in Fig. 3.11(a) and the butterfly-shape attractor in case
of chaotic self-pulsations in Fig. 3.5(b).
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Fig. 3.11. Results of numerical simulations with TW model for QCL with the cavity length of
100 pm: (a) Waveform: zoom- in at the end of the simulation domain shows regular self-
pulsations with sub-picosecond pulse width. Inset shows P-N attractor. (b) AC traces. In (a)
and (b) p=2.5 (above the RNGH threshold). (c) Evolution of the optical spectrum with the
pump rate. (d) RF power spectra which shows the main harmonic at about twice of the cold

cavity mode spacing. © 2017 IEEE. Reprinted, with permission, from [45].

3.5. Comment on coherence length

Now we will address one possible explanation on the effect of the cavity
length. To get an insight into its cause we study the P-N attractors in further
details. The P and N variables used in this work are introduced following the

approach of Ref. [47]. In particular, the variable P measures the order
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parameter in the system (the carrier density in the coherent state) and has the
same units as the carrier density N. In Fig. 3.5(b), Fig. 3.10(b) and Fig. 3.11(a)
inset, both variables P and N are normalized on the transparency carrier

density [45].

In Fig. 3.11 the order parameter P is high. It reaches about a half of the value
for N that precedes the emission pulse when P=0. This feature is observed as
in the first emission burst [Fig. 3.11(a) inset, blue line] as well as in the regime
of regular RNGH self-pulsations [Fig. 3.11(a) inset, red line]. This behavior
indicates an “off-diagonal long range order” in the system, as predicted in the
pioneering paper by Graham and Haken [31]. Note that a similar behavior is
also predicted for Dicke superradiance (SR) [47], [83]. The similarity is even far
more striking. Thus as shown in [31], the master equation for RNGH
instability behavior can be put in the form that bears a closed formal analogy
to the description of condensation phenomena, such as superconductivity. But
in [47] (and also in [84]), the SR emission is also shown to be governed by the
master equation in the form of Ginzburg-Landau equation. Continuing these
parallels we note that in the pioneering work of Risken and Nummedal [30],
the approximate analytic solution for the regime of RNGH self-pulsations was
obtained in the form of a hyperbolic secant pulse. This was achieved by
considering the case, in which the optical filed is entirely defined by the
medium polarization, so as E o< P. The same relationship between E and P as
well as the same hyperbolic secant pulse shape applies to the case of Dicke
superradiance [47], [85]. There is however one important difference between
the two regimes. The RNGH instability is usually analyzed in a CW operating
laser when the active medium is under continuous wave pumping. The SR
pulse emission occurs from a strongly pumped active medium, when the
initial optical field is close to zero. In practice this is achieved with pumping

by short and intense optical or electrical pulses [83], [85]-[89].
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Fig. 3.12. TW model simulation for short cavity QCL (L=100 pm) just above lasing threshold
(p=2.5), with Ri=Ro=2.7%. All other parameters are from Table 1: (a) Zoom at the burst, where
blue and red lines on the left panel represent output power trace on left (left hand side, lhs)
and right facet, respectfully. Right panel is P-N attractor which shows that normalized initial
carrier density (102) is approximately twice the normalized initial polarization (52), a
characteristic feature of the ideal superradiance. (b) Time trace of output power which shows
train of pulses preceded by a large burst. (c) Zoom at the end of simulation domain: periodic
train of ultrashort (sub picosecond) pulses (left) and their P-N attractor. Reprinted by
permission from Springer Nature, Opt. Quantum Electron [58] © (2016).
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Taking all these considerations into account, we attribute the first emission
burst in Fig. 3.11(a) to SR [45]. In order to more systematically show this
behavior with zoom on superradiance burst and subsequent regular
oscillations, we plot in Fig. 3.12 waveforms from a different realization for a
QCL with the same length (100 pm) but with different reflectivity coefficients
[Thus there are differences in the values of peak output power, P and N

compared to Fig. 3.11(a) ] [58].

It was shown that SR in short samples is different from the cooperative
emission in long samples [47], [84], [90]. The borderline between the two cases
is set by the coherence length of the SR pulse. In case of long samples, the
situation is such that sample domains of the size of the coherence length emit
independently of each other. The output pulse is the result of incoherent
superposition of SR emission from different sample domains. As a result, the

overall pulse width broadens and its amplitude decreases [45].

In a similar way, we may conjecture that the regular RNGH self-pulsations
occur when the sample is shorter than the coherence length. Otherwise, in the
case of a long sample, different sample domains are not mutually coherent
with respect to instable cavity modes and compete with each other at the
initial stage. As a result, an erratic pattern of the field is established in the
cavity at a later stage. As seen in Fig. 3.7, the optical field pattern almost
repeats itself on subsequent round-trips in the cavity, however the coherence
length remains smaller than the cavity length. It is roughly the average time

between the phase hops in Fig. 3.7(a), red curve.

The coherence time measured from the IAC trace in Fig. 3.6 as a half-width at
half maximum (HWHM) of the central lobe above the background is about
2 ps, which corresponds to the duration of the transients in Fig. 3.5(a) (and Fig.
3.7(a)). The coherence length is thus about 180 pm which is very short

compared to the millimeter cavity length. On the other hand, in short-cavity
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QCLs, the coherence time is comparable to a single pass through the sample.
The IAC traces in Fig. 3.6 and Fig. 3.11(b) provide an evidence for this
keystone difference [45].

3.6. The role of carrier diffusion

We have shown in Section 2.3 that the carrier coherence grating and carrier
population grating are both responsible for lowering the multimode instability
threshold. The diffusion coefficient D, which affects their effective relaxation

times 7, 7, , and T, ,, is sensitive to the temperature. Unfortunately the

literature data about the temperature effect on RNGH self-pulsations are quite
controversial (see Sec. 3.2), which is likely because the temperature also affects
many other QCL parameters. On the other hand, the relaxation rates
enhancement due to the carrier diffusion is proportional to the square of the
photon wavenumber k [see the discussion to Egs. (2.7)-(2.11)]. Therefore we
elucidate the role of the carrier diffusion by considering various emission

wavelengths.

First we consider the case of QCLs emitting in the MIR spectral range and
discuss the effect of electron diffusion in the plane of active QWs in these
devices. In Fig. 3.13 we compare the increments for multimode RNGH
instability in QCLs samples emitting at 4 pm (green curve) and 10 um (red
curve) wavelengths. Without carrier diffusion, the second threshold is
unrealistically low, at below p=1.005 in long-cavity samples (black dash-
dotted curve). The relaxation due to diffusion raises the second threshold. As
expected, this effect is more pronounced for shorter wavelength QCLs, where
relaxation is faster (compare red and green curves). Thus for devices with the
cavity length of 4 mm, the second threshold pu2 is of 1.04 at the wavelength of
10 pm, while pm2=1.32 in QCL emitting at 4 pm. The effect of the diffusion on
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the second threshold is seen as in the long cavity devices (solid curves) as in
the short cavity QCLs (vertical dashed lines). In all considered cases, the
carrier diffusion does not raise the second threshold to prohibitively high

levels [45], [58], [91].
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Fig. 3.13. Maximum RNGH instability increment vs pump excess above threshold for QCLs
without relaxation due to carrier diffusion (black dash-dotted curve) as well as with the effect
of the carrier diffusion when the emission wavelength is 4 um (green curve) or 10 pm (red
curve). The solid curves are obtained for long-cavity devices (L=4 mm), while the vertical
dashed lines denote the second threshold for short-cavity devices (L=100 pm). Other
parameters are indicated in Table 1. Reprinted by permission from Springer Nature, Opt.

Quantum Electron [58] © (2016).

The implication of the carrier diffusion effect is totally different in the case of
QW laser diodes operating in the visible (VIS) or near infra-red (NIR) spectral
range. Even though the ambipolar diffusion in the QWs of these devices is
much weaker than the diffusion of electrons in QCLs (see Table 1), the
relaxation due to diffusion is more perceptible because of the shorter

wavelength and smaller spatial period of the induced gratings. It is commonly
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acknowledged that QW laser diodes with monolithic FP cavities do not show
RNGH instabilities in the range of pump currents that can be reached in

practice.

In Fig. 3.14, we study the increment for multimode RNGH instability in a FP-
cavity GaN semiconductor laser diode operating at 420 nm and in a GaAs LD
at 850 nm wavelength. In all cases examined in Fig. 3.14, the two LDs show
quite similar behavior. In Fig. 3.14(a) and Fig. 3.14(b) we consider,
respectively, the eigensolutions of the 4x4 and 5x5 matrix blocks in Eq. (2.26)
and plot the largest real part of the Lyapunov exponents. The first matrix is
related to the instability caused by the carrier population and carrier
coherence gratings, which is the focus of this paper. The second matrix would
reproduce the results of the original RNGH theory if both induced gratings are

removed (7,,7, , > 0) while the carrier relaxation and carrier dephasing
processes preserve their initial times scale (7] and 7, ;). Recall that the RNGH

theory [30], [31] was originally established for a unidirectional ring laser, where
the gratings cannot be formed. It predicts the second threshold pm2 at more
than 9 times above the lasing threshold. The second threshold of the original
RNGH theory would be recovered by our model if, in particular,

T, ,/T, ; —0 (see Section 3.7 below). However, neither with carrier diffusion
(T, ,/T, ;; ~0.5 see Table 1) nor without it (7, , =7, ,), the VIS-NIR LDs

cannot reach this condition. As a result, the second threshold emerging from
the 5x5 matrix block in Eq. (2.26) is very high in the VIS-NIR LDs (Fig. 3.14(b))
due to the presence of induced gratings [45], [58].

The carrier coherence and carrier population gratings have a different
implication on the instability emerging from the 4x4 matrix block [Fig.
3.14(a)]. Thus in a FP cavity lasers as we consider here the induced coherence

and population gratings lower significantly the second threshold.
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Fig. 3.14. (a) Maximum RNGH instability increment from the 4x4 matrix block in Eq. (2.26)
[Reprinted by permission from Springer Nature, Opt. Quantum Electron [58] © (2016).] and
(b) largest real part of the Lyapunov exponent from the 5x5 matrix block vs pump excess
above the lasing threshold for GaN LDs (black curves) and GaAs LDs (blue curves), calculated
with and without carrier diffusion (solid curves and dash-doted curves respectively)
calculated from (a) 4x4 and (b) 5x5 matrix block. Inset in (b) shows zoom at p from 1 to 100.

The cavity length is L=4 mm, other parameters are shown in Table 1.
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However, without the ambipolar diffusion of carriers, the model predictions
for the second threshold in VIS-NIR LDs would be unrealistically low, of pw2
~1 (dash-dotted curves in Fig. 3.14). The relaxation due to the carrier diffusion
renders our model to be more realistic (solid curves in Fig. 3.14(a)) because the
characteristic time constants T:=1 ns and T>=0.1 ps are now reduced to much
shorter effective relaxation times of T;=0.1-0.2 ps for the carrier population
grating, T2 ¢~0.05ps for the coherence grating and T2 . ~0.09ps for the
effective dephasing rate. This lifetime reduction strongly suppresses all effects
induced by the standing wave pattern of the optical field in the cavity. As a
consequence, the second threshold values predicted from the linear stability
analysis are of several hundred times above the lasing threshold, as indicated
in Fig. 3.14(a) [58], [91]. Recall that this analysis is based on the truncated set of
coupled-mode equations (2.7)-(2.11) and the model predictions for the second
threshold cannot be quantitatively accurate at such a high pump rate.
Nevertheless these predictions are in a reasonable agreement with the
outcomes of our numerical simulations based on the TW rate equation model,

which we discuss next.

In Fig. 3.15 we show the output waveform and P-N attractor simulated
numerically with TW model for a 100 pm long single-section GaN LD pumped
above the second threshold, at p=400 [45], [91]. At such high pump rate, LD
exhibits behavior that is similar to QCLs biased at above the RNGH instability
threshold. The output waveform at each cavity facet reveals the SR emission
burst followed by regular RNGH self-pulsations [compare to Fig. 3.11(c) and
Fig. 3.12]. Note that during the SR emission burst, the order parameter is large
and approaches a half of the initial carrier density stored in the system. At the
pump rates below second threshold, LD shows an ordinary behavior of a
Class-B laser, which is characterized by excitation of damped relaxation

oscillations followed by a transition to CW lasing regime [as in Fig. 3.10(a)].
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Fig. 3.15. Results of numerical simulations with TW model for GaN LD with the cavity length
of 100 pm: Waveform (a) and P-N attractor (b). The red (blue) trace corresponds to the wave
propagating in the forward (backward) direction. © 2017 IEEE. Reprinted, with permission,
from [45].

We thus conclude that VIS-NIR range QW LDs have very high second

threshold because of rapid relaxation of the carrier coherence and population

gratings. Whereas the RNGH instability threshold in single-section QW LDs is
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not reachable under realistic experimental settings, there are several

considerations that indirectly support our conclusion.

Reaching the SR emission in short-length mesa-etched structures comprising
GaAs QWs was attempted in [92] under short-pulse optical pumping.
However, no evidence of SR emission was observed. We may attribute this to
the fact that threshold condition for RNGH instability has not been reached in

these experiments as the pump rate was too low.

According to Fig. 3.14, lowering of RNGH instability threshold (and reaching
SR emission) in single-section LD can be achieved by reducing the
contribution of diffusion to the relaxation rates of the carrier coherence and
population gratings. This bring us to the insight that low-dimensional
semiconductor heterostructures such as quantum dots (QDs) or quantum
dashes (QDash) can be used as active gain material in order to avoid
prohibitively high second threshold. Surprisingly, in Ref. [93], starting from
totally different considerations, a similar conclusion was made about
semiconductor heterostructures suitable for SR emission. Thus according to
[93], SR emission is not possible with the active gain medium utilizing bulk
semiconductor material or QW heterostructures. One needs to use QDs or to
introduce an additional quantization degree in a QW by applying a strong
magnetic field. The SR emission from magneto-excitons in InGaAs/GaAs QW

was confirmed in [85] under short-pulse optical pumping.

There is another way to reduce the second threshold in a semiconductor laser.
It consists in incorporating a saturable absorber [40] (see also Introduction and
Section 2.3). Technically this is achieved by implementing several separately
contacted sections in the monolithic cavity of LD. The cavity sections which
are positively biased provide the optical gain while a negatively biased section
behaves as a saturable electroabsorber. Under moderate negative bias applied

to the absorber section, the laser exhibits passive mode-locking or Q-switching
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operation. However, with further increasing negative bias, yielding shorter
recovery time and larger absorption coefficient, a different emission regime
occurs. At threshold of Q-switched lasing operation and under pulsed current
pumping, the laser reveals features of SR-like emission. These features have
been experimentally observed in multi-section GaAs, AlGalnAs and GaN QW
lasers [86]-[89]. Unfortunately all experimental studies reported in the
literature do not distinguish the first emission burst from the subsequent self-
pulsations, which can be modulated with a Q-switching pulse envelope.
Nevertheless a clear Rabi splitting was observed in the optical spectrum of
multi-section LDs when these were expected to produce SR emission [86].
Although there were no reports on experimental or theoretical studies on
RNGH instability in a multi-section laser diode, we believe that this subject

will receive further attention in the future [45].

3.7. The role of carrier population and carrier coherence gratings

In Fig. 3.16 we study the effect of coherence grating on the gain spectrum
(increment) for multimode instability by examining the highest gain frequency

Q.. in Eq.(2.26) as a function of the pump rate p [45]. These numerical

studies complement and confirm the outcomes of our analytical studies from

Ref. [46].

As a reference, we show the frequency Q_  obtained by numerically solving
the eigenproblem (2.26) with QCL parameters from Table 1 and coherence
grating relaxation time 7, , #0 (solid blue curve) as well as the calculated
Rabi frequency (3.2) (dashed blue curve) under the same operation conditions.
These two reference curves are thus obtained in the presence of mode

coupling via scattering on the coherence grating in addition to the coupling

via carrier population grating.
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The effect of coherence grating can be excluded from Eq. (2.26) by considering
the limit 7, , = 0. We achieve this via reducing 7, , by a factor of 10" while
maintaining the average decoherence rate (7, ,, #0) and the mode coupling
via SHB-induced grating of the carrier distribution (7, #0).This represents
very well the limit of 7, , =0 , when there is no mode coupling via scattering

on the coherence grating [45], [46].

We find that the system (2.26) still reveals instability and this instability is
caused by the SHB effect only. For the pump rates up to p~10, the spectral

shape of the instability increment Re(A) is similar to the one depicted in Fig.

3.1. (Compare this shape with the warped instability gain curve at much
higher pump rate of p~50-60 in Fig. 2.1.) Thus the instability gain spectra do
not indicate a change in the mechanism of multimode instability. In Fig. 3.16

we add the superscript “(SHB)” in order to distinguish this case and plot the
frequency QU calculated numerically from Egq.(2.26) and Q0" from
Eq. (3.2) for the case when 7, , is reduced by a factor of 10" (solid and dashed

red curves, respectively) [45].

In Gordon et al. [39], the expression (3.3) was obtained for the highest
increment frequency for the multimode instability caused by the SHB effect,

that is in the case we have just discussed above. In Fig. 3.16 we denote this
frequency as ) (green curve) and plot it as a function of the pump rate

using the parameters of QCL from Table 1.

The following conclusions can be made from comparison between different

curves in Fig. 3.16:

(i) In the presence of coherence grating (7, , #0), the highest instability

gain is at the offset frequency Q __ which is very close to the Rabi
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(iii)

frequency Q,,.. Like the last one, Q’

max

exhibits a linear growth with

the pump rate p (solid blue curve in Fig. 3.16). This behavior is a
signature of a multimode RNGH-like instability (see the Introduction).

Without coherence grating (7, , —0), both the frequency Q,_ and the

max

Rabi frequency reduce to Q" and QU respectively (solid and

max

QHB)

max

dashed red curves). However, [ ]2 does not follow anymore the

Rabi

linear growth of [Q(SHB)T and slightly deviates from the Rabi

oscillation frequency. Thus even at the pump rate as high as p=5 times

Q(SHB)

max

above the lasing threshold, is only by a factor of 1.1 lower than

QU Therefore we cannot attribute it to a markedly different

behavior than the one observed in the presence of additional mode
scattering on the coherence grating. Inclusion of the coherence grating
just slightly increases the highest instability frequency in the 4x4 matrix
in Eq. (2.26).

The frequency Q[Sﬁ]? [Eq. (3.3)] obtained in [39] for the case without

coherence grating, that is for case we discussed in (ii), is significantly

(SHB)
max

lower than our frequency £ and the Rabi flopping frequency

QU As a consequence of such low frequency it was attributed to a

multimode instability of a different kind and labeled as a multimode
instability caused by the SHB effect. In fact the original system of the
coupled mode equations in [39] contains a set of errors. Its adiabatic
approximation for slowly varying medium, polarization does not
recover the well-known Class-B laser model (See a discussion to our

Egs. (2.7)-(2.11) and the Appendix B). As a consequence of these errors,

the frequency Q5)) < QW™ which is not the case in our model [45].
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In [46] we analyze this problem analytically and arrive to the same conclusions
(the results of [46] will be presented in detail in Chapter 4). In particular, we
obtain a closed form expression for the second threshold that indicates that
coherence grating just slightly reduces the second threshold. The main source
for low-threshold RNGH instability in QCLs is SHB and a set of the relaxation

and diffusion time constants that result in 7, being comparable to 7.

2x10%° - - T
— Q.5 Tz_g=0.13 ps P
2 -
- = Q. T, =013 ps P 4
—_—O02 (SHB) — 7
] QU T2_9-1.3E-24 s P 7]
—_ - 2 (SHB) — 7
Qs Tz_g-1.3E-24 s P ’/ P
[39] 2
— Q™5+ Eq. (3.3) . ’/ -
:E‘ 25 7 7 <
- 7 -
nll_' 1x10 oy
d 7
e
Z 7
4 7
z
&
¢
s
P
7
0 T T I
1 2 3 4 5

Pump normalized to lasing threshold, p

Fig. 3.16. We plot the squares of the following frequencies as a function of the pump rate,
using parameters of QCL from Table 1 (T,=0.927 ps, T2 #=0.14 ps and T, ¢=0.13 ps unless

stated otherwise): the highest instability gain frequency €, . calculated numerically from the

eigenproblem (2.26) (7, , #0, solid blue curve) and corresponding Rabi oscillations frequency
(3.2) (dashed blue curve); the frequency Q® (solid red curve) and the Rabi frequency Q4%

max

(dashed red curve) obtained without coherence grating (12 is reduced by a factor of 10'1);
and finally the frequency Q') calculated from Eg. (3.3) (green curve). © 2017 IEEE. Reprinted,

with permission, from [45].
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The coherence grating has a much stronger impact on the eigensolutions of the
upper 5x5 block in Eq. (2.26). In Fig. 3.17 we plot the spectra of the Lyapunov
exponents with the largest real parts in the 4x4 (red curves) and 5x5 (blue
curves) matrices in (2.26) for the two pump rates p=9 [Fig. 3.17(a)] and p=10
[Fig. 3.17(b)]. Once again we compare cases when the coherence grating is

present (7, ,#0, solid curves) and when it is absent (7, , >0, dashed
curves). We observe that without coherence grating (when 7, , —0) the

increment of instability in the 4x4 matrix (red curves) increases and its
spectrum shifts to lower frequencies. It shows similar behavior at the two
considered pump rates (p=9 and p=10). The behavior of the instability
increment in the 5x5 matrix has much in common with the one in 4x4 matrix
but the increment values are shifted down on the vertical axis in Fig. 3.17
toward negative Lyapunov exponents. Only without coherence grating (
T, ,~0, while 7, , is unchanged), the increment becomes positive and
RNGH instability occurs at p=10 (see the behavior of the dashed blue curve in
the inset of Fig. 3.17(b)). Note that the RNGH instability does not occur at p=9
because 7, /T, #0 [30]. Once the coherence grating is present (7, , #0), the

RNGH instability threshold in 5x5 matrix increases by several times, to

around p=60 in particular case (See Fig. 2.1) [45].

In this way it remains only one pleasurable explanation for the low second
threshold observed in experiments with QCLs. Namely, we conclude that it is
related with the instability arising from the 4x4 matrix block in Eq. (2.26) due

to a combined effect of the carrier population and carrier coherence gratings.
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Fig. 3.17. Spectra of instability increments (largest real parts of the Lyapunov exponents) of the
two matrix blocks of 4x4 (red curves) and 5x5 (blue curves) sizes for QCL with parameters
from Table 1. The pump rate excess above threshold is p=9 (a) and p=10 (b) [© 2017 IEEE.
Reprinted, with permission, from [45]]. The solid curves stand for the case considered in this
paper when we include the coherence grating effects (7, , =0.13ps ), while the dashed curves
represent the case when the coherence grating relaxation time T, is reduced by a factor of
10", suppressing all effects caused by the coherence grating. The insets show zooms to the

highest RNGH instability increments in the 5x5 matrix block when 7, , -0 (no coherence

grating effects).
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4. Analytical expression for RNGH instability threshold in QCLs

In Chapter 3 we have analyzed conditions for multimode RNGH instability in
a Fabry-Pérot cavity laser and proposed an alternative mechanism responsible
for low RNGH instability threshold in QCLs. It also favors the RNGH
instability threshold lowering by the SHB effect but does not require a
saturable absorber. More specifically, we have shown that a combined effect of
the carrier coherence grating, carrier population grating and relaxation
processes due to carrier diffusion leads to the onset of multimode instabilities
at Rabi flopping frequency. We consider such spectral behavior as an evidence
of RNGH instability. Our approach to calculate the RNGH threshold has
shown a convincing agreement with the available literature data and with the
results of numerical simulations [45], [46], [58]. From a practical point of view,
this can be converted into a useful engineering tool enabling to examine
particular QCL design and predict its dynamic behavior or to tailor QCL
design for a specific application. In this Chapter we obtain a simple closed-
form analytical expression for the RNGH instability threshold in a QCL with
monolithic FP cavity. The main result of the section is summarized by Eq. (4.9)

Technically, it is obtained by using the second-order biorthogonal
perturbation theory applied to the Lyapunov stability analysis of the single-
mode lasing regime in a QCL [46], [94].
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4.1. Second-order biorthogonal perturbation theory

For the reason we will explain later, we split the 4x4 matrix from Eq. (2.26)

into two matrices M” and M" [46]:

[l = o ]+ o] =

_Tl ‘(Z?_D 0 O] o 0 E
2 eff 2 _eff 2
_ilo _LZO_,-_Q 0 0 0 0 0 0

| 2n, 7
= + 2
! 2E E|l+(,~1)=2=| 0 0
0 0 -— 2F 2_off
T _d
g
E | 0 _ =D 0 0
0 0 = - 2T,
2 1, | ¢ - .
@.1)

where we omit the subscript “4x4” because all matrices that will be discussed
from now on will be of the 4x4 size (the remaining 5x5 block exhibits only
stable solutions in the range of pump rates that are used in practice as we have

shown in Sections 2.3 and 3.7).

At first glance, it is quite straightforward to solve the eigenproblem of the

matrix from Eq. (4.1) and to find an analytic expression for the pump rate p,,

that fulfills the RNGH instability threshold condition (3.1) [‘Q(’“)

max

/2m=c/2Ln,]

for the spectrum of the positive Lyapunov exponent. However, the
characteristic equation for the Lyapunov exponent is of the fourth order.
Therefore we use a perturbation-theory approach. Since the matrix in Eq. (4.1)
is not Hermitian, its eigenvectors are not orthogonal. For that reason we use
the second-order biorthogonal perturbation theory [95], [96] and split the
linear stability matrix into the zero-order approximation M and

perturbation M matrices, as indicated in Eq.(4.1). An example of the
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eigenvalue spectra of the initial matrix M (solid black curves) and its zero-

order approximation M® (red dashed curves) for a QCL pumped at p=1.5
times above the lasing threshold is depicted in Fig. 4.1 [46].

The eigenvalue with the largest real part A,

X

is associated with the upper 2x2

block in M'”, which is independent of Q,,, . In the zero order approximation,

the increment Re(A,,,. ) just barely increases with the pump rate p due to the

max

SHB effect accounted for in the parameter vy given by Eq. (2.14) in Section 2.3:

e 2T, 4t 2 2

2
A© :_L_i_i9+l\/( ! +L+iQJ _ i +4 V-l , (4.2)
2_off

where 7=n,/cl, is the photon lifetime in the cavity. Note that AY =0 at the

lasing threshold (p=1) and zero detuning from the main lasing mode (Q2=0).
The second eigenvalue originating from the upper 2x2 block in M‘” has the

0

largest negative real part, of ~A") —1/ T, ,—1/27 (see Fig. 4.1). In contrast to

this behavior [See Eq. (4.2)], the two eigenvalues originating from the lower
2x2 block in M” are independent of the spectral detuning Q but exhibit

splitting that varies with €, ,.. At the lasing threshold (p=1) the splitting is of
1/T, ,~1/T, and decreases with increasing £,  (Note that
Q. << Tz__zeff,ng ). It can be seen from the example in Fig. 4.1 plotted for

p= 1.5, that the eigenvalues of the matrices M and M‘” are close to each other

as compare to the splitting [46].
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Fig. 4.1. Real part of eigenvalues of matrices M and M© from Eq. (4.1) for QCL with the cavity
length L = 4 mm at pump rate p=1.5 times the lasing threshold. The red dashed curves show
the real part of the eigenvalues of matrix M@ and the black solid curves represent real part of
eigenvalues of matrix M. The parameters used in simulations are listed in the 1¢t column in

Table 1. © 2016 Optical Society of America. Reprinted, with permission, from [46].

The perturbation matrix M has no diagonal elements. Therefore the first-
order correction terms to the eigenvalues of M'” vanish. Hence we apply the
second order of biorthogonal perturbative expansion (see Appendix D for
details) in Eq. (4.1) [46]:

<U_(0> MO V_(O)> 4 <U(0) MO V‘°)><U.‘°) MO V<0>>
A=A+ : - : l

m

i =4 <U,(O) V.(O)> +m:1! (A.(O) —Am(o))<U;0) V,,(,O)><Ul.(°) V(0>>

1 1 1

(4.3)
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which provides a realistic approximation for the spectrum of RNGH

instability gain Re(A, ) in the vicinity of its maxima at Q~£Q, .. (see Fig.

4.2, which we will discuss below). In Eq. (4.3), the diagonal term due to the

first-order correction vanishes while the second-order correction terms are of
the order of QiabiTz_ o+ Qs , Which is much smaller than the initial spectral
splitting indicated in Fig. 4.1. This justifies our decomposition onto the zero-
order approximation M and perturbation M matrices in Eq. (4.1). In (4.3),
the index i varies from 1 to 4, A; denotes the eigenvalues, V,.(O) and U ,.(0) are the

concomitant partners, that is, these are the eigenvectors associated with the

eigenvalues A" and A" of the matrix M” and its adjoint matrix M**

respectively, (see also Appendix D) [46]. The vectors V" and U” are used as

the biorthogonal basis in the expansion (4.3). After some algebra, we obtain
the following approximate expression for the Lyapunov exponent with the

largest real part:

Re(h )ty G . G , G G 4.4
e 2t Q*+1/T},, Q+A(p) Q+1/T7, (92+1/T223;f)

where coefficients C,(p) and A(p) are independent of the offset frequency Q

(they are shown in the Appendix E) [46]. The first two terms in Eq. (4.4)
originate from A" in Eq. (4.2). The last three terms are due to the second

order of perturbative expansion. For all cases considered here,

Qi AK1/T, ,; so as the zero order terms and the two last terms in Eq. (4.4)
vary slowly in the vicinity of the RNGH gain maxima at Q~%Q, ..
Furthermore, since C, >C,, Ti .#Cs ., the spectral locations of the gain maxima
[at dRe(A,,,)/0Q2=0] are mostly defined by the second and third terms in

max

Eq. (4.4), yielding
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Q2 =T, \-C /C, ~ 4 (4.5)

Using the expressions from Appendix E for parameters A and —C,/C;, we

finally obtain that the highest gain for multimode RNGH instability is at the

following offset frequencies [46]:

T,
Qrznax = QRabt\/l = (14_ 2 2 ] _L2 (46)
2 T, 4 QRath T, T,

This expression is valid when Q; ,. < T, 2 s (or p=V, <T/T, ), thatis true in

all cases of practical interest considered here. The frequency Q _  in Eq. (4.6)

max

monotonically increases with the pump rate (e.g. see Fig. 4.2). Using Eq. (3.2),
we find a reciprocal relationship to Eq. (4.6):

g7 2_¢g g

IT, T, T,
p—V(p):—]i ;—‘f-ff [\/1 +2 2t gTz LT A+T/Q%.) —1} (4.7)

In Appendix F we obtain a general solution of Eq. (4.7) with respect to p. It

appears that the instability increment (4.4) is negative and multimode

instability is impossible at very small pump rates, when p<p,; , where

7, , (TT, T? T. T
Do = 1+ ==L +[ 2l & ZJ{ 142222 1] (4.8)
Tz,g TgT,g Tz,g Tg

is the pump excess at which Q. =0 in Eq. (4.7). For the pump rates above

this value, the increment (4.4) is positive at the frequency (4.5) [see Fig. 3.1],
which may lead to multimode instability. Finally to obtain the RNGH

instability threshold pus», we substitute our condition (3.1) for the Q in

max

Eq. (4.7) and we get [46]:
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T Lng

g2 ¢ g

The RNGH instability threshold reduces towards p,; [Eq.(4.8)] with

increasing cavity length L. The meaning of p,; corresponds to the notion of

the RNGH instability threshold in the original RNGH theory. Nevertheless, by
no means Eq. (4.8) can be directly compared with the RNGH instability
threshold for a unidirectional ring laser obtained in [30], [31] (see also
discussion in Section 4.3). However, the shape of the multimode instability
gain curve (4.4) can be assessed against the one in a unidirectional ring laser.
For this purpose we provide an approximate expression for the maximum of

increment (4.4) at the offset frequency (4.6), which we will use later [46]:

Re(A

max )

Q=Q .« 2T 2 2 22_ max "2 eff ng

2 2 2 7P
_ 1 (1 _g QRabiEﬁeﬂ ]-’r 2V0 —1 |:1 . QZ T2 7”276//‘ :| ) (410)

4.2. Validation of the analytic solution for the RNGH instability
threshold

In Fig. 4.2 we compare the instability gain curves obtained from the analytic
expression (4.4) (red curves) and by solving numerically the eigenvalue
problem of the linear stability matrix (4.1) (black curves). The results are

plotted as the round-trip gain 2Re(A)n,L/ c vs the offset frequency Q /27 . In

this example we use a QCL with the cavity length of 4 mm and other
parameters from the first column in Table 1. For the pump rate p from 1 to 2.5

times above the lasing threshold and in the large spectral range, our analytical
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expression (4.4) is in reasonable agreement with the RNGH roundtip gain
obtained by solving numerically for the eigenvalues of the matrix M in

Eq. (4.1) [46].

— exact, p=2.5 — perturb., p=2.5]
— -.exact,p=2 — -perturb., p=2

- - exact, p=1.5 - - perturb., p=1.5]
51 — - exact, p=1.1 — - perturb., p=1.1

=N
1

Normalized round-trip gain,
Re{A}I(cIanL)
o = I'Q w

40 05 00 05 10
Detuning frequency Q /2% (THz)

Fig. 4.2. The spectral behavior of the round-trip gain coefficient for multimode instabilities in
QCL with the cavity length L = 4 mm (The cavity mode separation c¢/2Ln, =11 GHz) at
different pump rates p in the range from 1 to 2.5 times above the lasing threshold. The red
curves show the gain spectra obtained from the analytical expression (4.4) and the black
curves are obtained by solving numerically the eigenproblem of the matrix (4.1). The
parameters used in simulations are listed in the first column in Table 1. © 2016 Optical Society

of America. Reprinted, with permission, from [46].

It is interesting to compare the instability gain curves for long -cavity QCL in
Fig. 4.2 (the cavity mode separation is ~11 GHz) with the ones obtained in Fig.
3.1 for a QCL with the cavity length of 100 pm (the intermodal frequency is

~450 GHz). For concreteness we take the gain curves at p=2.5. Both gain
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curves are peaked at the same offset frequency of Q /27 ~450 GHz. Our

Eq. (4.6) also confirms that € is independent of the photon lifetime in the

cavity.

127 [THZz]

max

Solution from LSA
Analytic formula
= Qpopil 27

Peak gain frequency Q

0,0 v ;
1 2 3

Pump normalized to lasing threshold, p

Fig. 4.3. Peak gain frequency of RNGH instability calculated numerically from our linear
stability matrix (black curve) and from our analytic expression Eq. (4.5) (red curve) is plotted
vs. pump normalized to lasing threshold p. It is shown in comparison with the behavior of
Rabi oscillations Qraui/27 (blue curve). According to Eq.(3.1), the intersection between
horizontal dotted line at ¢/2Ln, and the peak gain frequency defines the value of RNGH
threshold (vertical dotted line) in case of the 100 pum long cavity. © 2016 Optical Society of

America. Reprinted, with permission, from [46].

/27 obtained from

max

Fig. 4.3 provides a comparison between the frequency €2

the analytical expression (4.6) (red curve) and from the numerical solution of

the eigenproblem of the matrix (4.1) (black curve). It follows that our analytical
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expression for € = is in reasonable agreement with the one obtained
numerically. Note that the €, frequency approaches the Rabi oscillation

frequency Q,,. at high p (blue curve) [45], [46].

In order to illustrate the RNGH instability threshold condition (3.1) we show
in Fig. 4.3 a horizontal line at Q/2z=c/2Ln, for the cavity length of
L=100 pm. Its crossing point with € /27 curve defines the RNGH
instability threshold, which is indicated by a vertical line. Our analytic
approach provides a realistic approximation for the RNGH threshold (the
crossing point of the horizontal line with the red curve).

Table 2. Dynamic model parameters for QCL2 considered in this Section. All other parameters
are the same as for the QCL in Table 1, first column.

Parameter Name QCL2 [39]
A Lasing wavelength 8 um
T, Carrier lifetime 0.5 ps
T, Carrier dephasing time 67 fs
T ot Effective carrier dephasing 66 fs
time in the presence of
diffusion
T, Relaxation time of the 0.403 ps

carrier population grating

T, . Relaxation time of the 62 fs
coherence grating

Fig. 4.4 shows variation of the RNGH threshold with the length of QCL cavity.
(We plot the relative excess above the lasing threshold pwz-1 in logarithmic
scale.) We consider two sets of QCL parameters: from Table 1, first column
(QCL1) and Table 2 (QCL2). In both cases, our analytical expression (4.9)
(curves) shows good agreement with the numerical solutions for the

eigenvalues of the linear stability matrix (4.1) (points). Note that the RNGH
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threshold behavior predicted in Fig. 4.4 is in agreement with the results of
numerical simulations based on the TW model [45], [47] (see also Fig. 3.1) and
with the numerous experimental reports indicating low RNGH threshold in

QCLs with the cavity length of 2-4 mm [29], [39], [48].

Our small signal analysis is based on a truncated system of coupled-mode

equations [45], [46], [58] and our analytical expressions are valid in the limited
range of the pump rates, when p—Vv, <<T{/T, . In the case of QCLs, we are

practically limited to the range of p<3.

I I ---QcL1
"o ] \ ---QCL2 ]
< 1 \
o ] \
y B
% .ﬁ\ \\
N N N
N 0,14 > N r
-QE, b, A\\\.\\\ 3
= ATTRW TTET N
z ]
P
(14

0,014 ' —————r

100 1000

Cavity length, L [um]

Fig. 4.4. RNGH instability threshold (represented as a relative pump excess above the lasing
threshold pum2-1) vs. cavity length. We compare pum2 calculated from our Eq. (4.9) (curves) and
calculated by numerical solving of the eigenproblem of the matrix (4.1) (squares and
triangles). The parameters for QCL 1 and QCL 2 are listed in Table 1. © 2016 Optical Society of

America. Reprinted, with permission, from [46].
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Expression (4.8) is approximately equal to pm2 when the cavity free spectral

range (FSR) is much smaller than 7,' (e.g. in mm-length QCLs). For the case

when 7, T, , < 7;2 the following approximation can be used [46]:

T’ ., T, T, . T2
P2 = Pin = 1+M[1+5(1—%ﬂ = 1+M{1+£}. (4.11)
4

The expression (4.11) is very handy for clarification of the role of the SHB
effect. For instance in MIR QCLs, the diffusion length of the electrons in the

plane of active QWs is of VDT ~0.1 um, which is much smaller than the
wavelength. Therefore the induced population grating has a large contrast and
lowers the 2nd threshold. Indeed, if we assume that Dk* <<T,"',7;"" in Eq. (4.11)
and thus neglect the diffusion, we find that the second threshold in QCLs is

just above the lasing threshold p2* —1+372/2T? provided T, /T, <1.

For interband QW (or bulk) LDs operating in the VIS and NIR spectral ranges.,
an estimation of the typical carrier diffusion length yields the value of
VDTi~1 um using the characteristic gain recovery time of Ti~1 ns and
bimolecular diffusion coefficient of D~10 cm?/s. The diffusion length exceeds
the wavelength in the gain medium and hence the contrast of the induced
population grating is low. Assuming in Eq. (4.11) that Dk*>>T,", T, we
obtain p' —9+16T, / T,, i.e. we partially recover the conclusion of Risken,
Nummedal, Graham and Haken on the at least 9-fold pump excess above the
lasing threshold required for the onset of multimode instability. However, in
the LD case, it is even much higher because 7, / T, >1in the second term. As

a result of the shorter emission wavelengths and longer (bimolecular)

diffusion lengths of the carriers, FP cavity QW LDs do not show RNGH
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instability at experimentally achievable pumping currents [58], [74]'. See also

Section 3.6 and figures therein.

The mechanism of the RNGH instability switching from due to a change of the
gain recovery time (see also Section 3.2) is illustrated in Fig. 4.5(a), where the
behavior of the second threshold (4.8) is plotted in the range of typical carrier
lifetimes for MIR QCLs [74], [97]. The diffusion coefficient used in Fig. 4.5(a)
allows the formation of the population and coherence gratings and
corresponds to QCL operating with equal voltage drops on all quantum
cascade periods, within a stable part of I-V curve with positive differential
resistance [74], [75]. Under these conditions, a sudden increase of the carrier

lifetime 7; (as a result of the lasing transition change) will cause a drop of p,

so that the QCL which was initially operating in the usual regime with
emission of a few cavity modes will switch to broadband multimode RNGH

self-pulsations [74].

The second mechanism of the RNGH instability switching due to the change
of the contrast of the induced population grating is illustrated in Fig. 4.5(b)
[74]. Vanishing of the population grating may occur in QCL operating at a bias
higher than the one at a tunneling resonance, which would correspond to the
unstable part of I-V curve with negative differential resistance if the voltage
drops on all periods would be the same. However, instead of this, when a
QCL is driven by a current source, the unstable part of I-V curve leads to a
formation of electric field domains with non-uniform charge accumulation

and depletion across multiple QCL periods [74]-[76].

1 Note that these considerations do not apply to the case of quantum dot (QD) and quantum
dash (QDash) laser diodes where the diffusion relaxation of the gratings along the cavity
waveguide is prevented by the quantum confinement and the characteristic gain recovery
time is on ps scale.
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carrier decoherence time T, of 70 fs (red curve) and 140 fs (black curve), diffusion coefficient
D=180 cm?/s. (b): Normalized second threshold ps. vs SHB grating relaxation time for
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emission wavelength is A=8 pm. Reprinted from [74].
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In [74] authors elucidate that these inhomogeneities in the carrier distribution
reduce the efficiency of the mode coupling through the induced carrier
grating, the situation which is simulated in Fig. 4.5(b) by allowing the grating

relaxation time 7, to decrease well below 7]. The contrast reduction of the

induced population grating leads to the increase of the second threshold to
prohibitively high currents. Reference [74] reports on the experimental studies
supporting both proposed mechanisms of RNGH instability switching in
QCLs and explain it using a simple analytic expressions (4.8) and (4.11) [46].

4.3. Link to the original RNGH theory

We have shown in Section 2.3 that in the limit of 7,7, , — 0, that is when we

exclude both carrier (SHB) and coherence gratings, our 9x9 linear stability
matrix [Eq. (2.25)] reduces to a model for an unidirectional ring laser, like the
one considered in [30], [31]. In this case, the submatrix corresponding to our
4x4 matrix (4.1) is always stable, while the other one originating from the 5x5
block exhibits the RNGH instability for p~10 (for QCL in Table 1) or p~9 (for
LD), in agreement with the original RNGH theory [30], [31], [69]. Since our
estimate for the RNGH threshold (4.9) originates from a different matrix block,
by no means it may show a limiting transition to the original RNGH case of a
unidirectional ring laser and recover the magic value for the RNGH instability
threshold of p=9. However, the behavior of the multimode instability gain
curve (4.4) can be assessed against the one in a ring laser. Below we provide
approximate expressions for the maximum of instability increment (4.10) and

compare it with the one obtained for RNGH instability in a unidirectional ring

laser [69]. In both cases these maxima occur at respective frequencies €2 .

quite close to the Rabi frequency €2, .
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First of all, we note that there is no effective threshold increase (2.14) in a
unidirectional ring laser. Therefore to draw parallels between RNGH

instability in a ring laser and the multimode instability in FP laser discussed
here, we substitute vo=1 in Eq. (4.10). Next, using that Q,, <1/T, ,, we find

that the maximum increment for multimode instability in a FP cavity laser can

be represented in the following form [46]:

3 2 2 1 2 2
Q=Q,,. = gQRabiTéieff _;Qmu];75ﬂ

Re(4,,) (4.12)

where the frequencies €, ,. and €, arerelated by Eq. (4.6).

For the RNGH instability gain curve in a unidirectional ring laser, we use the

expression from [69] (we refer to the Eq. (22.50) in there). Once again, using

that, Q,,. <<1/T, we recast it into a simple form and obtain its peak value of

Re(A(RNGH) zigz ,T22 _%(Q(RNGH))Z T22/ (4'13)

max )‘Qzﬂfn’i‘f("” ) 27: Rabi max

where £, is given by Eq.(3.2) [with vo=1]. However, the maximum

4

(RNGH)
max

increment is reached at a different frequency €2 [69] since there is no

standing wave pattern in the ring cavity (see also Eq. (19) in [39]):

-1
anlz])\(/GH) = QRabié/E’ QRabi = };—v_T (414)
1*2

The two expressions, the Eq. (4.13) for RNGH instability in a unidirectional
ring laser and our Eq. (4.12) for a FP cavity laser are surprisingly similar,

indicating the same RNGH-like behavior in both cases [46].

For conclusion, in Chapter 4 and Appendix D, Appendix E and Appendix F

we have derived an analytical expression for the RNGH instability threshold
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in a quantum cascade laser with FP cavity. This simple analytical expression
(4.9) and its approximation in case of long cavity QCLs (4.11) are versatile
tools that can easily be applied in practical situations requiring analysis of

QCL dynamic behavior and estimation of its RNGH instability threshold.
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5. Regular self-pulsations in external cavity MIR Fabry-Pérot

quantum cascade lasers

In this Chapter we will show that quantum cascade lasers operating in an
external cavity (EC) configuration are capable of regular intensity self-
pulsations (SP) at frequencies down to a practical range of ~100 GHz.
Otherwise, in free-running QCLs, regular SPs due to multimode RNGH
instability can occur only at Rabi flopping frequency on the THz scale (see
Chapter 3). The very high oscillation frequencies in standalone QCLs are
caused by the necessity to use very short cavities of ~100 um lengths in order
to preserve coherence over the round-trip time. Any attempt to increase the
length of a standalone QCL cavity results in destruction of regular SPs and
occurrence of broadband multimode quasi-periodic (chaotic)y RNGH
oscillations, also known as free-running (passive) QCL frequency combs. In
contrast to these, we show that EC QCLs can achieve regular SPs with a
reduced repetition frequency because (i) the delay time in the external cavity
provides a memory effect preserving coherence of QCL pulse train and (ii) EC
reduces the pulse repetition rate. We provide a detailed study on the effect of
the EC length and pumping condition and find that SPs in EC QCLs should be
excited with an initial kick, like the one put into practice for the worldwide

popular Ti:S oscillators with passive Kerr-lens mode-locking [98].
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5.1. Motivation for inclusion of an external cavity

In Section 3.4 we have shown a possibility of regular RNGH self-pulsations in
standalone short-cavity QCLs (~100 pm long) provided that the cavity length
is shorter than the coherence length. Note that the coherence time is of the
order of ~1ps, which is of the same scale as the gain recovery time.
Unfortunately, standalone QCLs with very short cavities would exhibit too
high pulse repetition rates and have relatively high RNGH instability
threshold [50], [98] (See also Section 3.4). Therefore, they are unsuitable for
practical realization of ultrafast pulse production in QCLs. Otherwise, in the
case of a few mm long QCLs with the cavity being much longer than the
coherence length, different domains along the cavity start to produce mutually
incoherent Rabi oscillations. Finally, because the gain medium does not
provide “memory” to sustain regular pulsations, QCL emits intermittent pulse
train consisting of quasi-periodic chaotic self-pulsations which are also of
limited use for time-domain applications [45] (although the frequency combs
can be stabilized and used for spectroscopy). Thus, in both cases of the short
and long QCL cavities, the difficulties for practical use of RNGH self-
pulsations in the time domain originate from the absence of the gain “memory

effect” that can sustain low-frequency periodic regimes.

In this section, RNGH self-pulsations in external cavity (EC) QCL
configuration are considered for the first time with an objective to reduce the
frequency of self-pulsations. Because of otherwise tedious numerical

simulations we limit the case study to a short 100 pm QCL chips.

The effect of optical feedback on QCL’s dynamics is yet to be explored since
there are only few theoretical and experimental studies available in the
literature indicating complex dynamics that could be of great interest in novel

applications [99]-[104]. In particular, the theoretical studies [102], [103] predict
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enhanced CW lasing stability for QCLs subjected to an optical feedback.
Optical spectra measurements in [99] prove the existence of five distinct
feedback regimes in MIR DFB QCL, which are similar to the five regimes
identified in interband LDs [105].

Both MIR DFB QCL and FP QCL submitted to the optical feedback reveal five
main regimes established for the LDs in function of the feedback strength and
delay time [106] and labeled as Regimes I to V with increasing feedback
strength [105]. At a weak optical feedback (Regime I), only the laser linewidth
is affected by the phase of the optical feedback. Regime II is characterized by
longitudinal mode hopping with the changing feedback delay time. In the
Regime III the laser becomes stable and locks to the mode with minimum
single-mode linewidth. Regime IV assumes further increased feedback
strength resulting in dramatic broadening of the laser—spectrum, a
phenomenon known as “coherence collapse.” With further increase in
feedback strength, for which the laser facet usually needs to be AR coated, the

LD enters Regime V: a stationary operation on external cavity mode [107].

It was proven that DFB QCL has an increased stability of CW lasing regime as
compared to their LDs counterparts when they are subjected to an external
optical feedback. Thus MIR DFB QCLs exhibit unstable Regime IV only in a
narrow region of the feedback strengths, which however broadens with
reducing external cavity length [99]. Although it was not possible to
investigate this regime experimentally, the authors in [99] evoke a possibility
of an unstable regime in the limiting case of ultra-short EC. Indeed, recently
published work by the same group provides an experimental evidence of low-
frequency (<« 1 GHz) self-pulsations observed close to the lasing threshold
[100], [108]. With increasing optical feedback strength, QCL output power
bifurcates to periodic regimes at the EC frequency and then to a chaos, thus

exhibiting the class A laser dynamics. There is also a recent theoretical study
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which analyzes the conditions for a Hopf bifurcation destabilizing the CW
output of the QCL in the limit of large delay times of the optical feedback
[101].

However, none of these studies on QCLs with optical feedback or in the EC
configuration has considered the coherence effects leading to multimode
RNGH instabilities observed in standalone FP QCLs. Unlike the previous
studies we account for the possibility of ultrafast coherent phenomena in the
gain medium of QCL [98]. Also, in contrast to the previous studies, our EC
QCL model system is a configuration with very strong optical feedback, in

which one would expect to observe the Regime V.

5.2. Model system

We focus our study on external cavity quantum cascade lasers (EC QCLs)
which are different from QCLs subjected to the optical feedback (see Fig. 5.1).
The behavior of EC QCL is analyzed as a function of the EC length and pump
rate, assuming that QCL gain chip is only 100 um long.

In our model system, the front facet of the QCL chip facing the external cavity
reflector is not reflecting at all, thus having an ideal anti-reflection (AR)
coating. For the sake of simplicity, the back facet is assumed to be left
uncoated (R= 27%). The cavity is closed by the output coupling mirror of the
same reflectivity (R= 27%) to allow direct comparison between EC QCL and
FP cavity QCL with natural reflectivity of both facets (the lasing threshold
currents are the same in the two cases). The cold cavity modes are entirely
defined by the two end mirrors. Suppression of reflections at the internal facet
is crucial for our concept because we wish to utilize the external cavity as a

delay line to provide a “memory” effect to the system [98].
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Our model system is very different from a QCL which has non-vanishing
reflectivity on the front facet and is subjected to the optical feedback, such as
those considered in [99]-[103]. In the latter case, two distinct regions, the QCL
chip and the free-space propagation region in EC, behave as two coupled
cavities. This unwanted interaction would otherwise lead to strongly but
slowly fluctuating intensities and mode hopping [109]. We exclude the
possibility of such relatively slow dynamic regime, which is different from

RNGH self-pulsations, by assuming a perfectly AR coated chip facet.

R, R=0 R,

— §
>|
-

EC

— -
4

A

>l
> |

LGain LEC

Fig. 5.1. Sketch of the EC configuration used in our modeling. Note that the back chip facet is

AR coated and that we account for ultrafast coherent phenomena. From [98].

Parameters of FP> QCLs used in numerical simulations are listed in column 1 of
Table 1 in Section 2.1. We use again a semiclassical travelling wave (TW) rate
equation model described in Refs. [45], [47] (see Sections 2.2 and 2.3) and
adapt it for the case of external cavity configuration. Two different sections of
the cavity are considered: one section provides description for the pulse
propagation and amplification in the gain chip, the other describes pulse

propagation in external cavity without interaction with the active medium

[98], [110].
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5.3. Numerical results for 100 um chip

5.3.1. Standalone QCL

In this subsection we consider again a standalone FP QCL chip with a very
short cavity (Lar=0.1 mm) so as the cavity round-trip time Tww=2.2 ps is
comparable to the gain recovery time (see Section 3.4). At a pump rate above
the instability threshold, e.g. at p=3, numerical simulations utilizing TW model
reveal excitation of the self-pulsation within first 8 ps (~4 cavity round-trips)
after the beginning of simulations with zero initial field condition. After 30 ps
(~14 cavity round-trips), we observe a transit to a steady regime of regular
sine-wave self-pulsations with FWHM pulsewidth of 0.6 ps [45]. The period of
sine-wave is close to the cavity round-trip time of 2.2 ps, while the optical field
and polarization of the gain medium change the sign at each passage in the
cavity (a half of the sine-wave period). Consequently, the intensity pulses

follow at 0.9 THz repetition rate.

First, we analyze the behavior of such standalone QCL with increasing pump
current p=I/I;. After each small change of p we reset the field amplitude to
zero initial condition and let the QCL system to develop self-pulsations. Next,
we consider the same behavior but with adiabatically decreasing pump current
p in small steps of 6p=0.05, such that QCL can reach a steady regime. For each
p value, we perform numerical simulations over 50 cavity round-trips and use
only the last 25 periods to analyze QCL dynamics after all transients. Figure
5.2(a) and Fig. 5.2(b) show the corresponding bifurcation diagrams of the
extreme values (maxima and minima) in the output power waveform Pou:.
(More details about plotting such bifurcation diagrams can be found in [111]).
The red (blue) circles indicate global and local maxima (minima). The largest
values indicate peak power variation while zero values in the output power

waveform are due to the change of the field sign [49], [98].
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Fig. 5.2. Results of numerical simulations with TW model for monolithic QCL of the length
100 pm and normalized pump current p=I/I;, changing in steps of op=0.05. The total number of
cavity round-trips per step is 50, out of which the initial 25 periods with transients are
removed. (a) Bifurcation diagram of extreme values in the output power waveform (red circles
for Pmax blue for Pmin) when increasing p, showing only segment between p=1.5 and p=5.5.
Insets show Pout waveform for 4 characteristic p values. (b) Bifurcation diagram for

decreasing case; compare with (a) to see bistability between p=1.55 and p=2.4.

In the first case shown in Fig. 5.2(a), as expected for p increasing above the
second threshold (pm2=2.4), QCL shows self-starting oscillatory behavior,
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while below it, QCL exhibits only the onset of CW emission (the insets in
Fig. 5.2(a) show the output waveforms obtained for different pump rates).
Surprisingly, in the second case depicted in Fig. 5.2(b), for the pump rate
adiabatically decreasing below the instability threshold (pm:=2.4), the self-
sustained oscillations continue even below pi2. However, if we “restart” the
simulations at p<pm» and zero initial field in the cavity, the output waveform
reveals CW lasing regime as opposed to the self-starting self-pulsations. Thus,
for decreasing p we notice a hysteresis, indicating bistable operation (SP/CW)
in the region between p=1.55 and 2.4 [compare Fig. 5.2(a) and Fig. 5.2(b)]. For p
below 1.55, only CW regime is observed in both cases. This indicates that SP in
short-cavity QCL can be excited with an initial “kick,” much like in famous
Kerr-lens mode-locked Ti:S lasers. The hysteresis can be attributed to the
minimum initial pulse area of the “kick” [72], [112] required for the pulse

energy growth on a cavity round-trip [45], [46].

With increasing p, we observe period doubling (at p=4) associated with
distortion of harmonic SPs. To illustrate this change in the output waveform,
we resolve QCL dynamics on the fast (within one cavity round-trip) and slow
time scales (envelope change with p on multiple cavity round-trips). In Fig.
5.3(a) we show such contour plot representing the evolution of the output
power waveform for p decreasing from very high initial pump rates. For p
between 10 and 7.8, the period of SP in the output power waveform is equal to
the half of the cavity round-trip time. Then between p=7.8 and 4, the period
doubling occurs (the period of SP is equal to the round-trip time). Below p=4,
the period of SP is reduced back and once again equal to the half of the cavity
round-trip. In Fig. 5.3(b) we calculate the normalized recurrence period
density entropy (RPDE) [113], by applying a so-called time-delay embedding
[114] (see Appendix G). The entropy value of 0 corresponds to a perfectly

periodic signal, while the value of 1 indicates a chaos. In this way normalized
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entropy provides a clue about the character of the self-pulsations, whether

they are periodic or quasi-periodic (chaotic).
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Fig. 5.3 (a) Contour plot of Pout distribution when decreasing p, during time equal to 2 cavity
round-trips (short time scale, y-axis) for different p (long time scale, x-axis). (b) Behavior of
Hiorm-normalized Recurrence Period Density Entropy (RPDE) [113] with decreasing p. The
following time-embedding parameters are used: embedding dimension m=4, embedding
delay 1=10, embedding ball radius r=0.003. For more details about meaning of these

parameters and how to choose them please see [113], [114].
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For a standalone short cavity QCL chip in Fig. 5.3(b), the RPDE entropy
oscillates nearby 0 attesting for a perfectly periodic waveforms even at high
pump rates, when the output waveform reveals a strong anharmonicity. The
spike on the RPDE curve at the lowest p side of the SP/CW hysteresis loop can
be attributed to the loss of stability of the SP regime and consequently to a
higher sensitivity of the waveform to polarization noise, which is continuously

introduced in the model system [45], [98].

In the considered example of a standalone short-cavity QCL, the “memory”
effect between the subsequent cavity round-trips persists in the active region,
yielding a regular pulse train. However, the pulse repetition frequency is too
high for any practical application (see Section 5.1). In the following sections we
analyze a possibility of reduction of the self-pulsation frequency by using an

external cavity.

5.3.2. QCL in ~mm long external cavity

We now consider QCL gain chip of the same length L=0.1 mm, but in the

0.9 mm long external cavity. The overall cavity round-trip time Tcay is of 8.2 ps.

In general, an increase of the second threshold is observed in the EC
configuration. We attribute this to a reduced effect of SHB and coherence
gratings because of the fractional cavity filling with the gain medium. Our
numerical simulations attest that, in contrast to the standalone chip considered
previously, excitation of SP in the EC configuration requires a stronger initial
“kick” to switch from CW to SP behavior. In the case of 0.9 mm long external
cavity QCL, the self-starting self-pulsations with zero initial field condition in
the numerical simulations occur with certainty for normalized pump rate
p=4.3. This conclusion is drawn on the basis of 80 repeated realizations, along
the lines of approach discussed in Section 3.1 and Refs. [45], [46]. Fig. 5.4

shows an example of the field amplitude, optical and RF power spectra as well
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as the 2nd order IAC at p=4.3. The dynamic behavior of EC QCL in Fig. 5.4(a) is
very much similar to standalone monolithic QCL chip discussed in previous
sub-section, including the sign change of the optical field at each half period of
SP. Although the 2nd threshold is increased, SP do not change their form.
However, the frequency is reduced from 454 GHz down to 110 GHz (the
repetition rate of intensity pulses changes from 909 to 220 GHz) [98]. The QCL
now operates on overtones of the external cavity. The round-trip time of the
cold cavity is Tew=8.2 ps. A slightly longer pulse train period of 8.8 ps in Fig.
5.4 is caused by the absorption of the leading edge and re-emission of the
trailing pulse edge, the well-known effect accompanying propagation of an

optical pulse in a gain medium [72], [112].

Like in a standalone FP-cavity QCL, the EC QCL does not operate in the ML
regime. Its IAC trace in Fig. 5.4(c) has the peak-to-background ratio of 8:1.5 (as
opposed to 8:1 for a perfect ML).
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Fig. 5.4. Results of numerical simulations with TW model for QCL with the chip length of 100
pm and external reflector placed at 900 pm distance from the AR coated back chip facet.
Normalized pump rate is p=4.3. (a) Field amplitude waveform (b) Optical power spectra and

(c) 2nd order interferometric autocorrelation function (IAC). QCL parameters are from Table 1.
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We attribute reduced IAC contrast to the pulse width being just a half of the
SP period. For an incoherent multimode regime with random relative phases
of the modes (CW noise regime), the peak-to-background ratio would be of 8:3
[12], [77], like the one observed [29], [39], [74] and numerically modeled [45] in
mm-long FP-cavity QCLs (see also Appendix C).

The main lasing mode [at zero frequency in Fig. 5.4(b)] is highly inhibited in
the optical spectrum. It is by more than 100 dB lower than the two dominant
adjacent modes of the external cavity at +/-110 GHz offset frequencies
(because of the mirror symmetry of the spectrum, the figure shows only the
positive frequency part). Unlike the spectrum in Fig. 5.4(b), a conventional ML
would reveal excitation of many cavity modes with a Gaussian (or hyperbolic
secant) spectral envelope and the main central mode being of the highest

amplitude.

Like in the case of standalone QCL, we observe a SP/CW hysteresis loop
between the domains of self-starting SP and CW operation in function of the
pump current p. For the sake of brevity we exemplify below only the case of
decreasing p in small steps of 6p=0.05 starting from p=10. Fig. 5.5(a) shows the
bifurcation diagram of extrema of the output power. Comparing the
waveform evolution in the EC QCL to its counterpart in Fig. 5.2 for the
standalone QCL chip, the EC QCL shows not only more latent oscillations
defined by the time scale of the external cavity round-trip but also the period
doubling exists in the region at the higher pump rates extending down to
p=4.7. However, self-pulsations are more difficult to excite and require higher
pump rates. Therefore in stand-alone FP cavity QCL the lowest p required for
the “kick” excitation of SP is 1.5 while in EC QCL it is at p~2.5 [98].

The contour plot in Fig. 5.5(b) is the bifurcation diagram of the output
waveform resolved on the fast and slow time scales. It shows evolution of the

fast oscillations in the output power waveform within two subsequent round-
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trips in external cavity and in function of the adiabatically decreasing pump
rate p. The waveform remains always periodic in the considered pump range.
At normalized pump p>4.7 the period of SP is roughly equal to the overall
cavity round-trip time T, while at 2.5<p<4.7, the period of the output power

oscillations is close to Teaw/2.

The evolution of the normalized recurrence period density entropy with the
pump rate is displayed in Fig. 5.5(c). The low value of RPDE confirms regular
periodic oscillations in the studied range of p above p~2.5 with a few regions
of perfect periodicity. As in standalone QCL in Fig. 5.3(b), RPDE shows a
spiking behavior at the SP switching-off threshold, which is caused by the loss
of stability of the SP regime, as discussed in relation to Fig. 5.3(b).

Essentially, we reach a regular SP despite the period of such self-pulsations
being much longer than the gain recovery time 7;. This evidences that the EC

provides a “memory effect” and sustain periodic pulsations on the time

intervals larger than the gain medium can support [98].
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Fig. 5.5. Free tuning of the same EC QCL chip as in Fig. 5.4. (a) Extrema of output power
waveform (red circles for Prax, blue for Punin) while decreasing normalized pump p with 0.05
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25 periods per step. (b) Contour plot for the same case as in (a). (c) Normalized RPDE with the
same embedding parameters as in Fig. 5.3(b) (m=4, =10, r=0.003).
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5.3.3. QCL in ~cm long EC

Being encouraged with the ~100 GHz field flopping frequency obtained in
mm-long EC QCL in the previous subsection, we examine if the EC length can
be pushed further, e.g. to the cm length scale. However, further increase of the
external reflector distance to 9.9 mm from the AR coated chip facet (total
round-trip Tew of 68.3 ps) results in existence of CW output in the whole range
of the pumping rates representing any practical interest. Thus only this case of
our numerical simulations is in agreement with the previous theoretical
studies [102], [103] predicting enhanced stability of QCLs with optical
feedback. Fig. 5.6 shows field amplitude waveform, optical spectra and 2nd
order IAC function respectively, when the pump rate is set to very high level
of p=27 while the initial field in the cavity is of zero amplitude [98]. Under
these conditions we do observe self-starting SP in the output power
waveform. However, these SP are not any more of the RNGH type. The
output power waveform has a strong DC component like in the case of a long
unidirectional ring laser discussed in [71]. The absence of RNGH self-
pulsations can be attributed to a too low cavity filling with the gain medium
and respectively to a negligibly small effect from the induced SHB and
polarization gratings. Although self-pulsations are periodic, the frequency of
SPs is at the 5% harmonic of the external cavity frequency. Such period
fractioning is in contrast with the period multiplication behavior of the RNGH
SP in FP-cavity QCL and mm-long EC QCL from previous sections [98]. The
period of self-pulsations 13.5 ps does not match the propagation time neither

in the gain chip nor in the EC.
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distance from the AR coated front chip facet, pumped at p=27. Initial conditions assume zero
field amplitude. (a) Field amplitude waveform showing (b) Optical power spectra (c) IAC

trace.
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In Fig. 5.7 we plot the bifurcation diagrams of the extreme values of output
power ((a) and (b)), normalized RPDEs ((c) and (d)) and waveform evolution
contour plots ((e) and (f)) obtained for increasing and decreasing pump rate.
With adiabatically increasing p, the self-starting SP occur at pump rates above
p=26.5 [Fig. 5.7(a)], while adiabatic decrease of p shows switching from SP to
CW at a lower pump rate of p~23.5 [Fig. 5.7(b)]. Like in Fig. 5.2 we thus
observe bistable SP/CW behavior. However, the threshold of self-pulsations is
prohibitively high for attempting any practical realization. We may thus
conclude that SP are suppressed in ~1 cm long EC. The RPDE entropy well
below 0.5 in both cases [Fig. 5.7(c) and Fig. 5.7(d)] indicates that the output
power waveform has a regular character as opposed to a quasi-periodic
(chaotic) signal. This is true even at very high pump rates p>28, when the
waveform exhibits a multitude of the local maxima and minima as seen from
Fig. 5.7(a) and (b). Fig. 5.7(e) shows that in the range of p between 26.5 and
27.7 self-pulsing occurs at a frequency close to Tcav/5. However, above p~27.7
the period changes to a value close to one cavity round-trip time Tcav. Likewise
for decreasing pump rate, starting with initial period of ~Tcav, the period of SP

is reduced to ~Tcav/5 at some point around p~27 Fig. 5.7(f).

In the literature, there are also predictions [103] and experimental
confirmations [100] of the possibility of producing regular self-pulsations at
the external cavity frequency. However, in [100], further increase of feedback
strength results in erratic pulsing output which is a result of both fast
oscillations at EC frequency and the slower variations corresponding to low
frequency fluctuations. Note that in our model we are in a regime of very high
optical feedback, much higher than those reported in [100] and [103]. This is in
agreement with the results in [103] where for low values of linewidth
enhancement factor (LEF) (case of MIR QCLs as opposed to LDs) it is
necessary to use higher critical feedback level to reach unstable regime. In

addition, it was shown in [103] that longer EC results in lower critical value of
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LEF which in return requires higher critical feedback for the start of unstable

regime.
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Fig. 5.7. Results of free tuning for the EC QCL chip with the cavity length of 100 pm and
external reflector placed at 9.9 mm distance from the AR coated front chip facet. (a) Adiabatic
increase of p with 0.05 step, extremes of output power waveform (red circles for Pnmayx, blue for
Puin ) showing switching between regimes of CW and SP (at p~26.5). (b) Adiabatic decrease of
p with 0.05 step, extremes of output power waveform showing switching between regimes of
SP and CW (at p~23.5). (c) Normalized RPDE for the case of increasing p with the following
embedding parameters: m=4, 1=10, r=0.003. (d) Normalized RPDE for the case of decreasing p
and the same embedding parameters as in (c). Total number of periods per constant step is 10
and we cut the initial transient of the first 5 periods per step. (€) Waveform evolution contour

plot for increasing p and (f) the same diagram for decreasing p.

5.4. Numerical results for long QCL chip in EC configuration

In this section we present numerically calculated field waveforms, optical
spectra, RF power spectra and second order interferometric autocorrelation of
the QCL gain chips of 1.5 mm length placed in EC resonators of different
lengths and compare these with the results obtained for the standalone QCL

chips.

In Fig. 5.8(a) we show field amplitude waveforms in case of standalone QCL

chip with the cavity round-trip time of Tcav= 33 ps with front and back facet
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reflectivities of 27%. Fig. 5.8(b)-(d) show field waveforms for the same chip
with the AR coated front facet and with the additional external reflector
positioned at 6 mm, 13.5 mm or 28.5 mm from the front facet. In all four
configurations pump rate normalized to lasing threshold is of p=2, but have in
mind that this is different current density in each case. The optical field
waveforms in Fig. 5.8(a)-(c) develops into a quasi-periodic square waves. The
envelope of wave packet just slightly changes at each round-trip, yielding the
quasi-periodic chaotic behavior [45]. Fig. 5.8(d) shows a train of much more

regular pulses.
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Fig. 5.8. Field amplitude waveforms for 1.5 mm QCL chip in case (a) monolithic QCL, (b) 6
mm EC (c) 13.5 mm EC (d) 28.5 mm EC. Total cavity round-trip times (gain section and the
EC) in cases shown in (a)-(d) are 33 ps, 73 ps, 123.1 ps and 223.2 ps respectfully. Pump

normalized to lasing threshold p=2. All other parameters used are listed in Table 1.
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Corresponding optical spectra for the four considered configurations from Fig.
5.8 are displayed in Fig. 5.9. Optical spectra for the monolithic chip in Fig.
59(a) shows suppression of the main lasing mode in agreement with
multimode behavior observed experimentally in quantum cascade lasers
without optical feedback [29], [39]. However, simulations for the 3 values of
external feedback Fig. 5.9(b)-(d) show that main lasing component is not
suppressed and with the increase of the length of EC, higher order modes
disappear (Fig. 5.9(d)). This is also observed in the field waveforms by
comparing Fig. 5.8(d) with Fig. 5.8(a). Separation of modes and repetition rate
in EC configuration is lowered as compared to monolithic cavity. Thus the

propagation delay in external cavity serves to filter the spectrum of excited

modes.
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Fig. 5.9. Optical power spectra for 1.5 mm QCL chip in case (a) monolithic QCL, (b) 6 mm EC
(c) 13.5 mm EC (d) 28.5 mm EC. All parameters are the same as in Fig. 5.8.
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These observations are in agreement with the experimental results reported in
the literature [99], [102] showing that external optical feedback indeed results
in increased stability of QCLs. Moreover, the regime shown in Fig. 5.9(d)
corresponds to the stable “regime V” described in [99], [108]. With the increase
of the EC laser stays in the same stable regime, while the decrease of EC length
towards the monolithic case results in the behavior similar to the so-called
coherence-collapse regime or “fourth regime” in [99]. RF spectra displayed in
Fig. 5.10(a)-(d) also testifies that case (d) has the most regular pattern of

spectra with sideband modulations.
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Fig. 5.10. RF power spectra corresponding to the same data as in Fig. 5.8: 1.5 mm QCL chip in
case of (a) monolithic QCL, (b) 6 mm EC (c) 13.5 mm EC (d) 28.5 mm EC.

In Fig. 5.11 we calculate the interferometric autocorrelation traces for the four

cases discussed above and observe that the coherence time seen from the
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traces increases (we use HWHM of the interferometric autocorrelation peak at

1=0) with the increase of the EC length.
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Fig. 5.11. Second-order interferometric autocorrelation functions for the 4 configurations
displayed in Fig. 5.8-Fig. 5.10. (a) monolithic QCL, (b) 6 mm EC (c) 13.5 mm EC (d) 28.5 mm
EC.

One can see that the peak to background ratio of interferometric AC trace in
Fig. 5.11(a) in case of monolithic QCL chip is worse than 8:3 and our quasi-
periodic chaotic pulse train from Fig. 5.8(a) perfectly explains the
experimentally measured interferometric AC traces in [39], including
nontrivial pulse structure in between cavity round-trips. IAC traces in Fig.
5.11(a), (b) and (c) with secondary peaks at fractional cavity round-trip times

attest that multiple pulses travel through the cavity during one round-trip
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time as seen in Fig. 5.8(a), (b) and (c). IAC trace in Fig. 5.11(d) attest that only
one back and forth phase alternation occurs at one round-trip as indicated in
square-shape pulses Fig. 5.8(d). Apart from this switching point, the
amplitude remains constant. (Note that a waveform of constant amplitude
along the whole cavity round-trip will produce just a uniform amplitude

pattern in IAC interference fringes).

Our simulations thus indicate that with EC feedback it is possible to obtain
regular pulse train with standard long cavity FP QCLs as opposed to the case
of monolithic chip which shows irregular multimode behavior observed both
from the field waveform and the optical power spectra. However, these pulses

have square shape and are not yet ideal for practical needs.

5.4.1. Pulse correction with a two-beam interference

We notice that the square-shape waveform can be corrected into a train of
narrow pulses using a two-beam interference, taking the field amplitude

waveform and subtracting its delayed copy.
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Fig. 5.12. (a) Corrected field waveform using two-beam interference. Original field waveform
is shown in Fig. 5.8(d), its copy is delayed by 0.5 ps and then subtracted. (b) Interferometric

autocorrelation of the corrected waveform shown in (a). Inset shows zoom-in at the pulses.
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Firstly, we use the 1.5 mm chip with 28.5 mm EC and waveform shown in Fig.
5.8(d). When we apply the pulse correction using delay time of 0.5 ps we get

the new field waveform and IAC trace shown in Fig. 5.12.

On the other hand, if on the same field amplitude from Fig. 5.8(d) we apply
the shift equal to a half of the total cavity round-trip time (111.5 ps), resulting
pulse corrected field amplitude and IAC become as shown in Fig. 5.13.
Autocorrelation peaks in Fig. 5.13(b) have very high peak-to background ratio
of 8:1 and are separated by half of cavity round-trip that corresponds to the
separation between the pulses in waveform trace in Fig. 5.13(a). The FWHM of
the pulses in autocorrelation is 25 ps. However, the waveform in Fig. 5.13(a)

shows that the pulses are not ideal since they are square shaped.
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Fig. 5.13. (a) Field amplitude that corresponds to the delay of 111.5 ps (half of the round-trip)

between the original and delayed copy. (b) Interferometric autocorrelation of waveform in (a).
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6. Conclusion

In conclusion, in this dissertation (as well as in [45]) we have clarified
conditions for multimode RNGH instability in a Fabry-Pérot cavity laser and
proposed a new explanation for low second threshold in quantum cascade
lasers, which is based on a combined effect of the carrier coherence and carrier
population gratings. We have studied the impact of the cavity length on the
waveform of RNGH self-pulsations and shown that short-cavity QCLs can
produce a regular train of ultrashort pulses. There is even a possibility to
obtain supperradiant-like emission. Our findings open a practical way of
achieving ultra-short pulse production regimes in the MIR spectral range.
Applying the same analysis to conventional laser diodes we find that carrier
diffusion in the active bulk semiconductor material or quantum wells prevents
the LDs from RNGH self-pulsations. Next, this dissertation (and [46]) provides
a simple analytical expression for the RNGH instability threshold in a
quantum cascade laser with FP cavity which can serve as a versatile tool that
can easily be applied in practical situations requiring analysis of QCL dynamic

behavior and estimation of its RNGH instability threshold.

The dissertation provides an explanation of the difficulties for practical use of
RNGH self-pulsations in millimeter cavity length QCLs. Namely, they
originate from the quasiperiodic chaotic behavior of the pulse train when the
coherence length is smaller than the length of the sample. The use of external

cavity QCLs is proposed in order to obtain regular RNGH self-pulsations. The
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propagation time in the external cavity (the pulse delay time) serves to
provide a memory effect and thus improves coherence time of the QCL pulse
train. In addition, the EC reduces the pulse repetition rate of self-pulsations.
Our model system assumes an anti-reflection coated front facet of the QCL
chip facing the EC reflector which is a very different approach compared to
model systems in the literature, that is QCL subjected to the optical feedback
with non-vanishing reflectivity on the front facet. Moreover, none of these
previous studies on QCLs with optical feedback and in the EC considered
coherence effects leading to RNGH self-pulsating instabilities observed in
standalone QCLs. The main results indicate that for short (100 pm) chip there
is a possibility of: (i) bistable operation in free-tuning (adiabatic
increasing/decreasing of pump current), (ii) lowering of the pulse repetition
rate for chip with 900 pm long EC and (iii) suppression of SP in 9 mm long EC.
Additionally, we have applied recurrence period density entropy, a well-
known method used in the field of time series analysis, to determine
periodicity of the output power waveforms. Finally, the possibility of
production of regular pulses using the long chip in EC with additional pulse

correction is investigated as well.

The future work will consist in taking the inhomogeneous broadening of the
gain curve and its shape into account, the feature that directly affects the

observation of the QCL’s RNGH instability in experiments.
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Appendix A

Maxwell-Bloch equations

When the precise state of the system is unknown, the density matrix
formalism can be used to describe the system in a statistical sense. The
diagonal elements p.; give the probability that the system is in energy
eigenstate n. The off-diagonal elements p.» give the “coherence” between
levels n and m, in the sense that p,» will be nonzero only if the system is in a
coherent superposition of energy eigenstate n and m [62]. The off-diagonal
elements of the density matrix are (in certain circumstances) proportional to

the induced electric dipole moment of the atom.

Time evolution of density matrix elements (without collision terms) is given

by the following equation [62]:

00 =) (A1)

where p and H are the density matrix and Hamiltonian operators

respectively. Collisions between atoms are included in the formalism by

adding phenomenological damping terms to the Eq. (A.1):

—l o~ A .
atpnm = ;|:H’ p:|nm - %ml (pnm _pr(m?)) +Da§pnm (A'z)
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where the second term on the right-hand side is a phenomenological damping

term, which indicates that pu relaxes to its equilibrium value p!*’

nm

atrate y, .

Since y,, is a decay rate, we assume that y,, =y, . In addition, we make the
physical assumption that p'* =0 for n#m which means that in thermal

equilibrium the excited states of the system may contain population (0 can

be nonzero) but that thermal excitation, which is expected to be an incoherent
process, cannot produce any coherent superpositions of atomic states. In
addition, the third term on the right-hand side is due to diffusion and it is also

added phenomenologically according to [63].

We will now apply the density matrix formalism to the simple case in which
only the two atomic states “a” (lower atomic level) and “b” (upper level)
interact appreciably with the incident optical field. The density matrix

describing the atom is the two-by-two matrix:

;:|:pua pub:| , (A.3)
Pra P

where p, =p, . The matrix representation of the dipole moment operator

reads:

~ |0 uy | |0 u
ﬂ{ﬂha 0}{!! 0} A9

where u, = u; :—e<i |2| j>, —e is the electron charge and z is the position

operator for the electron. Diagonal elements of the dipole moment operator
are equal to zero because we assume that “a” and “b” have definite parity, in

which case diagonal elements vanish as a consequence of symmetry.

The expectation value of the dipole moment is according given by [62]:
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T\ PN s | O .
<u>=tr(pﬂ)=tr[{z “ Z ‘ Mﬂ ﬂ]=ﬂ(pba+pba), (A.5)

where “tr” denotes the trace operator. From (A.5) we see that the expectation
value of the dipole moment depends upon the off-diagonal elements of the

density matrix. The polarization of a medium is defined as:

1~’=N<Zt>=Nﬂ(pr +Py) - (A.6)

Hamiltonian for this system is given by H=H,+V(t) where ﬁo is the atomic
Hamiltonian and I}(t) represents the energy of interaction of the atom with
the electromagnetic field. The energies of the states “a” and “b” are E, =hw,
and E, =ha, respectively while the transition frequency is denoted by
w,, =(E,—E,)/h. We assume that the interaction energy can be adequately

described in the electric dipole approximation, in which case the interaction

Hamiltonian has the form [62]:
V(t)=—pE() (A7)

The only nonvanishing elements of V(t) are V,, and V, which are given

explicitly by:

Ve =V ==HE(0) (A8)

a

o _r

Upper level “b” decays to the lower level “a” at a rate I',, and therefore the
lifetime of the upper level 7, =1/T,,. Typically, the decay of the upper level

would be due to spontaneous emission. We also assume that the atomic dipole

moment is dephased in the characteristic time 7,, leading to a transition

linewidth (for weak applied fields) of characteristic width y,, =1/7,.
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Using Eq. (A.2) in which indices m and n can take values a or b only, after

some algebra we get for an open two-level system:

. L E(t 1
0,0y, = —iW,, Py, — l,llh( ) (Poy = Paa) _pra + Daipba
2
- (A.9)
iuE(t 1
=1 ba ﬂh()A_szba-i_Daipba
iUE(t —p, @
0,9y, =4~ ,Uh( ) (Lo _pba)_%"'Daipbb (A.10)
1
iE(t — P
9P =4, —ﬂT()(pab —pba)—%waﬁpaa (A11)
1

Where 4,, A, are pumping rates and we have used @w,, =w and A=p,, —p

Since p,, = p,,, from (A.9) we get:

WEO\ Ly,

2

atpab = atpl:a = ia)pab +

Thus we have derived Eq. (2.1) from the manuscript. From (A.10) and (A.11)

by subtraction we get:

UE A-A
atA:@(pab_ Puu) == DA (A13)
1

Where A, is A at steady state when E=0 (steady state inversion which

characterizes the pumping rate). Equation (A.13) coincides with Eq. (2.2) from
the main text. Equations (A.12) and (A.13) define an open two-level system
meaning that the total number of electrons in the system is not conserved (it

can flow in and out and vary depending on the bias) [62].

From (A.5), using (A.9) and (A.12) we get:
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0,(12) =1 0,(Puy + Pu) = 10U, - P) -

%7%1)32@ (A.14)

The electric field E is written by a time-dependent Maxwell equation as:

V2 E@ ) -2 (eE(z, t)) = 1,0*P(z,1) (A.15)
c

where P is the polarization vector of matter, £ is the electric permittivity

tensor, c is the speed of light in vacuum, and g, is the magnetic permeability
in vacuum. If we assume a uniform refractive index n, of the laser medium

and linearly polarized spatial modes for the x and y directions with the
propagation for the z axis, the field and the polarization of matter reduce to
scalar quantities propagating only to the z direction and (A.15) can be reduced

to the following scalar equation:

= n2 = N *

afE—c—iafEﬂgéﬁaf(paﬁpab) (A.16)
0

where we have used (A.6) and accounted for optical mode confinement via

factor I'. Note that on the right hand side we can include (n,/;/c)d,E where

I/ is a linear loss coefficient, in order to include losses and then we have

recovered Eq. (2.3).

In the literature there are different models essentially based on MB equations
in two or three-level approximation [26], [39], [45], [81], [115]-[117] where in
some cases additional effects such as cubic nonlinearity, saturable absorption
and cavity dispersion have been added phenomenologically to provide a

proper interpretation of the experiments.
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Appendix B

Adiabatic approximation test

In this appendix we consider adiabatic-following approximation that applies
to bidirectional ring lasers operating on two counter-propagating waves or
single-mode FP cavity lasers. In these lasers, the standing wave pattern of the
field in the cavity leads to the spatial hole burning in the distribution of
population inversion. At the same time, our considerations presented below
do not apply for a single-frequency unidirectional ring laser from Refs. [30], [31]
because there is no standing wave pattern in the cavity of such laser and

associated with it spatial hole burning effect.

The adiabatic-following approximation for the medium polarization is valid
when the polarization dynamics is slow and follows instantaneously the
optical field in the cavity [32]. For solid state lasers, including semiconductor
LDs and QCLs, the dephasing time T> is much smaller than the relaxation T.
Therefore under adiabatic-following approximation, the behavior of these
systems fall into Class-B laser dynamics. These dynamical systems are very
well studied, including the cases with mode coupling due to back-scattering

and induced population grating. One example can be found in a review [65].

In order to obtain the adiabatic-following approximation for our coupled-

mode system (2.7)-(2.11), we set the time derivatives in Egs. (2.8) and (2.9) to
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zero, yielding the following instantaneous amplitudes of polarization grating

harmonics:

i _
= (B + EAT)T, (B.1)

N =E(EA)T

+ = 2% 2 g (Bz)

where for the purpose of this test we have excluded the diffusion terms,

assuming that 7, , =T, ,=T,, and T, =T,. Substituting these in Egs. (2.7), (2.9)

and (2.10), we find that
n NT, , u'Tw ]
Z0E =70 E +—=" " (E,A,+E.AY)-=IE, B.3
c”+z’ 2chn80(’0 +2)20’ (B:3)
+ 2ikz - 2ikz AP“’”P
at(AO+A2e +A2e )ZT
‘ (B.4)

AO +A;eZikz +A5672ikz
L

I:l +a ((EEE, +EE)+2 Re(EjEJre—Zikz))]

where we have introduced the saturation parameter a=TT,u’/h*. This
system of equations is in perfect agreement with the well-known Class-B laser
model (e.g. see Egs. (1.10) and (1.11) in Ref. [65]). In contrast to our coupled-
mode expansion, the adiabatic approximation that follows from the equations
(8)-(10) of Ref. [39] disagrees with the well-established coupled-mode model

for a Class-B laser.
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Appendix C

Interferometric autocorrelation

In this appendix we will describe the meaning of interferometric
autocorrelation following along the lines of Ref. [118]. For characterization of
ultrashort laser pulses that are shorter than 20 ps, usually some type of
autocorrelation or crosscorrelation in the optical domain using nonlinear
optical effects has to be performed, which means that the pulse itself has to be
used to measure its width, since there are no other controllable events

available on such short time scales [118].

Pulse duration measurements using second-harmonic intensity autocorrelation
is a standard method for pulse characterisation. The input pulse is split in two,
and one of the pulses is delayed by 7. The two pulses are focused into a

nonliner optical crystal in a non-colinear fashion.

Interferometric autocorrelation which is introduced by J. C. Diels [119], [120] is a
pulse characterization method, that besides the pulse duration also reveals the
phase of the pulse. The input beam is again split into two and one of them is
delayed. In the standard setup, once recombined, the two pulses are sent
collinearly first into a nonlinear crystal, and then a filter, which allows only

the second-harmonic generation (SHG) component to be detected.
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The total field after the Michelson-Interferometer is given by the two identical

pulses delayed by t with respect to each other:
E(t,7)= E(t+7)+ E(t) = A(t + 7)™ % + A(t)e™ &% (C.1)
Here A(t) is the complex amplitude, the term ¢ describes the oscillation with

the carrier frequency @, and ¢, is the carrier-envelope phase. The induced

nonlinear polarization P*”(¢) satisfies the following relation [118]:
PP (1) o< E(1) E(t=7) o< (At + 7)™ e + A(1)e™ e )2 . (C.2)
The radiated second harmonic electric field is proportional to the polarization
E(t,7) o< (A(t + 7)™ e + A(t)e™ e )2 (C.3)
The photo — detector integrates over the envelope of each individual pulse

I(2)o [[|A@+0)| +4a@+ o[ [A@f +]4@)]’

A +17)| AW A ()™ +cec. (C.4)
R2AD| A+ 1) A +1)e™ +ee.
+ AP (t+T)(A (1))’ e +cc]dt

The interferometric autocorrelation function is composed of the following

terms:

I(0)=1

back

+1, (D) +1,(D)+1,,(7) (C.5)
Background signal 7,

ack *

1. = T(|A(z+1)|4 +a@)') di = 2T @) dt (C.6)

130



Intensity autocorrelation (measured by non-colinear SHG) 7, (7):
I (7)= 4I|A(t +)[ |AQ@)| dt = 4]: I1(t+7)-1(t) dt (C.7)
Coherence term oscillating with @,, 1,(7):
I(t)=4 TR@[(1(1)+I(t +7)) A’ () A(t+7)e" | dt (C.8)
Coherence term oscillating with 2@, , 1,,(7):
L,(1)= 2T Re[ A*(1)(A' (t+7))° ™" | dt (C.9)

We can normalize (C.5) relative to the background intensity 7, , resulting in

the interferometric autocorrelation trace [118]:

I,.(0)=1+ 1y (@) + 1,(® + L@ (C.10)
back I I

back back

At 7=0 integrals in (C.10) take the following values:

I, = 2+E|A(t)|4 d (C.11)

I (r=0)= 4I|A(t)|4 di=2I, (C.12)
1,(r=0)=8 I|A(t)|4 dt =41, (C.13)
L,(1)= 2I A\ dt=1,,, (C.14)

131



Leading to the interferometric autocorrelation (C.10) at zero time delay:
[IAC (T) |max= IIAC (0) = 8 <C15>
While 7,,.(t = te0)=1 and [,,.(7)|,;,,=0.

If E(t) is an isolated pulse that is nonzero only over an interval T, then for
7>T all terms in (C.6)-(C.10) which include both 7 and 7+7 vanish leading

1,,.(z >T)=1 meaning that for in isolated pulse 7,,.(0)/1,,.(z>T)=8.

In case that E(t) is a complex stationary random process whose phase at each

point in time is uniformly distributed over [0,27] and assume that for 7>T

E(t) and E(t+7) are statistically independent, then the mean value of the

T 2,7

terms in (C.10) containing ¢’ and e is zero and (C.10) averages to 3.

Therefore, for modes with completely random phases 1,,.(0)/1,.(t>T)=8:3
[39].

Note that in [39] due to the extremely low SHG conversion efficiency of
nonlinear crystals in the MIR, the standard setup was not feasible, and in
order to overcome this problem authors used a two-photon quantum well
infrared photodetector [121], [122] instead of using a nonlinear crystal plus a

linear detector. For further details about the experimental setup see [39], [123].
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Appendix D

The purpose of this Appendix is to clarify to an interested reader the origin of

Egs. (4.2)-(4.4) from the Section 4.1 of the main text.

Let us consider a biorthogonal set of basis vectors |K>,<Uk| which fulfill

condition <Uk|Vi>=A,ké;k where J, is Kronecker delta and 4, is a constant

(vectors are orthogonal but not normalized to 1). We will use Dirac notation,

ie. (U |M|V)=[U]|M]|V,.
We consider the following eigenproblem:

M|V)=A|V) (D.1)
and use the following expansions:

M =M MO
RIS
U =|u™)+|ui”)
A=A+ A AR

where M,V and U are vectors and A eigenvalue of matrix M. Vectors V have
the meaning of eigenvectors of matrix M, while U are eigenvectors of matrix

M*. Matrix M© is an unperturbed matrix and M® is perturbation matrix.
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Superscripts (0), (1) and (2) in (D.2) thus stand for the unperturbed case, first

order perturbation and second order perturbation respectively.

Combining (D.1) and (D.2) results in:
(MO +MO) PO+ OV =(AL+ A +A2) VO +7, ) =0 (D.3)
The last expression is then expanded in the following manner:

MO ‘V;(O)>_Ai(0)‘l/;(0)>+M(l) ‘K(0)>_Ai<l>‘Vi(0)>+M<0) ‘I/i(l)>_Ai(0) ‘K(1)>_Ai(l) ‘Vi(0>>+
MO ‘ Vi(l)>_Ai(l) ‘ V,-(l)>—A,-(2) ‘ V,-(O)> =0

(D.4)

At this point we will use the standard procedure to represent the perturbation

vectors ‘Vl.“)> using the unperturbed basis Vectors‘Vi(o)> :

o), =0 (D.5)

=S ey

i#m

For convenience, from now on we will drop the superscript (1) from the

expansion coefficient, i.e. we will adopt ¢! =c, .

m

When we multiply Eq. (D.4) with <U O ‘ from the left, we get:

(Akm) —A,-(O))<U/£O)‘V,-(O)>+<U;§0) ‘M(l)‘VI-(O)>—Ai(D <Ul£0>‘Vl_<0>>
+¢, (UL MO )= A e, (UL |7 (D.6)

m
i#=m i#m

+Z ¢, <U,£°) ‘M(” \V,§°)> _ ZA,-(DCW <U,£°’ ‘V,EO) > _ Al(2> <U,£°’ ‘Vl_<0>>

i#=m i#=m

Note that the first term (Ak(o) —Ai(o))<U o ‘Vi(o)> is obviously always equal to

Zero.
Let us consider first that k£ #i and first order perturbation terms:
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O[O @\ _ A O 77O |30 Ay |y @|yo\_ O, ([gO|lypo\_q.
U MO =AU 7OV + Y, (UL MO 7O =S A e, (UL |7) =0

i#m i#m

(D.7)

Since k #i, the term A, <U 0 ‘Vi(o’> is equal to zero because of orthogonality.

Further transformation of the above expression (D.7) using orthogonality

results in:

(U MO )+ e, (A =AU 7Y =0, (D.8)
from which we obtain the expansion coefficients ¢, :

<U,E°’ ‘Mm ‘V,-(O)> .
Cir = (Ai(O) _Ak(O))<U]$0) ‘Vk(0)> N (D.9)

In case when k =i, we can write the first order perturbation terms as:
(U [MO7O)= A0 (U |70 =0, (D.10)
from which we get first order perturbation expression for eigenvalue A, :

U,.(O) ‘M(” ‘V,-(O)>

A= < <U,-(0) ‘Vf(O)>

(D.11)

We now need to determine the second order perturbation of eigenvalue A,.

Using (D.6) we can write:

e, (UL MO )= A, (UL |70) = A2 (U7 ) =0 . (D.12)

Since k=i , (D.12) reduces to:

S, {UC| MO OV A2 U@y =0, (D.13)

i#m
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because the term ' A “c,, <U o |V"§°)> is obviously zero.

i#m

Using Eq. (D.9) and Eq. (D.13) we can write:

zcim <Ui(0) ‘M(l) ‘ V,,(,O)> <U<0> ‘M“) ‘V(°’><Uf°’ ‘M“’ ‘V(°)>
A (2) _ izm _ m i i m

i <Ui(0) ‘Vi(O)> - P ( A - Am(O))<Ufno) ‘Vn50)> <Ui(0)‘Vi(O)>

(D.14)

Finally, expression for eigenvalue A; of the matrix M obtained from

biorthogonal perturbation theory reads:

A, = Ai(‘” + A,.“’ + Ai(z’
Uf‘” ‘ MO ‘ V,.(O’> <U,§1°) MO ‘ V,-(O)> <U,-(O) ‘ MO ‘V,SO)> ' (D.15)
<Ui(0) ‘I/i(O)> +#m (Aim) —Am(0)><U,(nO) Vn(,O)><U,-(O) ‘Vi(o)>

A +<

Thus we have derived Eq. (4.3) from the manuscript.

We will now apply (D.15) in our particular case when matrices M, M©@ and
M® are given by (4.1) and determine the eigenvalue A with the largest real

part. For convenience, we will rewrite (4.1) in the following form:

2V, =1 E
o _72,ff+ S 0
-7, —%—ig 0 0
l=for o= , . o
—2F E{H(Vo—l)ﬂ] -y, 2E
2,8
v, -1 E
| 0 - 2,e/fOT _5 _72,g_

where we have used the following change of variables:

7. —L Y, —il Y —L 7, —L
= T2,ef]', ' n, e Tg’ o TZ,g
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Unperturbed matrix is given by:

Yo (2Vo —1)
ros _2ﬁ‘+ 0
I
“M(O)Hz -7, —7"—19 0
0 0 7,
0 0 £
L 2
And perturbation matrix is:
0 0 £
2
0 0 0
MO = )
H H —2E E|1+(v,—1) B |
2.8
v, —1
0 ﬂﬁ,eff% 0

Eigenvalues of HM (O’H are then determined to be:

2 2
(0) .
AEO) Ve \/%2 —Q° -2iy Q+47,%,.4 (Vo =)
AT -
0 _ 2 | _ 2 2
AV = A =
?0) _(72,24 + e )+ v D34
A, )

_(72,g + 7g) Y, D34
2

where we have introduced three more variables: 7, =7, , +?”, Y=Yy~

and (7, —7/g)2 —4E* .

2F

_}/Z,g

iQ

2
iQ

2

(D.17)

(D.18)

(D.19)

Yy
2
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Unperturbed eigenvectors ‘Vi(o)>EVi(°) of matrix HM (O)H corresponding to

zeroth-order perturbation eigenvalues A!” read:

) —
V1 =

O -
2

Unperturbed eigenvectors ‘U,-(O)> =U” of matrix HM (O)HT are found to be:

_r \/%f -’ _2i7—Q+47p72,¢ﬁ' (v,=D N

2

=+
2

Voo 2v,-1)

2

2
0

0

72,eff (2V0 - 1)

2

Y x/?f—SY—2i7,9+47p72,eff(vo_1)+’Q

2
0

0

0) _
V3 =

iQ

2

2

2F

Ve Vo _\/D_34

2

(D.20)

(D.21)

(D.22)

(D.23)
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] , _
o _L_\/yf_92_2i7—9+47!’72,eﬁ'(‘/0_1)+B
U=l 2 2 2 (D.24)
0
L 0 |
] , _
. _L_i_\/}/f—QZ_2i;/79+4}/p}/2’¢ﬁ.(v0—1) +B
Uy =172 2 2 (D.25)
0
L 0 |
0
0
u®=|  -E/2 (D.26)
}/g - 72,g + D34
i 2 ]
] . _
0
Ul =l -E/2 (D.27)
7g - 72,g Y D34
I 2 1

From (D.11) we can find that the first order perturbations A, are all zero:

U MO |y © u© "o O ‘
Ai(l):< <U[(O)‘KJO)> >:[ [3_(0)”]T.V‘(‘o> =0, forie{l,2,3,4} , (D.28)

since the matrix products in the numerators are zero in all cases.

At this point we can easily find second order perturbations for all 4
eigenvalues, A,”, using (D.14) from above. Nevertheless, for the purpose of
finding the RNGH instability threshold we are interested only in the
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eigenvalue with the largest real part. It can be shown (see also Section 3.1) that

it is the eigenvalue A,. Thus, for the sake of brevity, we will only write the

expression A,”. From (D.14) it follows:

{ [U1<0>]T. MOy [U;m]*. MO y©
@ _
LA -AO [UI(O)T.Vw) [UEO)T'VZ(O)

N 1 :Ul(O)_ i
AI(O) _AS(O) I:Ul(o):l'f' 'Vl(O) I:IJS(O):IT _V3(0) (D29)

X | Ul(o) i
AI(O) - A4(0) |:U1(0) ]T : I/I(O) [Ui()) ]—'L . 1/4(0)

=a,+b +¢

When we insert (D.19)-(D.27) in (D.29) we find:

1 Uo "ol o U© "o o
a, =A(°)—A (o>[ : ](O)H T ‘(‘0) : [ - }(O)HT_ ‘(‘0) — =0 (D.30)
i 2 (U] -7, (U] -7

: . i .
since the matrix product [UI(O’] HM (”H V9 is zero.

After some algebra we find b; and ¢; which can be expressed as:

. y B (—2)[2Ep1 +,S; |+ S5, s
o, et 7 )= Du || (704 SODEE+(5)) '
L 2 L i
, B (—2j[2Epl +a,S; |+ S, a8,
¢ = 2 - - (D.32)
o et r ) D [ (7o (SDDEE 4 (5))
1
L 2 JL i

where we have introduced the variables:
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(2v, —1 :
p :——72&#]( 0 ), 0(2 :E{l—i_(vo_l)}/z;ejy}/ a3 =

(Vo - 1)
1 2 7

_}/Z,e/]' 2
2.8

r Q-2 Q+dyy, 04-) 0

S =
2 2 2

4

2 . .
S;:_LJr\/;/f—Q _2’7—Q+47p72,eff("o—1)+zQ

2 2 2

S+:7g_72,g+ D;, S7:7g_72,g_\/D34
2 2 4 2 2 :

Finally, when we combine (D.19), (D.28)-(D.32) we find the eigenvalue of the

matrix M which has the largest real part:

E
—— || 2Ep,+ .S |+ S, S,
A=A —AO4 j/pE2 (zj[ P zl} 2 39,
l " 1 A(0)+(7g+72_g)_\jD34 (_7pp]+(Sl_)2)(_E2+(S2+)2))
: 2
E - .
¥ E? (—2j[2Epl +a,S, ]+S2 S,
+ P
A0 Tt 7 ) D || (7,04 (SHNE +(5,))

(D.33)

Here A!” is given in (D.19) [also in Eq. (4.2) in the main text-in slightly

different form]:

K \/7+2 -Q’ -2iy.Q+47,7, (v, - 1) _iQ

A© = .
2 2 2

Note that from (D.33) after some algebra we find the real part of A, and

recast it in the form of Eq. (4.4) in the main text and Appendix E.
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Appendix E

The coefficients Cy, C1, C2 and Cs in Eq. (4.4) read:

c =——2 (E.1)
(e
E*p(A+T;!
l:l—2 £ — [AEp+ Ao +—2EP+A205J+g zp( — 22’6”2) (E.2)
T A =T, A T(A =T, ) T,
E*p(A+T]!
o L o i
T4 _Tz,eff Tz,eff T2,eff Tz,eff T(A _ngﬁ) Tz,eff
E*p(A+T",
2 E'p(4+T, ;) (E4)

3T 2 ;) 2
T (A" =T, )T,

where we have introduced the following parameters:

2
2w, -1 T
p=-l o By |y L L UL L e
o, 2 T or o1, 2\\., T

2,eff 2eff g 2.8

(E.5)

This solution is valid when €, ,. < Tz_elﬂr ( Tz;_lfl, < 7;_; due to the diffusion terms).
In the range of pump rates around the RNGH instability threshold,

Q. << Tz’fﬁ (which assumes p-V,<<7/T,,) and hence further
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simplification of Egs. (E.1)-(E.5) is possible, yielding, with accuracy to the

. . 4 2 .
correction terms of relative order €2, 7, in Eq. (4.4),

T.T, E* T . E’T’T,
Cmm 2™ S vo| 1+22L =1 ]| 1+ £t (E.6)
27 (Tg _E,eff) T2,g (Tg _TZ,g )(Tg _TZ,cfﬁ")

T°T, E? T. . T
C, LY -V, [1+—2’e’f]—1+—2‘” (E7)
2t T, (T, T, ) T, T

2,g

E*T (2v, -1 T.T, E*
3 zl 2 g( ° ) s A zi+ g 28 zi_i_ly;,ggiabi (E'8)
7Ly (T,~ L) I, I,-L, I, 2
It follows that
v, (1+2T, T, )-1
_Q = ]-vzz,g];?e/‘fgjiabi l : ( - ) ’ {1 + 2 2 j (E9)
C() . 4 2VO -1 QRabiTg TvZ,g

T,
Therefore —C, / C, << —£ <<1 for the pump rates considered here.
g
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Appendix F

In this appendix we solve an equation of the form p-v(p)=6 [see Eq. (4.7)]
with respect to the pump rate p. Using expression for vo from Eq. (2.14), after

rearrangement of terms and squaring, we obtain:

2
(29_p+¢)2 :(p+¢j2 —plo- 2T1T2,cff/'" _ ZYITZ,cfﬁ" (F.1)
2 2 T.T,, TT,,
Where we have introduced a new parameter
T, 21T, .
p=1+24 L2 (F.2)
T‘zsg Tg];sg

Eq. (F.1) is of the first order with respect to variable p. Its solution reads

-1
T,
p=1+06| 1+ 2L, e g (F.3)
T T
¢ Lo
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Appendix G

Recurrence period density entropy (RPDE)

This method which is used in the field of dynamical systems and time series
analysis measures repetitiveness in the phase space of the system and it has

been successfully used to detect abnormalities in speech signal [113], [124].
A solution that satisfies Langevin equation:
% =£(x)+G(x)& (G.1)

we will call a trajectory. Here the state of the system at time ¢ is represented by

the phase space vector x(r) of size d, f is a deterministic vector field and
G(x)¢ is a vector of stochastic forcing terms [114]. Recurrent trajectories are

those that return to a given region of phase space [125]. Recurrence time
statistics provide useful information about the properties of both purely
deterministic dynamical systems and stochastic systems [125]. Recurrence
analysis forms the basis of the method of recurrence plots in nonlinear time

series analysis [114]. Phase-space recurrence is defined as:
x(t) € B(x(t+ 01), r) (G.2)

where B(x, r) is a ball of small radius r around the point x in phase-space,

and x(t) ¢ B(x(t+s), r)for 0 <s <o0t, where 6t is called the recurrence time [113].
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The RPDE method requires the embedding of a time series in phase space,
which is carried out by forming m-dimensional time-delayed vectors (time-

delay embedding) [114]:
X =[xn X X ] (G.3)

where embedding time delay and embedding dimension are denoted as 7 and m
respectively. Following the approach of [113], the method of close returns

[126] is applied: a small ball B(x, , ) of radius r > 0 is placed around the

ny 2

embedded data point x, . Trajectory is followed forward in time until

[x,, —x

s ~Xax| > 7 (the trajectory leaves the ball) for some k>0. The time n: at
which the trajectory first returns to the same ball, when Hxno -X, HSr, is
recorded and the difference of the two times is the discrete recurrence time
T =n, —n, [113]. When the same method is repeated for all the embedded data

points x, we get a histogram of recurrence times R(T) which when normalized

gives us the recurrence time probability density P(T). The normalized entropy
which is a simple measure of any probability density (measures its average

uncertainty):

Tmax
> P(t)In P(t)
H — =1
norm h](T )

max

(GA4)

represents the RPDE value, where is the largest recurrence value. For purely

periodic signals H, =0 whereas for uniform white noise H,, =1 [113]. For

norm norm

the prescription how to find optimal values of embedding parameters m and
7 and optimal ball radius r see [113], [114], [127] (one must perform a

systematic search for the optimal set of parameters).
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AyTtopcTBo. /l03BoJbaBaTe YMHOKABaE, AUCTPUOYIIH]Y ¥ JaBHO CAONIITaBamke Jiea,
U Ipepajie, ako ce HaBe/le MMe ayTopa Ha HauuH oJpeheH on crpane ayropa wiu
JaBaolla JIMIEHIe, Yak ¥ y KoMmepuujaiaHe cepxe. OBO je Hajciao001HHja OJl CBUX
JTUIEHIIN.

AyTOpCTBO — HeKOMepIHUjaaHo. J[03Bo/baBaTe YyMHOXKABAKE, AUCTPUOYIIH]Y U JaBHO
caolllITaBame jena, U npepaje, ako ce HaBe/le UMe ayTopa Ha HaduH ojpeheH oj
CTpaHe ayTopa WM jAaBaolia juieHne. OBa IHUIEHIIA HE J03BOJbaBa KOMEPIIH]ATHY
yrnotpedy jgena.

AyTOpCTBO — HeKOoMepuHjagaHo — 0e3 mpepaxa. Jlo3BoshaBaTe YMHOXKABambe,
JACTPUOYIH]Y H jaBHO caolINTaBame jAeia, 0e3 NpoMeHa, MpeoOInKoBama HIH
ymotpebe jena y CBoM JIely, ako c€ HaBele MME ayTopa Ha Ha4yuH oJpehen on crpaHe
ayropa Wiy jasaora juienie. OBa THIEHIA He J03B0JbaBa KOMEPLUjaAIHY yrnoTpedy
nesa. Y OJHOCY Ha CBe OCTale JIMIEHIIE, OBOM JIMIEHIIOM ce orpaHuyana Hajsehu
oOmuMm mpasa Kopuiihera Jena.

AYyTOPCTBO — HEKOMEPHMJAJHO — JeJHTH HOA ucrum yceaosuma. Jlo3Bosbapare
YMHOXaBame, JUCTPUOYIH]jy U JaBHO CaOIlITaBamwe Jelia, U mpepaje, ako ce HaBe/e
uMe ayTopa Ha HauuH ojpeheH o1 cTpaHe ayTopa WM JiaBaolia JIHIEHIIe U aKko ce
npepaja JUCTpHOyHpa MOJ HCTOM WIM CIOHYHOM juneHmoMm. OBa JIHIEHIIA HE
N03BOJbABA KOMEpPLHMjaIHy yrioTpeOy Jiena u rnpepaza.

AyTtopcerBo — 0e3 mpepaja. JlozBospaBaTe yMHOKaBame, TUCTPUOYIH]Y U jaBHO
caomInTaBame Jena, 6e3 npomMeHa, NpeodINKoBamba WK yroTpede jena y CBoM JIely,
aKo ce HaBe/e UME ayTopa Ha HauyuH ojapeheH o) crTpaHe ayropa wid aaBaona
manerie. OBa JIMIEHITa J03B0/baBa KOMEPIH]aTHY yIioTpedy jera.

AyTOpeTBO — [€IUTH MOA HCTHM yciaoBuMa. Jlo3BospaBare yMHOXKaBarbse.
JUCTPUOYLH]Y M JaBHO CAOILITABALE J€1a, U IIpepasie, ako ce HaBejle uMe ayTopa Ha
HauuH oJpeheH oj crpaHe ayropa WIM JaBaola JIMIEHIE U aKo Cce Ipepaja
JACTpUOYHpa MOJ HMCTOM WM CIMYHOM JIHIeHIoM. OBa JMIEHNa 103B0OJhaBa
KoMmepiujasiny ynorpely nesa u npepaga. Ciauyna je coTBEPCKHUM ITHICHIIAMA,
OJIHOCHO JIMLEHIIaMa OTBOPEHOT KOJA.
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