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Light propagation in deterministic aperiodic
waveguide arrays

Abstract

Over the past two decades, the light transport properties in regular (periodic)

and disordered coupled waveguides have been extensively scrutinized. These two, in

a sense, opposite types of ordering lead to two different phenomena - discrete diffrac-

tion in regular arrays, where light energy spreads linearly along propagation direc-

tion, and transverse localization in disordered, where light energy is distributed be-

tween finite number of adjacent waveguides. Still an open question remains whether

light behavior in intermediate domain is between fully periodic and fully disordered

structures - deterministic structures with no periodicity.

In this thesis the impact of deterministic aperiodic one-dimensional (1D) and

two-dimensional (2D) coupled waveguide arrays (photonic lattices) on transverse

light transport has been investigated both experimentally and numerically. Several

types of lattices were considered: 1D and 2D position modulated Fibonacci lattices,

1D refractive index contrast modulated Fibonacci lattice, 1D regular lattice and

regular lattice with defect. The aim is to explore the possibility of using these

structures as a tool for light diffraction suppression.

In the experiment, waveguide arrays were generated in photorefractive crystals,

lithium-niobate and strontium-barium-niobate, by direct laser writing and incoher-

ent Bessel beam induction technique, respectively. Gaussian and Airy beam were

used as excitation beams. A series of numerical simulations were conducted using

Beam Propagation Method.

It is found that the position modulated Fibonacci lattice can suppress light

diffraction in comparison to the regular one. This is more pronounced in 1D than in

2D lattice. In 1D case, for relatively high refractive index contrasts, the propagating

beam becomes almost completely localized in transverse plane. In 1D refractive

index contrast modulated Fibonacci lattice the similar result is obtained - diffraction

is suppressed considerably comparing to regular lattice. Furthermore, the stronger

modulation leads to strongly localized states, so the light propagation in Fibonacci



lattice resembles the propagation in disordered one. Besides, it is shown that the

slightly disordered Fibonacci lattice with relatively small refractive index contrast

modulation enhances diffraction. In addition, it is shown that a regular lattice can

reduce a self-bending of Airy beam trajectory.

The research presented in the thesis provides additional standpoint in under-

standing of light transport in complex optical structures and imposes new ways for

control of light diffraction and engineering of the optical response of devices.

Keywords: photonic crystals, deterministic aperiodic structures, discrete diffrac-
tion, transverse light localization

Scientific field: Electrical and Computer Engineering

Research area: Nanoelectronics and Photonics

UDC number: 621.3



Propagacija svetlosti u deterministiqkim
aperiodiqnim nizovima talasovoda

Rezime

U prethodne dve decenije, prostira�e svetlosti u regularnim (periodiq-

nim) i neure�enim spregnutim talasovodima je intenzivno prouqavano. Ova

dva, na neki naqin suprotna tipa ure�e�a, odgovorna su za dva razliqita

fenomena - diskretnu difrakciju u regularnim nizovima, gde se energija svet-

losti xiri linearno du� pravca propagacije, i transverzalnu lokalizaciju

u neure�enim nizovima, gde je svetlosna energija raspore�ena u konaqnom broju

susednih talasovoda. Jox uvek je otvoreno pita�e ponaxa�a svetlosti u oblasti

izme�u sasvim periodiqnih i sasvim neure�enih struktura - deterministiqkim

strukturama bez periodiqnosti.

U ovoj tezi je eksperimentalno i numeriqki prouqavan uticaj determin-

istiqkih aperiodiqnih jednodimenzionih (1D) i dvodimenzionih (2D) nizova

spregnutih talasovoda (fotonskih rexetki) na transverzalnu propagaciju svet-

losti. Razmatrano je nekoliko tipova rexetki: 1D i 2D Fibonaqi rexetke

sa modulisanim me�usobnim rastoja�em susednih talasovoda, 1D Fibonaqi

rexetka sa modulisanim kontrastom indeksa prelama�a, 1D regularna rexetka

i regularna rexetka sa defektom. Ci	 je da se ispita mogu�nost korix�e�a

ovih struktura kao mehanizma za potiskiva�e difrakcije svetlosti.

U eksperimentu, nizovi talasovoda su realizovani u fotorefraktivnim

kristalima, litijum-niobatu i stroncijum-barijum-niobatu, tehnikama direk-

tnog laserskog upisiva�a i nekoherentnom indukcijom Beselovim zracima,

respektivno. Strukture su pobu�ivane gausovskim i Ejri snopom. Serije nu-

meriqkih simulacija su sprovedene tehnikom propagacije zraka.

Utvr�eno je da Fibonaqi rexetka sa modulisanim polo�ajem mo�e da po-

tisne difrakciju svetlosti, u pore�e�u sa regularnom rexetkom. Ovaj efekat

je izra�eniji u 1D nego u 2D rexetkama. U 1D sluqaju, za relativno visoke

kontraste indeksa prelama�a propagiraju�i snop biva gotovo sasvim lokali-

zovan u transverzalnoj ravni. U 1D Fibonaqi rexetki sa modulisanim kon-



trastom indeksom prelama�a dobija se sliqan rezultat - difrakcija je znaqa-

jno potisnuta u pore�e�u sa regularnom rexetkom. Tako�e, jaqa modulacija

vodi do jaqe lokalizacije, tako da propagacija svetlosti u Fibonaqi rexetki

liqi na propagaciju u neure�enoj rexetki. Pored toga, pokazuje se da mala

neure�enost u Fibonaqi rexetki sa relativno malom modulacijom kontrasta

indeksa prelama�a pojaqava difrakciju. Utvr�eno je i da regularna rexetka

mo�e da uma�i efekat savija�a trajektorije Ejri zraka.

Istra�iva�e prikazano u tezi pru�a dodatne aspekte u razumeva�u pro-

stira�a svetlosti u kompleksnim optiqkim strukturama, kao i novi pristup

u kontroli difrakcije i dizajnu optiqkih ure�aja.

K	uqne reqi: fotonski kristali, deterministiqke aperiodiqne struk-
ture, diskretna difrakcija, transverzalna lokalizacija svetlosti

Nauqna oblast: Elektrotehniqko i raqunarsko in�e�erstvo

U�a nauqna oblast: Nanoelektronika i fotonika

UDK broj: 621.3
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Chapter 1

Introduction

The notion of structural order underlies our understanding of properties of most

physical systems. A crystal structure is the best example of a periodically ordered

pattern in nature. It consists of a certain atomic configuration (base) which repeats

in space according to an underlying periodic pattern (periodic lattice).

The microscopic regularity of crystalline matter was long hypothesized as the

obvious way to explain the simple geometric regularities of macroscopic crystals

(Aschroft and Mermin, 1976). The first direct experimental confirmation was ob-

tained in 1913 through the work of William Lawrence Bragg and William Henry

Bragg (Bragg and Bragg, 1913). They showed in their X-ray diffraction experiment

that the patterns of X-radiation scattered from crystalline materials possessed sharp

intensity peaks (now known as Bragg peaks) for certain sharply defined wavelengths

and incident directions, which was an unambiguous verification of a structure peri-

odicity.

Taking the advantage of the simplicity of the periodic order and the quantum

mechanical approach, and by treating an electron as a wave (de Broglie waves), Felix

Bloch explained the electrical conductivity of metal in his groundbreaking paper in

1928 (Bloch, 1928). This approach has paved the way to the development of the

band theory of the electronic structure of solids, that explained why electrons of

some energies travelled through a periodic potential without scattering1, and why

electrons of some other energies were forbidden to propagate in certain directions.

This theory has established the concepts of energy spectrum, energy gap and Bril-

louin zone as the base for the understanding of physical properties of solids.

From the above mentioned, the impact of the periodicity of the lattice on the

1In the case of no defects and impurities were presented.

1



wave nature of electrons manages the properties of a material. On the other hand,

the interplay between waves and periodicity is not the exclusivity of the condensed

matter physics. These ideas can be applied to any of elastic or electromagnetic

waves in the corresponding periodic media without any restrictions.

In the domain of optics, periodicity refers to a periodic modulation of the refrac-

tive index (or, equivalently, dielectric constant) of a medium in one or more spatial

dimensions. If the period of modulation is comparable with the wavelength of light,

the absorptivity of material low and the refractive index contrast high enough, the

photonic band gaps are formed, meaning that the propagation of light of certain

wavelength in certain directions is prohibited, while for the other wavelengths the

structure is almost fully transparent. Here, photons are affected by the structure in

much the same way as electrons are by a crystal lattice. Structures formed in this

way are denoted as photonic crystals. The fact that the photonic band gaps can

be formed by the choice in a very simple way, by selecting an adequate period and

refractive index contrast of the lattice, gives an opportunity for the full control of a

light flow.

The physical mechanism behind this behavior is an interference of a partially

reflected light from interfaces of two materials of a different permittivity. The first

explanation of this phenomenon has been proposed by Lord Rayleigh in 1917 in his

paper about the reflection of light from a stack of alternating layers of transparent

materials of different refractive index values (Lord Rayleigh, 1917)1. However, the

scientific community paid more attention to this topic in the late 1980s and the

1990s. The work of Eli Yablonovitch, see e.g. Yablonovitch (1987) and Yablonovitch

and Gmitter (1989), implied the vast potential of this research field and spurred the

intense exploring and exploiting of periodicity effects in photonics.

Today, periodic structures are widely used in photonic devices, just to mention

Fabry-Perot filters (Joannopoulos et al., 2008), vertical-cavity surface-emitting lasers

(Lee et al., 2004), omnidirectional reflectors (Fink et al., 1998), photonic crystal

fibers (Russell, 2003).

Despite the immense significance of the periodicity and the energy bands theory

in physics, it has a momentous drawback. Namely, the (ideal) periodicity in real life

is an exception, rather then the rule. In almost every structure the disorder is present

in a varying degree. It may be a weakly disordered system, e.g. a monocrystal with

1This idea has been introduced by Lord Rayleigh in 1887 considering reflection of mechanical
waves. (Lord Rayleigh, 1887)
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a few impurities or vacancies, or strongly disordered ones, such as alloys and glassy

materials. It turns out that in these systems the concept of energy bands is not

valid. Instead of extended Bloch modes, in disordered systems waves are localized

within restricted regions.

The concept of the wave localization in a disordered potential is introduced

in 1958 by Philip Anderson, in his seminal paper entitled Absence of diffusion in

certain random lattices, Anderson (1958). The traditional viewpoint had been that

scattering by the random potential cause the Bloch waves to lose phase coherence

on the length scale of the mean free path 1. Nevertheless, the wavefunction remains

extended throughout the sample (Lagendijk et al., 2009, Lee and Ramakrishnan,

1985). Anderson noticed that if the disorder is strong enough, the wavefunction

may become localized. When the electron is placed on one atom, its wavefunction

will not expand to cover the whole crystal with time, but it will remain localized

around its initial position (Segev et al., 2013). In this situation the electron becomes

trapped and the conductivity vanishes.

The Anderson localization is in essence a wave phenomenon, that arises entirely

from coherent multiple scattering and interference, so similar behavior should also

be observed in other classical coherent wave systems, such as acoustic and electro-

magnetic (Lagendijk et al., 2009).

There are several experiments that verified a presence of Anderson localization

in acoustic systems. He and Maynard demonstrated it in one-dimensional (1D)

system, consisting of small lead masses spaced along a long thin steel wire (He and

Maynard, 1986). The amplitude of transverse waves along the wire, generated by

electromechanical actuator at one end, was measured. If equivalent masses were

equidistantly spaced, the Bloch states were obtained. If the positions of masses, or

the sizes of masses were randomized, the localized states occurred (cf. Fig.1.1a).

Similarly, two-dimensional (2D) localized states were observed in an inhomogeneous

30 centimeter square aluminum plate excited by ultrasound (Weaver, 1990), while

localized states in a three-dimensional (3D) system were measured in a 3-D elastic

network of aluminum beads excited also by ultrasound (Hu et al., 2008).

Nevertheless, optics appeared as an ideal playground to study localization effects,

considering two facts: first, the coherence of optical waves in appropriate dielectric

microstructures is naturally preserved (time-invariant structures), and second, pho-

tons are bosons, meaning inherently non-interacting particles (Segev et al., 2013).

1the average length an electron travels before it collides with a positive ion in metal lattice site
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Figure 1.1: Extended and localized states in different media. a) Eigenstate amplitude
as a function of position along wire (1D system) - the first two are extended (Bloch)
states in regular system and the second two are localized states in disordered system,
(He and Maynard, 1986), b) The electric field energy density of microwave radiation
localized states in 2D disordered system (Dalichaouch et al., 1991).

The excellent theoretical works of Sajeev John (John, 1984, 1987) initiated the first

experiments that investigated propagation of electromagnetic waves in random me-

dia. Localized microwave modes were observed in 2D space, a random array of

dielectric cylinders placed between a pair of parallel conducting plates (cf. Fig.1.1b)

(Dalichaouch et al., 1991). Presence of localized optical waves in tree-dimensional

space was confirmed measuring transmission parameters of light passing through

samples made of strongly scattering semiconductor powders (Wiersma et al., 1997).

In recent years optical systems have been playing an important role in the fundamen-

tal understanding and experimental observation of Anderson localization because of

many techniques that can be used to visualize this phenomenon (Mafi, 2015).

A particularly interesting form of light localization is the so-called transverse

localization, first introduced in Abdullaev and Abdullaev (1980) and Raedt et al.

(1989). In this concept, the index of refraction is a random function in xy plane but

is uniform in z direction. If a light beam propagates in the z direction, it will expand

until the beam diameter becomes of the order of the transverse localization length.

From then on, the beam propagates without further expansion. This approach led

to the first direct observation of Anderson localization in 2D disordered lattices,

reported in Schwartz et al. (2007), as well as in 1D disordered lattices, reported

in Lahini et al. (2008). Besides the pure theoretical importance, the transverse

Anderson localization has been appearing as an attractive device-level concept, e.g.

in imaging systems (Karbasi et al., 2014).

During the last decades, the structures that cannot be properly described by the

concept of periodicity or disorder have emerged. The explanation of their properties

4



has required a new concept - order without periodicity. The building blocks of these

structures are arranged according to a deterministic rule, but without translational

symmetry.

The notion of the aperiodic order has been a relevant topic in mathematics for

a long time (Sigler, 2002). However, it had almost no impact in all other scientific

fields. The aperiodic order gained in importance during the 1940′s, when the nature

of genetic material was one of the uppermost scientific topics. Erwin Schrödinger

proposed that genetic material should be composed of a long sequence of a few

recurring constituents exhibiting a well-defined order without periodic repetition.

He termed it as the aperiodic crystal (Schrödinger, 1945). To quote the author itself:

”Organic chemistry, indeed, in investigating more and more complicated molecules,

has come very much nearer to that aperiodic crystal which, in my opinion, is the

material carrier of life.”.

On the contrary, the aperiodic order hadn’t been accepted in the condensed mat-

ter community for a few more decades. The reason is a sufficiency of the crystalline-

amorphous matter dichotomy (i.e. periodic-disordered dichotomy), meaning that

the periodicity allowed convenient explanation of the most relevant features of crys-

tals. A deficiency of this concept unambiguously appeared in 1984.

Namely, crystal structures are mathematically described in 3D space by their

32 point-group symmetries. Despite the fact that there are 230 different types of

crystallographic space-groups, only 32 of them have translational symmetry1 (Dal

Negro and Boriskina, 2012, Duan and Guojun, 2005). This is one of the most

important results of classical crystallography, known as crystallographic restriction.

The consequence was that only rotational symmetries of order 2, 3, 4 and 6 were

allowed in periodic lattice (Barber, 2009). Hence, e.g. five-fold rotational symmetry,

widely found in the living world, could not exist in condensed matter 2.

The major breakthrough in an anticipation of condensed matter happened when

Dan Shechtman and coworkers discovered quasicrystals (Shechtman et al., 1984).

They reported the existence of a five-fold symmetry in certain Al-Mn alloys, as shown

in Fig.1.2. An analysis of the obtained spectra indicated the icosahedral point group

symmetry, which was inconsistent with lattice translations. On the other hand, the

1Point-groups describe the symmetry of finite figures, excluding translation as a symmetry
element.

2At that time, materials containing icosahedral units, which is not allowed crystal point group,
were discovered, but these materials exhibited global symmetries of proper periodic order (Maciá,
2006)
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intense sharpness of the diffraction spots indicated the long-range order, as in the

case of ordinary crystals. Soon, there followed the theoretical explanation, provided

by Levine and Steinhardt in Levine and Steinhardt (1984). There, they introduced

the notion of a quasiperiodic crystal, because the spatial order of these structures

was described in terms of quasiperiodic functions1. In years after, a number of

works reporting the existence of new quasicrystals characterized by the presence of

different types of non-crystallographic symmetry axes appeared (Barber, 2009).

Figure 1.2: Diffraction pattern taken from a single grain of the icosahedral phase
(Shechtman et al., 1984).

Soon after, the notion of quasiperiodic order was extended from the atomic scale

to the submicrometer scale. In 1985, Merlin and coworkers reported the first real-

ization of a quasiperiodic superlattice, consisting of alternating layers of GaAs and

AlAs forming a Fibonacci sequence in which the ratio of incommensurate periods is

equal to the golden mean2 (Merlin et al., 1985). The sample, grown by molecular-

beam epitaxy, composed of 377 bilayers had a thickness of ∼ 1.85 µm. The X-ray

diffraction pattern showed a significant number of peaks superimposed to the main

satellite reflection of the GaAs layers which occur in a geometric progression with

the golden ratio as the common ratio3, indicating the so called self-similarity of the

lattice spectrum. This guarantees the existence of suitable resonant conditions at

all scales (Maciá, 2006), implying the fragmented energy band structure of the sys-

1Quasicrystals are one of three types of aperiodic crystals (Janssen et al., 2007).
2The golden mean or the golden ratio is an irrational number equal to

(
1 +
√

5
)
/2.

3As a reminder, for a periodic superlattice the distance between successive peaks is constant.
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tem. The subsequent research showed the particular electron transport properties of

quasiperiodic heterostructures (Katsumoto et al., 1993, Toet et al., 1991, Yamaguchi

et al., 1990).

The idea of aperiodic order also initiated a new research direction in photonics.

The first example of a deterministic aperiodic system in optics was the 1D qua-

sicrystal structure, consisting of optical layers following the Fibonacci sequence (cf.

Fig.1.3), proposed by Kohmoto and coworkers in Kohmoto et al. (1987). The cal-

culated transmission spectrum of the structure (Fig.1.4) showed the multifractal

nature, what was the consequence of the existence of the so-called critical modes.

Later on, the Fibonacci multilayer system became intensively studied concerning

its reflectivity (Schwartz, 1988), photonic dispersion relation (Hattori et al., 1994),

scaling (multifractal) (Fujiwara et al., 1989) and localization (Capaz et al., 1990,

Gellermann et al., 1994, Maciá and Dominguez-Adame, 1996) properties. Besides,

the Thue-Morse lattice was investigated in the same manner, theoretically (Liu,

1997), as well as experimentally (Dal Negro et al., 2004).

Figure 1.3: Fibonacci dielectric multilayer (Maciá, 2012). a) Fibonacci dielectric
multilayer grown along the z direction. b) Refractive index profile n(z) for an elec-
tromagnetic wave propagating through the structure.

The concept was extended in two dimensions. The first theoretical studies, e.g.

of the Fibonacci system (Fu et al., 1991, Lifshitz, 2002) or 12−fold symmetric sys-

tem (Chan et al., 1998), were followed by the experimental ones, e.g of Penrose-

tiled (Kaliteevski et al., 2000) or the 12−fold symmetric (Zoorob et al., 2000) pho-

tonic quasicrystals. The realization of 3D photonic quasicrystal (Fig.1.5) has been

achieved as well (Ledermann et al., 2006).

The photonic quasicrystals were also considered in the terms of the transverse

transport properties. In that sense, the first experiment, treated linear and nonlin-

ear light propagation in decagonal symmetry (Freedman et al., 2006). Nonetheless,
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Figure 1.4: The transmission spectrum of a Fibonacci multilayer (Kohmoto et al.,
1987). The transmission coefficient T versus the optical phase length of a layer δ for
a Fibonacci multilayer consisting of 55 layers of two materials with refractive indices
2 and 3.

in 2011 Levi and coworkers reported, while studying Penrose lattice, a seemingly

counterintuitive property of disorder-enhanced transport in photonic quasicrystals

(Levi et al., 2011). They showed that a disorder introduced in the quasiperiodic

lattice can increase the transverse transport, which contrasts directly with the char-

acteristic suppression of transport by disorder. Considering 1D crystals, Lahini

and coworkers reported the signature of a localization phase transition for light

quasiperiodic Aubry-André photonic lattice (Lahini et al., 2009), while Verbin and

coworkers reported an interesting phenomenon of topological pumping in Fibonacci

lattice (Verbin et al., 2015).

The peculiar properties of deterministic aperiodic structures impose the ques-

tion of their application. Their reflection spectra make them serious candidates

in optical microcavities (Maciá, 1998) and multidirectional reflection devices (Bar-

riuso et al., 2005). The first observed coherent lasing action due to the optical

feedback from quasiperiodicity was reported by Notomi and coworkers in 2004 (No-

tomi et al., 2004). An optically pumped active medium, an SiO2 substrate with

holes arranged in Penrose manner covered by a DCM (a laser dye) doped Alq3 (an

8



Figure 1.5: Electron micrographs of fabricated 3D icosahedral silicon quasicrystal
structure. a) A top view, b) A side view of cut structure (Ledermann et al., 2006).

organic gain medium) layer, generated a variety of 10-fold-symmetric lasing spot

patterns. Mahler et al. demonstrated lasing in 1D photonic crystal by current in-

jection (Mahler et al., 2010). It was a terahertz quantum cascade laser based on a

Fibonacci distributed feedback sequence, which allowed features beyond those pos-

sible with traditional periodic resonators, such as directional output independent of

the emission frequency and multicolour operation.

The wealth of their Fourier’s spectrum suggests potential advantages in nonlinear

optics applications. Using the 1D Fibonacci optical superlattice the second harmonic

generation is achieved the conversion efficiency of which is comparable with those

of a periodic superlattice, but on multiple wavelength (Zhu, Zhu, Qin, Wang, Ge

and Ming, 1997). In the same configuration a third harmonic generation efficiency

turned out to be eight times higher then that realized in the periodic superlattice

(Zhu, Zhu and Ming, 1997). Fibonacci photonic quasicrystals showed the ability

of simultaneously phase matching several nonlinear optical interactions within a

single sample in one (Fradkin-Kashi et al., 2002) and two (Lifshitz et al., 2005)

dimensions. Significant light-emission enhancement effects at multiple wavelengths

were experimentally observed in a 1D multilayer SiNx/SiO2 Thue-Morse structure,

yielding a total emission enhancement of almost a factor of 6 in comparison to

homogeneous light-emitting SiNx samples (Dal Negro et al., 2005).

One of the aspects of a medium arrangement impact on a light flow is the pre-

viously mentioned transverse transport. It refers to a coherent light beam evolution

propagating along an array of coupled waveguides. In this configuration the re-

fractive index is uniform along the propagation direction and modulated in the

transverse plane.

The beam propagation in the system of this type can be modeled by paraxial
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Helmholtz equation. Because of a formal analogy between paraxial Helmholtz equa-

tion and the Schrödinger equation, the evolution of a light beam in space resembles

a behavior of a wave packet of a quantum particle in time (Segev et al., 2013). This

is why this analogy has been used to confirm theoretical predictions of solid-state

physics in the optical set-ups. Apropos, Bloch oscillations (Morandotti et al., 1999,

Pertsch et al., 1999), Zener tunneling (Trompeter et al., 2006) and Rabi oscillations

(Shandarova et al., 2009) were experimentally observed. Besides, the light propaga-

tion through modulated (Garanovich et al., 2012) or nonlinear (Christodoulides et

al., 2003) waveguide arrays have been imposing themselves as the appealing research

topics.

The previously mentioned research about transverse light transport were es-

sentially investigations of possibilities to control (and eventually totally suppress)

diffraction by a specific position arrangement of waveguides. Another, in some sense,

a complementary issue, is the impact of waveguide arrays on initially nondiffracting

beams.

The term nondiffracting beam denotes a monochromatic optical field whose trans-

verse intensity profile remains unchanged in free-space propagation (Bouchal, 2003).

It is introduced in 1987 by Durnin and coworkers, when they realized experimen-

tally the first beam of such characteristics (Durnin et al., 1987). Today, this beam

is known as Bessel beam, because its transverse intensity profile can be described

by the zeroth-order Bessel function of the first kind. Later on, several classes of

nondiffracting beams have been found, one of which are named Airy beams because

the transverse electric field profile of the beam follows Airy function (Fig.1.6).

Figure 1.6: Transverse electric field and light intensity distribution of 1D Airy beam.
a) Airy function - electric field distribution, b) Squared Airy function - light intensity
distribution.

It is important to note that in real situations the nondiffracting beams cannot be

realized because they carry an infinite energy. In experiments, only approximations

known as pseudo-nondiffracting beams can be obtained (Bouchal, 2003)1.

1The nondiffracting and pseudo-nondiffracting beams are sometimes denoted as ideal and real
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The first experimental realization of Airy beams was reported in 2007 by Siviloglou

and coworkers, where their ability to remain diffraction-free over long distances while

they tend to freely accelerate (parabolic trajectory) during propagation was demon-

strated (Siviloglou et al., 2007). The parabolic longitudinal bending and transverse

intensity profile are shown in Fig.1.7. Furthermore, Airy beams possess self-healing

properties, preserving their parameters in different scattering and turbulent media

(Broky et al., 2008).

Figure 1.7: 1D Airy beam - longitudinal intensity profile. a) Ideal Airy beam. b)
Real Airy beam.

These beams were shown to be useful for the generation of curved plasma chan-

nels in air (Polynkin et al., 2009), for optical micro-manipulation of small particles

(Baumgartl et al., 2008) and for femtosecond laser micromachining of curved profiles

in diamond and silicon (Mathis et al., 2012).

This thesis summarizes the results of an experimental and numerical study of

light propagation in arrays of coupled waveguides (photonic lattices). The research

subjects are deterministic aperiodic photonic lattices arranged according to the Fi-

bonacci sequence (Boguslawski et al., 2016, Lučić et al., 2015), as well as regular

lattices with defects (Lučić et al., 2013). Regarding the Fibonacci lattices, the goal

is to determine the impact of this specific arrangement on transverse light transport,

i.e. whether and to what extent these structures suppress diffraction and lead to

localization. Concerning the regular lattice with and without defect, the intention

is to determine its impact on a parabolic path and the transverse profile of the 1D

Airy beam.

Here, the study of deterministic aperiodic photonic lattices refers to analysis of

waveguide arrays whose values of geometrical or material parameters follow the Fi-

nondifracting beams, respectively.
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bonacci sequence. The attention is paid to 1D and 2D arrays of identical waveguides

arranged in such a way that the distances of adjacent waveguides obey the Fibonacci

sequence, or to arrays of equidistant waveguides whose refractive index contrast is

modulated by the Fibonacci sequence. The effective waist of the beam propagating

in these lattices has been compared to the same parameter in regular lattices in

order to find out if they suppress diffraction and in what degree, or if they can lead

to localization.

Additionally, propagation of Airy beams has been investigated in a regular lattice

and a regular with a negative (one waveguide left out) and a positive (one waveguide

with doubled refractive index contrast) defect. The transverse acceleration and beam

shape after the propagation through these three lattices has been compared to the

same parameters of Airy beam propagating in homogenous medium.

The research presented in this thesis is based on several assumptions: (1) Fi-

bonacci photonic lattices suppress diffraction and can lead to transverse localization,

(2) presence of disorder in the Fibonacci lattice inhibits diffraction suppression, and

(3) the regular lattice can affect the parabolic path of Airy beam, termed transverse

acceleration.

In order to test these assumptions, various experimental techniques were neces-

sary: for a generation of desired photonic structures in photorefractive materials, for

shaping the exciting light beams, and finally imaging techniques for an investigation

of transverse transport properties of the structures. Results obtained in experiments

were confirmed in numerical simulations realized in a home-made software based on

the Finite-Difference Beam Propagation Method.

It has been shown that the Fibonacci lattice does suppress diffraction, with the

fact that the effect is more pronounced in a 1D compared to a 2D lattice. Besides, it

turns out that a weak disorder superimposed to the Fibonacci lattice slightly inhibits

this effect. Additionally, a regular lattice can suppress the transverse acceleration.

The potential possibility of a transverse light transport control qualifies these

structures as candidates for optical signals routing in photonic integrated circuits,

as well as high-quality image transport systems.

The thesis is organized as follows. After preliminary consideration presented in

Chapter 1, Chapter 2 gives fundamental facts about the ordering of matter, as well as

the general characteristics of a wave propagation in structures of different ordering.

Chapter 3 covers basic theory of light propagation in photonic lattices, periodic and

disordered ones. In Chapter 4, the numerical method for the simulations of light
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propagation in photonic lattices is described. Chapter 5 presents the experimental

techniques for lattice generation in photorefractive media and latter diagnostics.

Chapter 6 contains experimental and numerical results, while Chapter 7 reviews the

main results and concludes with some suggestions for future research directions.
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Chapter 2

General properties of

deterministic aperiodic structures

2.1 About periodicity, aperiodicity and disorder

Spatial periodicity has been considered as a synonym for the term structural order.

The essence of periodicity is based on a motif or building block which is indefinitely

repeated. Any vector function of position vector r1 satisfying the condition f(r) =

f(r + R0) is periodic in space with period R0, since its value is preserved under

the set of translations generated by vector R0. Accordingly, it is said that periodic

structures display a specific kind of long-range order characterized by translational

invariance symmetry along certain spatial directions.

Opposite to previous, if there is no correlation between building blocks of a

structure, or there is only a short-range correlation, it is denoted as disordered (or

amorphous) one.

The third kind of structures, which present an intermediate domain between fully

periodic and fully disordered media exhibit, just as periodic ones, long-range order

in space, but the lack of translation symmetry. This leads to the notion of aperiodic

order or order without periodicity. These structures should be clearly distinguished

from amorphous structures, because the latter exhibit short-range correlation only

(Maciá, 2012), i.e. there is no rule in spatial ordering. The term of aperiodic order

implies that there is deterministic rule defining the structure. According to previous,

these structures are labeled as deterministic aperiodic ones.

The deterministic rule is usually specified in terms of the so-called substitution

1The convention throughout this thesis is that boldface letters refer to vectors.
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2.1 About periodicity, aperiodicity and disorder

Sequence Set Substitution rule
Fibonacci {A,B} A→ AB,B → A
Thue-Morse {A,B} A→ AB,B → BA
Period-doubling {A,B} A→ AB,B → AA
Cantor {A,B} A→ ABA,B → BBB
Rudin-Shapiro {A,B,C,D} A→ AC,B → DC,C → AB,A→ DB

Table 2.1: Examples of the substitution rules determining the sequences considered
in the study of aperiodic lattices (Maciá, 2012).

sequences. A substitution sequence is formally defined by its action on a set which

consists of a certain elements (e.g. letters). It is a simple mathematical prescription,

rooted in symbolic dynamics and Lindenmayer inflation rules (Dal Negro et al.,

2008). In actual structure, each set element corresponds to a different type of

building block.

Some of sequences frequently discussed in the analysis of aperiodic lattices are

shown in Table 2.1. As an example, Fibonacci lattice is formed by applying the

substitution rule A → AB,B → A. A successive application of the rule generates

the strings A, AB, ABA, ABAAB, ABAABABA, ABAABABAABAAB, and so

on. In this way generated strings have also been in accordance with the Fibonacci

recursion, wherein each sequence Sj has been obtained by combining the two previ-

ous ones as Sj = Sj−1Sj−2. The number of elements in a sequence of order n is given

by the Fibonacci number Fn, which has been obtained from the recurrence relation

Fj = Fj−1 + Fj−2, j ≥ 2 and F1 = F0 ≡ 0.

All aperiodic systems derived from the application of a substitution rule posses

characteristic of self-similarity (Maciá, 2012), what means that that each portion

can be considered as a reduced-scale image of the whole (Mandelbrot, 1967).

There are three types of aperiodic crystals: incommensurately modulated phases,

composites and quasicrystals (Janssen et al., 2007, Maciá, 2006). Theses types are

not mutually exclusive.

Another way to define aperiodic structure is by using quasiperiodic functions,

which belong to the class of almost periodic functions1 (Maciá, 2006). A simple 1D

example of quasiperiodic function is

1Almost periodic functions are functions that can be approximated by Fourier series containing
a countable infinity of pairwise incommensurate frequencies. When the set of frequencies required
can be generated from a finit-dimensional basis, the resulting functionis referred as a quasiperiodic
one (Maciá, 2006).

15



2.1 About periodicity, aperiodicity and disorder

f (x) = cos(x) + cos(αx) (2.1)

where α is an irrational number. The previous function for α =
√

2 is presented in

Fig.2.1.

Figure 2.1: Quasiperiodic function f (x) = cos(x) + cos(αx)

It is widely known, that these functions are images of periodic functions on

the space of higher dimension (Blinov, 2015). For example, the 1D quasiperiodic

function defined in Eq.2.1 can be obtained as 1D projection of 2D periodic function

f (x, y) = cos(x) + cos(y), (2.2)

supposing that y = αx. This feature is the basis of the so-called cut-and-project

method, which is extensively used in the study of quasiperiodic crystals (Maciá,

2006). It assumes mathematical rules that treats a quasicrystal as periodic structure

embeded in higher dimension space (hiperspace).

The concept of great importance in exposing the lattice structure is the reciprocal

space. A corresponding notion of the reciprocal lattice plays a fundamental role in

most analytic studies of periodic structures (Aschroft and Mermin, 1976), which

actually represents the Fourier transform of a lattice (Duan and Guojun, 2005),

or lattice spectrum. Accordingly, the understanding of the Fourier spectrum is of a

crucial importance. This imposes diffraction as the primary technique for examining

the lattices structure.

Namely, the diffraction pattern formed in a far field (the Fraunhofer regime)

resembles the amplitude of the lattice spectrum. In this way, diffraction of matter

waves (electrons, neutrons) by an atomic lattice, or electromagnetic waves by a

dielectric superlattice, provide the most important experimental information for a

further lattice structure analysis. Two examples of 2D lattices and corresponding

diffraction patterns are shown in Fig.2.2

An interpretation of a lattice spectrum can be done by using a term of mathemat-
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2.1 About periodicity, aperiodicity and disorder

Figure 2.2: Lattices and corresponding diffraction patterns. a) A square lattice, b)
Diffraction pattern of the square lattice, c) A Penrose lattice, d) Diffraction pattern
of the Penrose lattice (Dal Negro and Boriskina, 2012).

ical measure and corresponding Lebesgue’s decomposition theorem. It states that the

spectrum of any arbitrary physical system can be uniquely decomposed in the terms

of just three kinds of spectral measures (and mixtures of them), namely, pure-point

(µP ), absolutely continuous (µAC) and singularly continuous (µSC ) spectra, in the

form (Maciá, 2006)

µ = µP ∪ µAC ∪ µSC . (2.3)

In that sense, periodic (and multi-periodic) lattices posses a pure-point lattice

spectrum, meaning that corresponding diffraction patterns are characterized by well

defined and sharp (δ-like) peaks (Bragg peaks) positioned at rational multiples of

primitive reciprocal vectors. Unlike periodic, the disordered (amorphous) structures

posses an absolutely continuous (diffuse) lattice spectrum. Aperiodic structures on

the other hand, because of theirs large diversity, can posses all of three previously

mentioned types of a lattice spectrum.

In Fig.2.3 are presented lattice spectra of three different 1D aperiodic lattices

(Dal Negro et al., 2008): pure-point spectrum of Fibonacci lattice, singularly contin-

uous spectrum of Thue-Morse lattice and absolutely continuous spectrum of Rudin-
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2.1 About periodicity, aperiodicity and disorder

Shapiro lattice.

Figure 2.3: A lattice spectrum of three different deterministic aperiodic 1D struc-
tures (Dal Negro et al., 2008). a) Fibonacci lattice - pure-point spectrum, b) Thue-
Morse lattice - singularly continuous spectrum, c) Rudin-Shapiro lattice - absolutely
continuous spectrum

The increasing number of deterministic aperiodic ordered structure types led to

a redefining of the term of crystal by the International Crystallographic Union. In

April 1991, the Commission on Aperiodic Crystals established it as follows: ”In

the following by crystal we mean any solid having an essentially discrete diffraction

diagram, and by aperiodic crystal we mean any crystal in which three-dimensional

lattice periodicity can be considered to be absent.”(Report of the Executive Commit-

tee for 1991, 1992). In this way, the essential attribute of crystallinity is transferred

from real space to reciprocal space. Besides, the generic attribute of solid state

matter is presence of mathematically well defined, long range-atomic order, not

periodicity.
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2.2 Wave propagation in periodic, aperiodic and disordered structures

2.2 Wave propagation in periodic, aperiodic and

disordered structures

A wave propagation in periodic structures has been one of the basic problems in

physics. Since Sir Isaac Newton deduced the formula for the speed of sound using

a 1D lattice model (an array of balls interconnected by springs), the solution of the

wave equation in a periodic structure has become a key modus for an understanding

of behavior of many physical systems (Duan and Guojun, 2005). Although there are

several different types of waves (electrons, lattice waves, electromagnetic waves), or

different physical phenomena described by wave equation, there is significant formal

(mathematical) similarity between them.

One of the main concepts in the treatment of waves in periodic structures is a

Bloch wave (Bloch state, Bloch function). It is developed in 1928 by Felix Bloch. His

intention was to explain electronic transport in metals, semiconductors and insula-

tors based on a fact that electrons propagate in a periodic potential caused by the

(regular) atomic arrangement of atoms in a crystal lattice (Duan and Guojun, 2005,

Kittel, 1987). The state of the electron is described by the Schrödinger equation,

that can be written in stationary form as:[
− ~2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r). (2.4)

The first term on the left-hand side is the kinetic energy and the second is the

potential, which is (in case of the crystal lattice) a periodic function, i.e.:

V (r + l) = V (r), (2.5)

where l is any lattice vector. In this case the solution of Eq.(2.4) is of the form

ψk(r) = uk(r)eikr. (2.6)

uk is periodic function with the periodicity of the potential V (r), i.e. uk(r + l) =

uk(r), and k is the reciprocal lattice vector. This statement is the famous Bloch

theorem. A wave function of the form of Eq.(2.6) is a Bloch wave. The Bloch

theorem can be written in a somewhat different form, giving an equation:

ψk(r + l) = ψk(r)eikr. (2.7)
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2.2 Wave propagation in periodic, aperiodic and disordered structures

According to a previous equation, the physical meaning of the Bloch theorem is that

wave functions at positions r + l and r are the same, except for a phase factor eikr.

Another analytical tool for treatment of the periodic structures is a reciprocal

lattice of a lattice. It represents Fourier transform of the original lattice. A primitive

cell of the reciprocal lattice is a Brillouin zone.

The electrons (waves) that propagate in a lattice are not perfectly free. Because

of their wave nature, most of electrons, with wavelengths largely different from the

lattice constant, don’t ”feel” a presence of the lattice (in the first approximation).

But if electron wavelength takes values comparable with the lattice constant, its

interaction with the lattice becomes very strong. In other words, electrons with

wave vectors ending near the edge of a Brillouin zone diffract intensively. Those

which have wave vectors at the edge of a Brillouin zone form a standing waves. It

leads to an energy splitting in two values, one slightly lower and the other slightly

higher than free electron value for corresponding wave vector. Hence, an energy gap

is formed. As a consequence, electrons of certain energies are forbidden to propagate

in certain directions. If energy gap covers all possible propagation directions it is

called a complete band gap.

The most common way for summarizing characteristics of a wave propagation

through a medium is a dispersion relation. It relates a wave frequency (or energy)

to its wave vector (wavelength). For electrons it can be obtained by solving the

Eq.2.4 for different values of k. Dispersion relations for free electron and electron

in a periodic potential are presented in Fig.2.4a and c, respectively. Discontinuities

in the dispersion relation curve shown in Fig.2.4c represent band gaps.

Previously mentioned ideas about interaction of electrons and crystal lattice can

be applied to electromagnetic waves and macroscopic dielectric media, that leads to

the notion of a photonic crystal. It is structure consisting of two or more dielectric

materials arranged in a periodic order1. Also, it is supposed a low absorptivity of the

materials. The behavior of the electromagnetic waves (photons) in these structures

is to a large degree analogue to the behavior of the electronic waves (electrons) in

the atomic lattice.

The propagation of the electromagnetic waves in the macroscopic media is gov-

erned by Maxwell equations. These can be expressed in terms of E and H, which

are electric and magnetic field vector respectively. Both E and H are time and

1Different metalo-dielectric structures are also falling into a category of photonic crystals, but
they won’t be scrutinized here. The attention is paid to the pure dielectric structures.
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2.2 Wave propagation in periodic, aperiodic and disordered structures

Figure 2.4: Dispersion relation of a) a free electron, b) a light wave in homogenous
medium, c) an electron in a periodic lattice, d) a light wave in periodically modulated
medium

position dependent functions. Because of a linearity of the Maxwell equations, they

can be expanded into a set of harmonic modes. Further, if medium is linear, modes

can be written as a product of spatial and time factor, E(r, t) = E(r)e−iωt and

H(r, t) = H(r)e−iωt, where ω is angular frequency. Substituting these in the Maxvell

equations, and under a few (very reasonable) presumptions - the field strengths are

small, material is isotropic, there is no material dispersion and the medium is trans-

parent - one gets

1

ε (r)
∇× (∇× E (r)) =

(ω
c

)2

E (r) , (2.8a)

∇×
(

1

ε (r)
∇×H (r)

)
=
(ω
c

)2

H (r) , (2.8b)

with ∇ ·H(r) = 0 and ∇ · [ε(r)E(r)] = 0, where ε(r) is relative permittivity. In a

similar way as in a case of electron, solving one of the propagation equations Eq.2.8

for different frequencies gives the band diagram, Fig2.4b and d. The eigenstates of

a system described by a periodic potential are extended, having the same nominal

amplitude at all positions in space.

The term disordered structure refers to a structure described with potential func-

tion of random distribution. The wave behavior in this kind of system turns out to

be localized within finite region.
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2.2 Wave propagation in periodic, aperiodic and disordered structures

Whether the wave will be localized or not, it depends on the degree of disorder

and the system dimensionality. Concerning this, the concept a mobility edge was

introduced by Nevill Mott in the early 1960s. It is the critical energy at which the

wavefunctions change their character from being extended to being localized (Lee

and Ramakrishnan, 1985).

The coherent waves in 1D and 2D unbounded disordered systems are always

localized, as it is shown in Abrahams et al. (1979). On the other hand, in 3D

systems there is a threshold value of disorder (Sperling et al., 2013) required for

existence of localized eigenstate.

In disordered system waves undergo multiple scattering among the randomly

distributed scatterers. There are three important characteristic lengths required for

the investigation of a wave propagation through such a system1 - wavelenght λ (or

wavevector intensity k), transport mean free path l∗ and the size of the sample L

(cf. Fig.2.5) (Duan and Guojun, 2005). The ratios of these lengths determine a

regime of the wave propagation.

Figure 2.5: Light waves transport through disordered medium (Duan and Guojun,
2005).

If l∗ > L the medium behaves as it were homogeneous, i.e. beside the incident

wave there are only reflected and transmitted waves, so this is the propagating case.

If λ < l∗ < L the wave loses memory of its initial direction caused by mul-

tiple scattering. This is a regime of weak localization, where localized eigenstate

1Non-dissipative medium
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2.2 Wave propagation in periodic, aperiodic and disordered structures

appear, but there are still a great many extended (but not periodic) eigenstates.

The propagation of waves in these media can in general be described by a normal

diffusion process. In this case transmission through a sample decreases linearly with

its length (Wiersma et al., 1997). Furthermore, in this regime appears coherent

effect of enhanced backscattering. It is a precursor for strong localization.

If l∗ < λ < L the system is strongly disordered, satisfying the Ioffe-Regel crite-

rion, l∗ ≤ λ. This is a regime of strong localization. Here, the oscillating field can

not even perform one oscillation before the wave is scattered again. The eigenstate

of strongly disordered systems may be described by exponentially decaying function

in space, exp(− |r− r0| /ξc), where r0 is a certain central position and ξc is the lo-

calization length (cf. Fig.2.6). This phenomena is known as Anderson localization.

In the localized state, the transmission coefficient decreases exponentially instead of

linearly with the thickness of a sample1 (Wiersma et al., 1997).

Figure 2.6: Localized state.(Lee and Ramakrishnan, 1985)

When sufficient disorder is introduced into a system, the bandgaps in dispersion

curve disappear. Further, in the real systems, energy of localized mode, injected

into that mode’s region of space, cannot diffuse away, but remains trapped until it

is dissipated (Dalichaouch et al., 1991).

A wave behavior in deterministic aperiodic structures, because of their multifor-

mity and complexity, is somewhat more difficult to analyze. A lack of translation

symmetry leads to ineffectiveness of Bloch’s theory and imply that eigenstates may

not be extended. On the other hand, long-range order suggests that eigenstates

won’t be localized, at least not in the same way as those in disordered structures.

To explain a wave propagation in these structures, the notion of critical eigen-

state (or critical wave function) is introduced. It exhibit strong spatial fluctuations

showing distinctive self-similar features (Maciá and Dominguez-Adame, 1996), as

1In the experiments involving light waves the main problem is distinction between the effects
of absorption and localization (Sperling et al., 2013).
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2.2 Wave propagation in periodic, aperiodic and disordered structures

one can see in Fig.2.7. These eigenstates may, or may not be normalizable (thus,

localized), depending on the critical exponent associated with a given state (Levi et

al., 2011).

Figure 2.7: Critical wave function of one-dimensional Fibonacci lattice (Duan and
Guojun, 2005).

Dispersion relations of deterministic aperiodic structures don’t have band gaps,

which are characteristics of periodic structures. In the dispersion relation of deter-

ministic aperiodic structures there are regions where the density of eigenstates is

considerably lower. These are named pseudogaps. Besides, higher density of eigen-

states is generally associated with broader eigenfunctions, which support higher

transport (Levi et al., 2011).

In accordance with the foregoing, wave functions can be classified into three

categories: extended, localized and critical ones (Duan and Guojun, 2005). If L is

the size of the sample and d is the spatial dimension, an extended state is defined

as ∫
|r|<L
|ψ(r)|2 dr ∼ Ld, (2.9)

which means that a wavefunction has asymptotical uniform amplitude. A localized

state is characterized by a square integrable wavefunction, i.e.,∫
|r|<∞

|ψ(r)|2 dr ∼ L0. (2.10)

A typical example of a critical state is a power-low function ψ(r) ∼ |r|−ν , where

ν ≤ d/2, so ∫
|r|<L
|ψ(r)|2 dr ∼ L−2ν+d. (2.11)
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Chapter 3

Diffraction in waveguide arrays

In this chapter, the basic theory of light propagation in periodic evanescently cou-

pled waveguide arrays is considered. Here, the term coupled means that optical

waveguides are placed next to each other in such a way that their individual modes

overlap (Christodoulides et al., 2003), allowing the exchange of the light energy be-

tween adjacent waveguides. This overlapping strongly affects the light propagation

in such a system.

Figure 3.1: Diffraction in continuous and periodic medium. a) Normal diffraction -
Gaussian beam diffraction in continuous medium, b) Discrete diffraction - Gaussian
beam diffraction in periodic waveguide array

As the light beam propagates along the waveguides, in the case when only one

waveguide is excited, it spreads into two main lobes with several secondary peaks

between them. Here most of the optical energy is carried out along two major lobes

far from the center. This particular diffraction pattern became known as discrete

diffraction (Garanovich et al., 2012). This is in contrast with diffraction process in

continuous medium, where most of the energy is concentrated in central region of

the beam, as shown in Fig.3.1.
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3.1 The coupled-mode theory

A suitable tool for the explication of the light propagation behavior is the diffrac-

tion relation. The diffraction relation connects longitudinal and transverse wavevec-

tor components for a fixed optical frequency. In the coordinate system where x and

y are the transverse directions and z is the propagation direction, the diffraction

relation reads as

β = kz =
√
k2

0 − k2
x − k2

y (3.1)

where k0 is the total wavevector, kx and ky are the transverse wavevectors, and β (or

kz) is the longitudinal wavevector. From this relation the direction and broadening

of the light beam can be determined. In the paraxial approximation (kx � k0),

assuming 1D1 continuous medium, previous equation reads as

β = k0 −
k2
x

2k0

. (3.2)

Every finite beam is a superposition of plane waves each of which has a different

value of transverse wavevector kx. When a beam profile centered at kx in the Fourier

space propagates over a distance z, it is shifted in the x direction by an amount

∆x = ∂β
∂kx
z, meaning the propagation direction is α = arctan( ∂β

∂kx
). The beam

broadening is determined by parameter D = ∂2β
∂k2x

, termed diffraction (Eisenberg et

al., 2000).

Considering Eq.3.2, in continuous medium D = − 1
k0

, so it’s always negative,

which indicates that the beam always spreads during a propagation. This is called

normal diffraction.

In the case of photonic lattices, the beam propagation is to a large degree dif-

ferent. There are two complementary approaches to the study of photonic lattices:

coupled-mode theory and Floquet-Bloch theory.(Garanovich et al., 2012)

3.1 The coupled-mode theory

Coupled-mode description, also known as the tight-binding approximation, considers

lattice as a set of individual waveguides that are coupled together. Light propaga-

tion in waveguide array is primarily characterized by coupling due to the overlap

between the fundamental modes of (only) the nearest-neighboring waveguides. In

this case, light propagation in 1D array can be described by a set of discrete equa-

1Here the adjective one-dimensional refers to one transverse dimension.
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3.1 The coupled-mode theory

tions(Trompeter et al., 2003)

(i
∂

∂z
+ β0)ψn + C(λ)[ψn+1 − ψn−1] = 0, (3.3)

where β0 is the propagation constant of the waveguide, ψn(z) is the mode ampli-

tude, z is the propagation distance along the waveguides, n is the waveguide number

and C(λ) is the coupling constant between adjacent waveguides, which depends on

the field overlap between the neighboring waveguides. All waveguides are identi-

cal, having the same propagation constant. Besides, periodical positioning of the

waveguides makes all coupling coefficients mutually equal. If one assumes that only

one waveguide, e.g. n = 0, is excited at the input, i.e. ψn6=0(z = 0) = 0, then the

solution for the electrical field in the n-th waveguide is given as (Eisenberg et al.,

1998)

ψn(z) = inψ0(z = 0)Jn(2Cz)eiβ0z. (3.4)

Here Jn is the Bessel function of the order n. For arbitrary initial conditions, the

diffraction pattern can be calculated as a linear superposition of the functions defined

in Eq.3.4.

Eigensolutions of Eq.3.3 are plane waves (Bloch-modes) of the form

ψn(z) = ψ0 exp (ikxd+ iβz), (3.5)

where kx and β are transverse and longitudinal component of the two-dimensional

wavevector k0 respectively, and d is the distance between the centers of the adjacent

waveguides. Substitution of previous expresion into Eq.3.3 gives the relation

βz = β0 + 2C cos kxd, (3.6)

which is previously mentioned diffraction relation, connecting transverse and longi-

tudinal dynamics. This relation is periodic, as opposed to Eq.3.2 for the homogenous

medium.

The angle of propagation is defined by its tangens as (Szameit and Nolte, 2010)

∂β

∂kx
= −2dC sin kxd (3.7)

which is periodic function of transverse wavevector, meaning the coupled waveguide

array exhibits anomalous refraction. The propagation angle oscillates as transverse
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3.1 The coupled-mode theory

wavevector is increased, so refraction is restricted to a cone, irrespective of initial

tilt of the input beam. If the excitation is tilted in such a way that the phase

difference between adjacent waveguides is of integer multiplies of π, the propagation

field returns to initial waveguide (Pertsch et al., 2002), that is represented in Fig.3.2

for the case of tilt = 2.2◦.

Figure 3.2: Anomalous refraction and diffraction in one-dimensional periodic lattice.
Broad Gaussian beam excitation (overlapping several waveguides), for three different
input incident angles (Pertsch et al., 2002)

Diffraction strength, determined by the diffraction coefficient, gives the relative

spread of adjacent rays. The diffraction coefficient is determined by second derivative

of the diffraction relation:

∂2β

∂kx
2 = −2d2C cos kxd. (3.8)

For negative value of diffraction coefficient the beam acquires a convex wavefront

during propagation, so it undergoes normal diffraction. On the other hand, for

positive value of diffraction coefficient the beam acquires concave wavefront, under-

going anomalous diffraction. At specific transverse wave components, satisfying the

condition kxd = π
2
, there is no diffraction of propagating beam (Garanovich et al.,

2012).

One should note, comparing the Fig.3.1 and Fig.3.2, that the lattice effects on

light propagation depend strongly on the size of an excitation beam relative to the

lattice period. While a broad Gaussian beam mostly preserve initial shape, a narrow

beam leads to discrete diffraction pattern.

28



3.2 The Floquet-Bloch theory

The lack of the coupled-mode theory is the fact that it describes only propagation

within the first band (the ground state).

3.2 The Floquet-Bloch theory

A more general and accurate description of light propagation in photonic lattices can

be obtained using Floquet-Bloch theory. It predicts that the propagation constant

spectrum of the lattices eigenmodes is divided into bands, separated by gaps in which

propagating modes do not exist (Mandelik et al., 2003). Floquet-Bloch analysis

provides formal description not only of the on-site fundamental modes, but also of

the high order waveguide modes, and radiation modes that propagate between the

waveguides (Garanovich et al., 2012). It gives the full physical picture of the light

behavior in the periodic lattice. The reason is the fact that the Floquet-Bloch waves

are independent solutions of the wave equation and therefore self-sufficient, on the

one hand, and, on the other, a possibility to explain light propagation inside a lattice

through excitation, interference, refraction and reflection of the Floquet-Bloch waves

(Russell, 1986).

The wave equation for one-dimensional photonic lattice in paraxial approxima-

tion can be written as (cf. (Lifante, 2003))

1

2k0

∂2E

∂x2
+ k0

n(x)

n0

E = −i∂E
∂z

, (3.9)

where E is the electric field intensity, k0 is the wavevector, n0 is the refractive

index of substrate and n(x) is periodically modulated refractive index, following

n(x) = n(x+ d). The solution of Eq.3.9 can be written as

E(x, z) = A(x)eiβz. (3.10)

According to the Bloch theorem, the amplitude term of previous equation, A(x),

can take the form of the Bloch wave,

A(x) = u(x)eikxx. (3.11)

Substituting Eq.3.10 and Eq.3.11 in Eq.3.9, one obtains

1

2k0

∂2u(x)

∂x2
+ i

kx
k0

∂u(x)

∂x
− k2

x

2k0

u(x) + k0
n(x)

n0

u(x) = βu(x), (3.12)

29



3.3 Diffraction in disordered waveguide arrays

Figure 3.3: Reduced band-gap diagram of a typical waveguide array (Mandelik et
al., 2003).

which is the diffraction relation, connecting propagation constant β and transverse

wavevector kx. The calculated diffraction relation of a typical one-dimensional pho-

tonic lattice is shown in Fig.3.3. It is a band-gap diagram reduced to the first

Brillouin zone. The blue regions represent the gaps. The normal to the diffraction

curve determines the propagation direction of each mode. The diffraction curve of

the first band is nearly sinusoidal. This result is also predicted by coupled-mode

theory (Eq.3.6).

3.3 Diffraction in disordered waveguide arrays

Disorder in the lattice can be introduced by randomly changing some of its parame-

ters, e.g. the width or refractive index of waveguides, thus changing the propagation

constant associated with particular waveguide, or their positions, which affects the

coupling between adjacent waveguides. These parameters are changed in a finite

range around their mean values. If the initial propagation constant is randomized,

the disorder is termed as diagonal(Lahini et al., 2008), and if the coupling is ran-

domized, the disorder is termed as off-diagonal(Martin et al., 2011).

As discussed in Chapter 2, disorder leads to the localization of wavepacket. If

disordered lattice is excited, what happens is a transverse localization of a light

beam (the suppression of diffraction). The information about the evolution of the

light beam can be extracted from averaged intensity profiles of light beams obtained
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3.3 Diffraction in disordered waveguide arrays

in different realizations of disorder (Segev et al., 2013). The envelop of the averaged

transverse intensity profile, according to Anderson’s theory, is the exponential func-

tion. In waveguide lattices, this is strictly true in case of diagonal disorder. On the

other hand, this is not strictly true for off-diagonal disorder1 (Mafi, 2015).

In 2D systems, the confinement of the beam in a transverse plane is quantified

by the inverse participation ratio (Schwartz et al., 2007),

P (z) ≡
∫
I2(x, y, z)dxdy

[
∫
I(x, y, z)dxdy]2

, (3.13)

where I is a light intensity, and an average effective width

ωeff = 〈P 〉−1/2 . (3.14)

In 1D case these parameters are

P (z) ≡
∫
I2(x, z)dx

[
∫
I(x, z)dx]2

, (3.15)

and

ωeff = 〈P 〉−1 . (3.16)

Different random realization of the lattice leads to different rates of a beam

expansion and a final beam localization width. Nevertheless, a stronger disorder

results in a smaller eventual localization width on average. Also, stronger disorder

leads to a smaller variation around the average beam width (Mafi, 2015).

As an illustration, in Fig.3.4 are shown numerical simulations of the impact of

disorder on a beam diffraction in 1D lattice. The Gaussian beam of 5 µm in width2

is injected into 71st waveguide in a 151 waveguide array, 40 mm long. Width of one

waveguide is 3 µm, refractive index of substrate is 1.46 and refractive index contrast

of the waveguide is 1 × 10−3. The lattice in a) is regular with period of 11 µm.

The waveguides in lattices shown in b)-d) are randomly distributed around the

initial positions (positions of waveguides in the regular lattice) according to uniform

probability distribution function. The amplitude of distribution is 1 µm, 2 µm and

3 µm in b), c) and d) respectively, meaning the increasing degree of disorder. In

e)-h) are shown averaged intensity profiles at 40 mm of the corresponding lattices.

1The diagonal disorder case meets the conditions assumed by Anderson in his original
model.(Lahini et al., 2008)

2full width at half maximum
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3.3 Diffraction in disordered waveguide arrays

Figure 3.4: The beam profile evolution in regular and disordered lattice with off-
diagonal disorder. a) regular, b)-d) disordered, e)-h) the beam profile at 40mm, i) the
comparison of the effective beam width expansion rate

One can see that as disorder is increased, the intensity profile is more localized, with

exponential envelope function. In i) is shown the effective width versus propagation

distance dependence. With increased degree of disorder, the expansion beam width

rate is decreased.
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Chapter 4

Numerical tools for treatment of

light propagation in waveguide

arrays

The most rigorous treatment of light waves behavior in an optical component is

the solving of Maxvell’s equations with appropriate boundary conditions. In many

practical situations this approach is very difficult to implement. The main reason

is a large difference of transverse and propagation dimensions, which makes the

boundary-value approach highly demanding in terms of computer memory and CPU

performance (Coldren et al., 2012). On the other hand, plenty of optical structures

allows to introduce paraxial approximation and only scalar wave treatment. These

assumptions enabled a developing of the beam-propagation method (BPM), which

provides reliable and computationally efficient optical structures diagnostics.

The method was originally introduced by Feit and Fleck in Feit and Fleck (1978).

It is a numerical method extensively used in solving of the Helmholtz equation and

nonlinear Schrödinger equation. It was initially based on fast Fourier transform

(FFT) algorithm. Later on it has been extended to finite-difference based BPM

schemes (FD-BPM), finite-element BPM (FE-BPM) and many others (Wartak,

2013). BPM is the most powerful technique to investigate linear and nonlinear

lightwave propagation phenomena in different waveguide-based structures. BPM is

also important for the analysis of ultrashort light pulse propagation in optical fibers

(Okamoto, 2006).

There is a several reasons for wide acceptance of BPM (BeamPROP 8.2, 2010):

relatively easily implementation of the basic technique, readily application to com-
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4.1 Basic equation of BPM

plex geometries on the same way as to basic ones, automatically inclusion of the

effects of both guided and radiating fields as well as mode coupling and conversion,

flexibility and extensibility.

For implementation of the BPM it is necessary to know only the index of refrac-

tion distribution over the structure, and field distribution at the initial position. This

means, the problem is reduced to an initial value problem, instead of a boundary

value problem, which makes it computationally efficient.

The initially developed BPM had a few drawbacks (BeamPROP 8.2, 2010). Since

it was based on scalar Helmholtz equation in paraxial approximation, as the first,

it was limited to small angles around primary direction of propagation, and, as the

second, it hadn’t considered the polarization effects. The third, it couldn’t account

for backward reflections since the one-way wave equation on which it is based does

not allow both positive and negative traveling waves.

The problem of small angles had been overcome using more accurate approxima-

tions to the Helmholtz equation. The exact scalar Helmholtz equation was replaced,

instead of parabolic approximation, by one of a sequence of higher-order Padé ap-

proximants (Hadley, 1992a,c). There had also been several vectorial BPM-s devel-

oped, as reported in Huang and Xu (1993), Xu et al. (1994) and references therein.

The problem of backward reflections had been overcome introducing bidirectional

algorithm (Kaczmarski and Lagasse, 1988, Rao et al., 1999).

4.1 Basic equation of BPM

The basis of BPM is the scalar three-dimensional Helmholtz equation1

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ k2(x, y, z)ψ = 0, (4.1)

where ψ is the spatial part of the electric field vectorE, i.e. E(x, y, z, t) = ψ(x, y, z)e−iωt,

k(x, y, z) = k0n(x, y, z), where n(x, y, z) is spatial distribution of refractive index,

and k0 is the wave vector of the light in free space.

If the light beam propagates primarily along the positive z direction, and the

refractive index changes slowly along this direction, the field ψ(x, y, z) can be written

as

ψ(x, y, z) = u(x, y, z)eikz. (4.2)

1The mathematical procedure carried out in this section can be found in many books on the
subject of photonic devices modeling, e.g. Lifante (2003) or Okamoto (2006).
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4.1 Basic equation of BPM

Here, u(x, y, z) is complex field amplitude of slow variation, eikz denotes a fast

oscillating wave moving in the positive z direction. k is a constant which represents

the characteristic propagation wave vector and it is equal to k0ns, where ns is the

reference refractive index, usually choosen to be equal to the refractive index of

substrate or cladding.

Substitution of the previous expression in equation 4.1, leads to

∂2u

∂z2
+ 2ik

∂u

∂z
+∇2

⊥u+ (k2 − k2
)u = 0, (4.3)

where ∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
.

The next step is the assumption that the amplitude of the wave is slowly vary-

ing function in the propagation direction - slowly varying envelope approximation.

Mathematically it is formulated as∣∣∣∣∂2u

∂z2

∣∣∣∣� ∣∣∣∣2k∂u∂z
∣∣∣∣ . (4.4)

This approximation is also known as the paraxial or Fresnel approximation, and it

gives the so-called paraxial or Fresnel equation:

∂u

∂z
=

i

2k
(∇2
⊥u+ (k2 − k2

)u), (4.5)

which is the basic BPM equation. For a given input field u(x, y, z = 0), the equation

determines its evolution in the space z > 0.

There are two basic numerical techniques used to solve the Fresnel equation

(Lifante, 2003). In the first, a beam propagation is modeled as a plane wave spec-

trum in the spatial frequency domain. This method is called fast Fourier transform

BPM (FFT-BPM), because the fast Fourier transform is used to connect spatial

and spectral domains. The second way is solving directly in spatial domain using

finite-difference scheme. It is called finite-difference BPM (FD-BPM). FD-BPM al-

lows the simulation of strong guiding structures, and also of structures that vary in

the propagation direction. It turned out that FD-BPM is more efficient and stable

compared to FFT-BPM (Chung and Dagli, 1990). In the next section the numerical

implementation of FD-BPM method is introduced.
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4.2 Numerical implementation of FD-BPM

4.2 Numerical implementation of FD-BPM

The finite-difference method is the mathematical method for an approximative nu-

merical solving of partial differential equations. It is based on the substitution of

the derivatives of a function by finite differences of the function in adjacent discrete

samples. Thereby, a differential equation becomes difference equation, which has a

form of an algebraic equation. The solution of this equation is a set of numerical

values corresponding to particular discrete element of space domain in which the

function is considered.

The first step in the finite-difference procedure is to discretize the area of in-

terest in an appropriate way, as it is shown in Fig.4.1. It means, to select optimal

computational window in the transverse plane ((x, y)-plane), as well as convenient

grid size in the z-direction. The optimal computational window means, on the one

hand, that its dimensions should be large enough to cover desired field distribution

all along the propagation path, and, on the other, that the size of the grid is small

enough to provide all necessary details of the field distribution.

Figure 4.1: Discretization of a space in finite-difference method.

When performing discretization of the z-axis, it is necessary to take into account

the Courant-Friedrichs-Lewy stability criterion (Press et al., 2007). It is a criterion

for convergence in a numerical solving of certain partial differential equations using

finite-difference method. In case represented here, it can be expressed as

C =
∆z

∆x
+

∆z

∆x
≤ Cmax, (4.6)
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4.2 Numerical implementation of FD-BPM

where ∆x, ∆y and ∆z are the length intervals in x, y and z, respectively, and C

is called the Courant number. The maximum value of the Courant number,Cmax,

depends on a modus of solving difference equation, and it is in the range of one to

several.

An important issue in BPM application is a problem of boundary conditions.

As the computational window is finite, the optical field is going to have non-zero

values at boundaries, causing that derivatives at specified positions have wrong

values. This leads, in the first possible scenario, to the reflections of the field at the

limits of the computational window, causing the light comes back to the region of

interest. The second scenario is a disappearance of light through a boundary, but

its appearance from the opposite boundary. What will happen depends of applied

method (Lifante, 2003). As a consequence, unwanted interferences are introduced,

and erroneous optical field distributions are obtained. This is why the boundary

conditions are necessary to be adequately chosen. There are several different ways to

define boundary conditions. Two most frequent are Absorbing Boundary Conditions

(ABC) and Transparent Boundary Conditions (TBC).

ABC are realized by introducing an artificial complex refractive index distri-

bution around the computational window to generate a boundary that adequately

absorb incoming field but with a sufficiently smooth profile that doesn’t add spu-

rious reflections (Vassallo and Collino, 1996). In general, if absorbing region is

adequately tailored, this procedure is accurate. The lack of this method are first,

the fact that absorbing region should be modified for every particular problem, that

is a difficult and time-consuming process, and second, increasing of both memory

requirements and CPU time. The advanced version of ABC technique is developed

by Berenger, known as Perfectly Matched Layers (PML) (Berenger, 1994). In this

technique, there is no risk of reflections, but there is still problem of the additional

computational resources.

TBC technique simulates nonexistent boundaries. Here, radiation is allowed

to freely escape the computational domain without appreciable reflection, whereas

radiation flux back into the domain is prevented (Hadley, 1992b). The important

assumption of this technique is that at the boundary,the electric field has a form of

E = E0e
ikxx, where E0 and kx are complex constants. In this situation, as long as

the real part of kx is positive, radiative energy can only flow out of the computational

domain. There is practically no extra computational resources requirements and the

method is generally highly successful. The lack of the method is the fact that it
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4.2 Numerical implementation of FD-BPM

cannot be applied in the case of highly diverging beams.

FD-BPM can be implemented using implicit or explicit finite-difference method

(Coldren et al., 2012).

The Matlab R© script developed for numerical analysis of structures studied in this

thesis use an implicit finite-difference method based on Crank-Nicolson algorithm1.

The Crank-Nicolson algorithm provides an unconditional stability, meaning that

fields will not diverge or diminish without any physical reason, regardless of the

grid size (Coldren et al., 2012). The ABC technique is used, because it is easy to

implement and provides sufficiently reliable results.

1Detailed explanation of the method is shown in Appendix A.
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Chapter 5

Experimental methods for

photonic structures generation

and characterization

5.1 Photorefractivity

The photorefractive effect is a phenomenon in which the local index of refraction of

a medium is changed by the illumination of light of a nonuniform intensity (Yeh,

1993). It was discovered in Bell Laboratories by Ashkin et al. in 1966 (Ashkin

et al., 1966). The effect was first described as optical damage. It manifested as a

distortion of the wave front of laser beam passing through LiNbO3 crystal, what was

a consequence of the refractive index inhomogeneity induced by the beam itself.

A theoretical explanation of the photorefractive effect, known as band transport

model, was introduced by Kukhtarev and coworkers in 1979 (Kukhtarev et al., 1979).

The model describes creation of an internal electric field by photo-excited space-

charge in the material. If the material behaves as the linear electro-optical one, the

field brings an intensity dependent modulation of the refractive index.

There are several distinctive characteristics of the photorefractive effect (Günter

and Huignard, 2006). First, it is critically dependent on intentional doping, mate-

rial impurities or imperfections. Second, it is highly sensitive effect, meaning it is

observable at low light intensities (down to mW/cm2). Further, it is relatively slow

effect, depending on light intensity, carrier mobility and external field intensity. In

some photorefractive materials the refractive index patterns are highly persistent

in the dark. Also, the patterns are erasable by homogenous illumination or high

39



5.1 Photorefractivity

temperature.

In the illuminated regions mobile charge carriers, e.g. electrons, are photo-

excited to the conduction band from donor atoms. The free electrons move to-

wards non-illuminated regions by diffusion, drift or the photovoltaic effect (Jensen,

1999). Diffusion is movement of particles from regions of high to regions of low

concentration, while drift is the motion of charged particles in an electric field. The

photovoltaic effect is an optically induced unidirectional current based on asymme-

try in the crystal structure. In the non-illuminated regions electrons recombine with

acceptor ions leaving behind a fixed nonuniform charge distribution, that creates a

strong local spatially varying electric field. The field is mapped into a refractive

index modulation by the linear electro-optic effect.

The final goal of the band transport model is to determine resulting space-charge

electrical field as a function of an initial light intensity distribution. In this model

governing equation of charge-carriers dynamics can be written as (Boyd, 2008):

∂N+
D

∂t
= (sI + β)

(
N0
D −N+

D

)
− γneN+

D , (5.1)

which is the rate equation of immobile donors,

∂ne
∂t

=
∂N+

D

∂t
+

1

e
∇j, (5.2)

the continuity equation of free electrons,

j = neeµE + eD∇ne + jpv, (5.3)

the equation that describes the current density caused by charge transport mecha-

nism, and

εdc∇E = −e
(
ne +NA −N+

D

)
, (5.4)

Gauss’ low in the differential form. Here, ND and NA are the concentrations of

donors and acceptors respectively, N+
D is the concentration of ionized donors, s is

the ionization cross section of a donor, β is the thermal generation rate for electrons,

γ is the recombination coefficient, e is the elementary charge, j is the current density,

ne is the concentration of electrons in the conduction band, µ is the electron mobility,

D is diffusion constant, jpv is the photovoltaic contribution to the current density,

εdc is the static dielectric constant of the crystal.
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The previous four equations constitute the simplest band transport model among

a whole range of band transport models - the one-center model (Buse, 1997). It

discusses a transport that includes only electrons dispensed and trapped by a single

donor ion. In many materials the charge transport process is more complicated,

since it involves electrons and holes at the same time, provided and trapped by

several donors or acceptors.

The photorefractive effect is essentially dependent on the linear electro-optic

effect. The electro-optic effect is the change in refractive index of a material induced

by the presence of a static (or low-frequency) electric field (Boyd, 2008). If the

refractive index depends linearly on the magnitude of the applied electric field,

the effect is called linear or Pockels effect. It is a second-order nonlinear effect,

meaning that it can be described by a second-order nonlinear susceptibility1. Since

all photorefractive materials are also electro-optic, the presence of an electric field in

these media will induce a refractive index change via the Pockels effect (Yeh, 1993).

The refractive index changes are usually described by changes in the impermeability

tensor, the inverse of the relative dielectric tensor, as

∆η ≡ ∆ε−1 = ∆

(
1

n2

)
= r · E, (5.5)

where η is the impermeability tensor, ε is the relative dielectric tensor, r is the linear

electro-optic tensor, and E is the applied electric field vector.

The applications of photorefractive effect include volume hologram recording

(Peltier and Micheron, 1977), beam coupling (Yeh, 1989), phase conjugation of the

optical waves (Feinberg, 1982), image amplification (Brignon et al., 1995), real-time

holographic interferometry (Cedilnik et al., 2000), etc.

The photorefractive properties are found in several classes of electro-optic ma-

terials, including ferroelectric crystals such as LiNbO3, SrxBa1−xNb2O3, BaTiO3,

KNbO3, sillinite crystals such as Bi12SiO20, Bi12GeO20 and Bi12TiO20, semiconduc-

tors such as GaAs, InP and CdS, and polymers (Jensen, 1999). The materials used

in experiments presented in this thesis are iron doped lithium-niobate (Fe:LNB) and

cerium doped strontium-barium-niobate (Cr:SBN).

1This is the quadratic term in the expansion of the material polarization in terms of an applied
DC electrical field.
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5.1 Photorefractivity

5.1.1 Properties of lithium-niobate and strontium-barium-

niobate

Lithium-niobate is one of the most versatile nonlinear crystals with a wide range of

applications, including electro-optic (Pockels cells) and acusto-optic modulators, Q-

switching devices, second harmonic generation, optical parametric oscillation, phase

matching, integrated optical waveguides generation, etc.. Besides, lithium-niobate

is widely used photorefractive material, because of his high electro-optic coefficient

and possibility of getting high photorefractive sensitivity by appropriate doping. In

this purpose transition metals are used, particularly iron (Shah et al., 1976).

The iron ions occur in lithium-niobate in two different valence states, Fe2+ and

Fe3+ (Peithmann et al., 1999). The iron is doped in form of Fe2O3, and its optimum

concentration for photorefractive applications is 0.06wt%1. Electrons are optically

excited from Fe2+ to the conduction band, they are moved by diffusion, drift and

the bulk photovoltaic effect and they are trapped elsewhere by Fe3+ ions.

Iron doped lithium-niobate is of great interest in the fields of holographic data

storage and narrow-band wavelength filters for optical telecommunications (Nee et

al., 2000).

Strontium-barium-niobate (SrxBa1−xNb2O6, 0.25 ≤ x ≤ 0.75 or SBN) is another

frequently used photorefractive material. This is because of its particularly large

electro-optic, thermo-optic, pyro-electric and piezo-electric coefficients, and excellent

optical quality (Günter and Huignard, 2006). The most widely used compositions

of SBN are those with x = 0.6 and x = 0.75.

Another attractive feature of SBN is the large number of vacant lattice sites

that can be occupied by dopants to provide a high density of photorefractive charge

carriers (Vazquez et al., 1991). Because of this, doping of SBN by appropriate

materials (in a case of SBN it is cerium, chromium or rhodium) the photorefractive

response can be improved (increased charge density and photorefractive structure

formation rate) (Ewbank et al., 1987).

Besides being useful in applications such as two-wave mixing (Sayano et al.,

1989) and self-pumped phase conjugation (Wood et al., 1987), it is the most widely

used material in research on photorefractive solitons (Segev et al., 1992).

1weight percent
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5.2 Generation and characterization of waveguide arrays

5.2 Generation and characterization of waveguide

arrays

5.2.1 1D arrays

For the generation of the 1D Fibonacci waveguide array the Fe:LNB is used. The

mass fraction of Fe2O3 is 0.05 %. Dimensions of the crystal are 3 mm× 0.5 mm×
10 mm, with the optical axis along the z direction (10 mm). Waveguides are

fabricated using an in-house developed laser writing system comprising CW laser at

473 nm (Oxius - SLIM-473), a precise two-axis positioning platform (Ludl Electronic

Products Ltd. - BioPoint 2 Precision Stage System), two stepper motors (Standa

Ltd - 8MR150), mirrors for directing the laser beam, and a microscope objective

(50X Mitutoyo Plan Apo Infinity-Corrected Long WD Objective).

Figure 5.1: Illustration of 1D waveguide array writing process.

The principle of waveguides writing is shown in Fig.5.1. The platform can move

the crystal in the x-z plane. The laser beam propagates along the y axis and it is

focused by the microscope objective slightly below the upper surface of the crystal.

In this way, the laser makes a controllable local change of the refractive index. By

moving the sample along the z direction, a uniform modification of the refractive
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5.2 Generation and characterization of waveguide arrays

index profile is achieved. A detailed explanation of the writing system one can

find in Zarkov et al. (2012). The width of the waveguide obtained in this way is

approximately 5 µm with a maximum refractive index contrast of ∆n ∼ 1 × 10−4,

estimated from numerical simulations.

Figure 5.2: Array of the waveguides seen under microscope.

A scheme of the experimental setup for the structure diagnostics is shown in

Fig.5.3. The He:Ne laser is used for an excitation beam generation, because the

absorption coefficient of Fe:LNB is relatively low at 633 nm (Shah et al., 1976).

Figure 5.3: Scheme of experimental setup for one-dimensional waveguide array di-
agnostics. L - lens, PH - pinhole, M - mirror, MO - microscope objective, VNDF -
variable neutral density filter, HWP - half-wave plate, CCD - camera, LNB - Fe:LNB
crystal with inscribed waveguides, He:Ne laser is vertically polarized.

The diameter of the emerging beam is enlarged by a beam expander, consisting

of the lenses L1 and L2, with focal lenghts of 30 mm and 100 mm, respectively.

A pinhole of 20 µm placed between the lenses in the position where their focal
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5.2 Generation and characterization of waveguide arrays

points overlap filters the transverse modes higher than TEM00. The beam power

is reduced by variable neutral density filter (VNDF) from approximately 1 mW to

20 µW . The light is initially polarized linearly in the vertical direction, so that the

mirrors don’t affect the polarization direction. The half-wave plate (HWP) can be

used afterwards to change the direction of polarization, if necessary.

An excitation beam is focused on the front face of the crystal and propagates

along the z direction. The beam waist is 10.5 µm and the power is roughly 10 µW .

The crystal is situated in a holder which can be moved continuously in the x di-

rection. In this way, the beam can be launched into appropriate position in the

waveguide array.

The intensity pattern appearing at the exit face of the crystal is recorded by

means of an imaging system which consists of a microscope objective (Newport M-

10X), and CCD camera (Canon EOS 60D). An image formed in this way is shown

in Fig.5.4a. The final result of the measurement is the light intensity distribution

over the middle horizontal line (yellow line in the figure), as it is shown in Fig.5.4b.

No image processing is carried out.

Figure 5.4: The light intensity distribution acquisition. a) The intensity distribution
of light at the back side of the crystal, and b) the intensity distribution of light along
a cross-section denoted by the yellow line in a).

The scheme of experimental setup for excitation of a lattice generated in LNB

by 1D Airy beam is represented in Fig.5.5.

The Nd:YAG lase with doubled frequency (532 nm) is used as a light source.

After appropriate preparation, the same as those shown in Fig.5.4 (using L1, PH

and L2), the broad Gaussian beam is sent to the spatial light modulator (SLM -

HoloEye LC 2002). It is transmissive LCD (600 × 800 pixels, 32 µm pixel pitch)
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5.2 Generation and characterization of waveguide arrays

Figure 5.5: Scheme of experimental setup for 1D waveguide array excitation by Airy
beam. L - lens, PH - pinhole, M - mirror, MO - microscope objective, SLM - spatial
light modulator, FL - Fourier lens, CCD - camera, CMOS - camera, LNB - Fe:LiNbO3

crystal with inscribed waveguides

which modulates the light passes through. The modulation can be amplitude or

phase, depending on polarization of incoming light (defined by polarizer P1). This

means that each pixel can attenuate the intensity or change the phase of light in

the controlled manner1. The gray scale of the picture displayed at the SLM is

mapped into modulation intensity. In this experiment the phase modulation is

utilized because, in this case, it provided Airy beam of better quality (without

distortion of beam profile). To generate 1D Airy beam, the phase distribution

represented in Fig.5.6a (a cubic function) was displayed at the SLM. Since the light

polarization state passing through the SLM become slightly elliptic, the polarizer

P2 let one particular linearly polarized component. In this way a deterioration of

the generated beam profile was avoided.

Figure 5.6: 1D Airy beam generation. a) Phase distribution (a cubic function)
displayed at the SLM. b) 1D Airy beam generated by the setup shown in Fig.5.5.

The 1D Airy beam is formed in image plane of the Fourier lens (FL). Since the

1The SLM modulation range strongly depends on wavelength. The wavelength of 532 nm
provides nearly optimal functioning (maximum modulation range).
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5.2 Generation and characterization of waveguide arrays

SLM generates multitude of Airy beams1, the spatial Fourier filter (FF) was placed

in the focal plane of the FL in order to pass only one of them. The beam is then

focused by imaging system made of two microscope objectives (MO) at the crystal

front face.

The intensity pattern appearing at the exit face of the crystal was recorded

with a CMOS camera (BCi4 CMOS camera, C-Cam Technologies). Simultaneously,

the light intensity distribution along the crystal was provided recording a scattered

light with a CCD camera (Canon EOS 60D) mounted above the crystal. Since its

intensity was very low, the exposition of two minutes was applied.

5.2.2 2D arrays

For the generation of the two-dimensional Fibonacci waveguide array the Ce:SBN is

used. The mass fraction of CeO2 is 0.2 %, providing a good photorefractive response

and a low absorption. Dimensions of the crystal are 5 mm× 5 mm× 20 mm. The

c-axis (extraordinary axis) is lined along the x direction, as shown in Fig.5.7b. The

copper electrodes for crystal voltage biasing along extraordinary axis are placed on

its y − z sides. In this configuration a z-axis directed light beam, if the crystal is

voltage biased (usually 1− 2 kV/cm), makes a refractive index change proportional

to the beam intensity by means of the photorefractive effect.

The reason for using SBN in this experiment is its large electro-optic anisotropy,

i.e. significant difference between relevant electro-optic coefficients (Efremidis et al.,

2002). Namely, the refractive index along the ordinary axis is no(@ 514.5 nm) = 2.36

and along the extraordinary one is ne(@ 514.5 nm) = 2.33, and the relevant electro-

optic coefficients of this crystal are r33 = 235 pm/V and r13 = 47 pm/V (Ewbank

et al., 1987). If propagated in z-direction an y-polarized wave will see a refractive

index

n′o
2 = n2

o − n4
or13Esc, (5.6)

while an x-polarized wave will see a refractive index

n′e
2 = n2

e − n4
er33Esc, (5.7)

where Esc~ex is the space-charge field generated by the external bias (Efremidis et

al., 2002).

1SLM display behaves as 2D diffraction lattice.
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5.2 Generation and characterization of waveguide arrays

When a light beam propagates in the z-direction and external voltage is applied,

the photorefractive effect occurs, which means generation of free charge carriers,

their redistribution by external electric field and at the end relaxation, forming the

space-charge field and eventually a refractive index change. If the beam is ordinary

polarized, the refractive index changes according to Eq.5.6. Since the corresponding

electro-optic coefficient is relatively small, the generated space-charge field changes

the refractive index in very small amount, which in practice can be neglected. It

means that the medium is optically homogeneous for ordinary polarized light, despite

the presence of space-charge field. This is the reason why the ordinary polarized

beams are used for a lattice generation.

Now, if the crystal is excited by extraordinary polarized light beam, a situation is

pretty much different. The refractive index distribution is defined by Eq.5.7, mean-

ing that it follows previously generated space-charge field distribution. Since the

corresponding electro-optic coefficient has the large value, the propagating beam is

strongly affected by photo-induced refractive index profile. This is why the extraor-

dinary polarized beams are used as probing beam. It should be emphasized that the

bias voltage has to be switched off to prevent deterioration of the induced structure.

The ordinary polarized beam used for the induction of a photonic lattice, so-

called a lattice beam, has to be transversely modulated, but of longitudinally trans-

lation invariant intensity distribution. All beams satisfying this condition posses the

sharp δ-like angular spectrum represented by a circle at the Fourier plane (Bouchal,

2003). It means that the lattice beams can be obtained by coherent superposition of

the plane waves axes lie on a conical surface. These kind of beams are in literature

often denoted as the nondiffracting beams.

First lattices realized by this technique were those of the simplest geometries,

such as diamond, square or hexagonal ones (Desyatnikov et al., 2005, 2006, Fleischer

et al., 2003), corresponding with discrete polygonal Fourier spectrum. Since an

arbitrary azimuthal modulation of the Fourier spectrum is allowed, there exist an

infinite number of nondiffracting beams, meaning that more complex lattices can

be induced. In that sense, the photonic Bessel, Mathieu and Weber lattices were

realized (Rose et al., 2012).

Further improvement of this technique is an implementation of an incremental

recording technique for multiplexed hologram storage (Taketomi et al., 1991). Here,

lattice waves of different periodicity are incoherently superimposed, leading to mul-

tiperiodic lattices (Rose et al., 2008). Based on this idea a large variety of complex
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5.2 Generation and characterization of waveguide arrays

photonic lattices were realized (Boguslawski et al., 2012a,b).

Figure 5.7: 2D waveguide array writing. a) Intensity profile of a zero order Bessel
beam, b) Multiplexing of the Bessel beams.

Despite the flexibility provided by the previously mentioned technique, it cannot

be used in this form for 2D Fibonacci lattice generation. The reason is a complete

absence of periodicity in the lattice. That’s why the modified technique, proposed by

Diebel and coworkers in (Diebel et al., 2014), is used. It is based on multiplexing of

nondiffracting Bessel beams (Durnin et al., 1987). The idea is to photo-induce each

lattice site by a zero order Bessel beam (Fig.5.7a). The principle of the technique

is shown in Fig.5.7b.

The scheme of the experimental setup for 2D photonic structures generation is

illustrated in Fig.5.8.

A beam at wavelength of 532 nm, generated by frequency doubled continuous

wave Nd:YAG laser, after appropriate expansion illuminates the first spatial light

modulator (Holoeye Pluto). It acts as a phase spatial light modulator (PSLM)

which means that it writes in a spatial phase distribution onto the illuminating

beam. It is positioned in real space related to the image plane defined by an optical

imaging system consisting of two lenses positioned in the front of SBN crystal. The

second spatial light modulator (Holoeye LC-R 2500), acts as an amplitude spatial

light modulator (ASLM), modifying the intensity distribution of the illuminating

beam. ASLM is positioned in Fourier space related to the image plane, playing a

role of a spectral low-pass filter. All these components generate inducing Bessel

beam with predefined parameters, such as a structural size (width of a central disc)
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5.2 Generation and characterization of waveguide arrays

and a transverse position.

Figure 5.8: Scheme of the experimental setup for 2D waveguide array generation
and diagnostics. L - lens, PH - pinhole, P - polarizer, PSLM - phase spatial light
modulator, ASLM - amplitude spatial light modulator, HWP - half-wave plate, CCD
- camera

The polarizers and the half-wave plate define polarization direction of a beam

passing the crystal. The polarizer P1 provides vertical (x-direction) linear polariza-

tion. The polarizer P2 is mounted on a rotational holder which sets its polarizing

axis in one of two required positions - vertical or horizontal. The half-wave plate,

also mounted on a (different) rotational holder, rotates the polarization vector of the

incident linearly polarized light. Changing the polarization direction of the beam

incident on polarizer P2, one can modulate the intensity of linearly polarized beam

appearing after the polarizer. In the lattice induction process, meaning the succes-

sive generation of the identical Bessel beams at different transverse positions, the

polarization axis of the polarizer P2 is horizontally directed.

The desired lattice is generated by setting the central intensity maximum of the

writing Bessel beam to predefined lattice site positions. A consecutive illumination

of the crystal by the Bessel beam leads to an incoherent superposition of all writing

light fields. The incoherent superposition is a crucial idea of this induction approach,

because coherent superposition, simultaneous generation of the all required beams,

would cause modulation of the field intensity in the z-direction. The illumination

time per one beam is 0.5s, and 10 cycles was performed. A central disc diameter of

the writing Bessel beam is 13 µm. The biasing voltage is 1 kV .

The induced lattice is excited by a Gaussian beam, Fig.5.9. The probe beam

is generated by setting the appropriate phase and amplitude distributions on the

spatial light modulators. The diameter of the beam is 14 µm.

The intensity distributions of probing beams are recorded by a CCD camera

imaging system.
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5.2 Generation and characterization of waveguide arrays

Figure 5.9: The excitation of the 2D Fibonacci lattice by Gaussian beam - a single
site excitation.

A LED is placed above the crystal (not shown in Fig.5.8) in order to erase the

inscribed lattice when diagnostics is complete.
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Chapter 6

Results and discussion

6.1 Light propagation in position modulated 1D

Fibonacci lattice

In this section there would be considered the beam propagation in 1D Fibonacci

waveguide array fabricated in Fe:LNB crystal, launched at different incident posi-

tions. In Fig.6.1 it is shown the refractive index profile of the realized structure.

In numerical simulations it is modeled as n(x) = ns + ∆n
∑N

i=1 e
−(x−xi)2/2σ2

. Here,

ns is a bulk material refractive index, ∆n is an optically induced refractive index

contrast, xi denotes central position of ith waveguide and σ defines a waveguide

width. The two elements of the Fibonacci word, A and B, to the distances between

the central positions of waveguides (xi), a and b are mapped (cf. Fig.6.1). It means

that an array of N waveguides is arranged in such a way that a series of successive

differences (xi−xi−1), i = 2 : N, follow a part Fibonacci word. In this experiment, it

is experimentally realized a waveguide array that represents the following Fibonacci

word: ABAABABAABAABABAABA (the first 20 elements).

Figure 6.1: The refractive index profile of 1D Fibonacci waveguides array

Three incident positions inside waveguides marked by numbers 1, 2, and 3 in

52



6.1 Light propagation in position modulated 1D Fibonacci lattice

Figure 6.2: Light propagation through Fibonacci waveguide arrays. Incident po-
sitions of the excitation beam are inside certain waveguides, marked with numbers
1, 2 and 3 in Fig.6.1. In the first column (a, e, i) the numerically calculated light
intensity distributions along waveguide array are shown. The second column (b, f, j)
presents calculated intensity distributions at the exit face of the structure, while the
third column (c, g, k) presents corresponding experimental results, provided from the
snapshots of the exit face of the crystal (fourth column - d, h, l). Physical parameters:
the crystal length L = 10 mm, refractive index contrast ∆n = 1×10−4, and Gaussian
beam width 10 µm.

Fig.6.1 are chosen. Corresponding light intensity distributions are presented in

the first, second, and third row in Fig.6.2. The first column presents numerically

calculated intensity distribution along the propagation distance, with output profiles

in the second column. The experimental results for the same incident positions are

presented as intensity distributions at the exit face of the crystal (the forth column)

with corresponding profiles in the third column. One can see a very good agreement

with numerically obtained profiles.

Next, the beam propagating characteristics for incident positions between waveg-

uides, marked by numbers 4, 5, and 6 in Fig.6.1, are investigated. The Fig. 6.3 rep-

resents the summary of the the numerical and experimental results for these cases.

The layout of this figure is the same as in Fig.6.2: incident positions 4, 5, and 6

correspond to the results in the first, second, and third row in Fig.6.3, respectively.

Beam diffraction for incident positions between waveguides is more pronounced than

for incident positions inside waveguides (cf. Fig.6.2).
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6.1 Light propagation in position modulated 1D Fibonacci lattice

Figure 6.3: Light propagation through Fibonacci waveguide arrays. Incident posi-
tions of the excitation beam are at the positions between waveguides, marked with
numbers 4, 5 and 6 in Fig.6.1. In the first column (a, e, i) the numerically calculated
light intensity distributions along waveguide array are shown. The second column
(b, f, j) presents calculated intensity distributions at the exit face of the structure,
while the third column (c, g, k) presents corresponding experimental results, provided
from the snapshots of the exit face of the crystal (fourth column - d, h, l). Physical
parameters: the crystal length L = 10 mm, refractive index contrast ∆n = 1× 10−4,
and Gaussian beam width 10 µm.

Next, the beam propagation in Fibonacci waveguide arrays considering longer

propagation distances (L = 100 mm) is studied. In this case, only simulations are

conducted. It is used the effective beam width as a measure of the beam expansion.

Here an averaging (arithmetic mean) of the effective beam widths of more then

a hundred different beams, each of which is obtained by the excitation of one of

the consecutive waveguides, is performed. The reason is a removing of the effects

of the local environment, i.e. the influence of the neighboring waveguides. The

averaged effective beam width is calculated along the propagation distance, and

compared for the Fibonacci waveguide array and three different periodic waveguide

arrays. Separations a and b in the Fibonacci waveguide array are used as periods

d = 16.18 µm and 10 µm for the two periodic waveguide arrays. The third periodic

array is produced in such a way that the same number of waveguides as in the quasi-

periodic array is arranged in periodic manner in the same space (in our geometry,

its lattice period is d = 12.38 µm), aimed as the most appropriate for comparison
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6.1 Light propagation in position modulated 1D Fibonacci lattice

with Fibonacci waveguide array.

Figure 6.4: Comparison between beam diffraction in periodic and quasi-periodic
waveguide arrays. (a) Averaged effective beam widths versus the propagation dis-
tance, for refractive index contrast ∆n = 1 × 10−4. (b) Field intensity of the
beam in longitudinal direction (z) during the propagation for periodic lattice with
d = 12.38 µm. (c) Averaged field intensity distribution for Fibonacci lattice. Crystal
length is L = 100 mm.

Fig.6.4a presents the averaged effective beam width along the propagation dis-

tance for Fibonacci lattice, and the effective beam width for several other periodic

lattices with the same value of refractive index contrast of ∆n = 1×10−4. The beam

propagation in periodic lattice with d = 10 µm shows the strongest discrete diffrac-

tion (with linear increase of effective beam width), followed by periodic lattices with

d = 12.38 µm and d = 16.18 µm, respectively. This represents an expected result,

because shorter lattice constant implies stronger coupling, leading to faster trans-

verse energy transport. The most important result, considering Fig.6.4a, is the fact

that the effective width expansion rate of the beam propagating in the Fibonacci

lattice is notably lower then those propagating in all of three regular lattices (except

in first 1.5 cm, where effective beam with in regular lattice with d = 16.18 µm

is a bit lower because of the weaker coupling between adjacent waveguides in this

lattice). Comparing the beam evolution in Fibonacci and corresponding regular

(d = 12.38 µm) lattice1, one can see that the width in Fibonacci lattice is more

than three times less then the width in the regular one. Besides, the effective beam

width curve corresponding to Fibonacci lattice has slightly concave shape, unlike

the one corresponding to regular lattice which is linear.

1the same number of waveguides at the same space
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The reason is a particular arrangement of the Fibonacci lattice. Namely, the

aperiodicity of waveguide positions, or, equivalently, coupling constants1, tends to

support localized eigenstates, while, the self-similarity can lead to extended eigen-

states. A synergy of these two concurrent trends leads to formation of critical

eigenstates. This explains the significantly lower effective beam width in Fibonacci

lattice comparing to the regular one in one hand, and its undoubted increase, on

the other.

Fig.6.4b presents a field distribution along the propagation distance, for a peri-

odic lattice with d = 12.38 µm, simulated for 10 cm of propagation. The averaged

field distribution for more than hundred of different incident positions in a Fibonacci

lattice is presented in Fig.6.4c.

Figure 6.5: Light propagation in Fibonacci lattice for a higher refractive index con-
trast. (a) Comparison between propagation in waveguide arrays with different refrac-
tive index contrast: averaged effective beam widths versus the propagation distance.
Averaged field intensit distributions for (b) ∆n = 2× 10−4 and (c) ∆n = 4× 10−4.

At the end, the influence of various refractive index contrasts (∆n) on the beam

propagation through Fibonacci waveguide arrays is investigated. Again, the aver-

aged effective width along the propagation distance for each value of ∆n is calcu-

lated. The increase of refractive index contrast makes diffraction suppression more

pronounced (Fig.6.5a): the broadening of the beam becomes almost completely sup-

pressed for longer propagation distances. The averaged intensity distribution, for

more than hundred of different incident positions, is presented for ∆n = 2 × 10−4

in Fig.6.5b, and ∆n = 4 × 10−4 in Fig.6.5c. These should be compared with the

1off-diagonal disorder
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corresponding distribution in Fig.6.4c for ∆n = 1× 10−4. If a refractive index con-

trast is increased, the light energy become more localized in the vicinity of excited

waveguide.

6.2 Light propagation in position modulated 2D

Fibonacci lattice

This section deals with the results of a light propagation through position modulated

2D Fibonacci lattice.

The lattice is realized as the 9 × 9 matrix of identical waveguides with mutual

distances of a = 37.5 µm and b = 23.2 µm (cf. Fig.6.6) by using technique presented

in Section 5.2.2. The ratio of these two values, a/b, approximately equals a value

of the Golden ratio, that is (1 +
√

5)/2. They also lead to an effective waveguide

distance of 32 µm. The effective distance is used as lattice constant of a square

lattice consisting of the same number of waveguides in the same volume as the

Fibonacci lattice. The SBN crystal is 20 mm long, while the initial refractive index,

ns, equals 2.33. Typical refractive index contrast in the vicinity of a lattice site, ∆n,

extracted from comparison of numerical and experimental results, is 3× 10
−5.

Figure 6.6: 2D Fibonacci lattice. a) The ”ideal” lattice (a Gaussian refractive index
profile of a single waveguide), b) The lattice obtained by incoherent superposition of
zeroth order Bessel beams.

The lattice is excited at different input positions, on and between waveguides, in

order to investigate the influence of diverse local conditions on the beam evolution.

An excitation is a Gaussian beam of 14 µm beam waist. The beam power is several

µW so the linear regime is considered. For numerical modeling of the beam evolution

the paraxial wave equation is solved using a split-step method.
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In Fig.6.7 transverse light distributions after 20 mm propagation length for three

different input positions are presented. Top row images present output light distri-

butions experimentally observed at the exit face of the crystal. Bottom row repre-

sents the corresponding distributions obtained by simulations. There is a very good

agreement between experimentally and numerically obtained results.

Figure 6.7: Light propagation through 2D Fibonacci lattice for three different input
positions. Light intensity distributions at the exit face of the crystal. a-c Experimental
results, d-f Numerical results.

In order to verify a potential of the Fibonacci lattice to suppress (or maybe

completely stop) diffraction, the propagation of the probing Gaussian beam in this

lattice is compared with the propagation in a (regular) square lattice.

The square lattice is induced in the same way as the aperiodic one, using the

Bessel beam multiplexing technique. This is because of preservation of a compa-

rability of the two lattices (Fibonacci and regular)1. A calculated refractive index

profile is shown in Fig.6.8a. The central waveguide is excited by a Gaussian beam

of 14 µm beam waist. The intensity distribution at the output face of the crystal

is shown in Fig.6.8b, which is a typical discrete diffraction pattern expected in a

square lattice (cf. (Pertsch et al., 2004)). This matching implies that waveguide-like

1A standard procedure of a square lattice generation in SBN crystal is using the interference
pattern of four coherent plane waves (Efremidis et al., 2002)
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structures appearing between preferred positions (the lattice sites) during the Bessel

beam induction technique process do not significantly affect exciting beam evolu-

tion. Consequently, one can expect that the Fibonacci lattice induced by Bessel

beams affects a propagating light in a very similar way as ”ideal” one (cf. Fig6.6).

Figure 6.8: The square lattice induced by the Bessel beam multiplexing technique.
a) Refractive index profile, b) experimental image of the light distribution at the
crystal output face - one site excitation.

For a quantitative comparison of the transverse probe beam dynamics, it is used

the effective beam width (cf. Section 3.3). To obtain a more comprehensive insight,

the parameter was calculated for a crystals of 80 mm in length. An averaged

effective beam width of the Fibonacci lattice is calculated as the arithmetic mean

of beam widths for 50 different randomly chosen input on-site positions. Instead

of being calculated for each of the 50 beams excited in one large Fibonacci lattice,

the effective width has been calculated for the beams generated by excitation of

the middle lattice sites of 50 different 30 × 30 Fibonacci lattices. In this way, a

much more time efficient calculations had been achieved. The 30 × 30 matrices of

waveguides was considered in order to avoid an influence of the surfaces, because

in the lattice of this size, the excited beams do not reach the bordering waveguides

for the considered length. According to the first neighbors arrangement (mutual

position of the excited and each of eight adjacent waveguides), one can distinguish

three different input positions, shown in the Fig.6.9.

The results are summarized in Fig.6.10. The dotted black line presents effective

beam width in regular lattice,while the red line presents averaged effective beam

width for 50 different input positions. Two gray lines denote extreme widths in

Fibonacci lattice.
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6.2 Light propagation in position modulated 2D Fibonacci lattice

Figure 6.9: Exciting beam input positions according to the first neighbors arrange-
ment

Figure 6.10: The comparison of the effective beam width - 2D Fibonacci lattice vs.
square lattice

The results point out the reduced beam width expansion rate in the aperiodic

lattice compared to the periodic one. In first 10 mm the widths are nearly equal due

to the fact that the most of light energy is located in the excited waveguide. After

10 mm light starts to couple to adjacent waveguides with respect to the excited one.

General uniqueness of propagation conditions (arrangement of waveguides) for every

particular excitation beam, leads to propagation mode diversity, and consequently

to different effective beam width. Despite this diversity, all analyzed modes have

lower value compared to the regular lattice mode. There are few exceptions which

exceed the regular lattice width close to z = 30 mm (cf. Fig.6.10). These are modes

obtained by excitation of lattice sites with initial conditions denoted by number 3
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6.3 Light propagation in refractive index modulated 1D Fibonacci lattice

in Fig.6.9. This is because the light is distributed between few waveguides, so the

aperiodic order doesn’t come to the fore. When the propagation distance becomes

higher than 60 mm, the impact of aperiodic order starts to affect the propagation

strongly, so widths of all modes become significantly lower than the reference one.

6.3 Light propagation in refractive index modu-

lated 1D Fibonacci lattice

In this section 1D Fibonacci lattice of equidistant waveguides with modulated re-

fractive index contrast (diagonal disorder) is considered numerically. It is compared

to a random lattice relating their localization properties.

The refractive index profiles of these two lattices are shown in Fig.6.11. The

Fibonacci lattice consists of waveguides with two different values of refractive index

contrasts, ∆n, higher and lower one, corresponding to symbols A and B in Fibonacci

word, respectively (cf. Chapter 2). The refractive index contrast of waveguides in the

random lattice follows uniform distribution. Both of the lattices have the same mean

value of waveguides’ refractive index contrasts, ∆n0 (dashed red line in Fig.6.11).

The lattices consisting of N = 151 waveguides positioned equidistantly, with

the period of 11 µm. The width of a waveguide is 4 µm. Refractive index of

the medium, ns, equals 1.461, while the mean value of waveguides’ refractive index

contrasts equals 0.001. The lattices are 10 cm long.

Figure 6.11: The refractive index profile of diagonal disordered Fibonacci and ran-
dom lattice. a) Fibonacci lattice, b) random lattice.

As a measure of ”aperiodicity level” in a lattice it is used the relative standard

deviation of refractive index contrast, σrel = 1
∆n0

√
1
N

∑N
i=1(∆ni −∆n0)2, where ∆ni

denotes refractive index contrast of a single waveguide.

1Approximate value of fused silica refractive index @633 nm
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6.3 Light propagation in refractive index modulated 1D Fibonacci lattice

As a structure excitation it is used Gaussian beam of 5 µm in waist at wave-

length of 632.8 nm. The effective beam width is calculated for several values of σrel:

5, 10, 20, 30 and 40 percents1, in Fibonacci, as well as in random lattices. It is per-

formed an averaging over 128 different incident beam positions. Fig.6.12 summarizes

these results.

Figure 6.12: Effective beam width in 1D Fibonacci and random lattice for different
levels of aperiodicity. a) Fibonacci lattice, b) Random lattice

In Fig.6.12a the effective beam width in random lattice is presented. σrel = 0%

denotes a regular (periodic) lattice, in which the effective beam width increases

linearly (it is round 400 µm at 10 cm), here acting as a reference for estimation of

diffraction suppression. It is obvious that the random 1D lattice necessary leads to

transverse localization (all curves go to saturation), and as σrel increases, eventual

effective beam width decreases, as it is presented in Chapter 2.

In the Fibonacci lattice one can recognize a similar behavior - as aperiodicity

increases, the effective beam width decreases, as it is presented in Fig.6.12b. But,

unlike disordered lattice which is characterized only by localized eigenstates, the Fi-

bonacci lattice posses self-similar properties, thus supporting extended eigenstates.

Interference of aperiodicity and self-similarity leads to formation of critical eigen-

states. When σrel = 5% these two properties are balanced in a sense, so in one hand

the transverse spreading of the beam is considerably slower than in regular lattice,

but on the other, the effective beam width curve doesn’t approach saturation. In

other cases aperiodicity dominantly affects transverse transport properties, so all

curves achieve a kind of saturation, up to an irregular oscillatory behavior.

Next, an impact of disorder superimposed to the Fibonacci lattice on the trans-

verse transport properties is considered. In Fig.6.13 the effective beam width in

1In Fig.6.11 the lattices with σrel = 20% are shown.
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6.4 Airy beam propagation in 1D regular lattice with defect

Figure 6.13: Effective beam width in 1D Fibonacci lattice for different levels of
superimposed disorder - σrel(Fibonacci) = 5%

quasiperiodic lattice with σrel(Fibonacci) = 5% for different degree of disorder,

σrel(Rand), is shown.

The effective beam width in the lattices with small degree of disorder, σrel(Rand) =

0.2 and σrel(Rand) = 0.5, exceeds the same parameter in the pure quasicrystal lat-

tice. This is, as suggested in Levi et al. (2011), the result of coupling of the highly

localized states near the pseudogap (cf. Section 2.2) to one another, leading to the

states which are broader and less localized. With further increasing of disorder de-

gree, σrel(Rand) = 1.0 and σrel(Rand) = 2.0, the effective beam width falls bellow

the initial value (σrel(Rand) = 0). All this is due to the fact that the disorder makes

broader eigenstates (which support transverse transport) more localized, in a similar

way as in the case of a regular lattice.

6.4 Airy beam propagation in 1D regular lattice

with defect

Here, the impact of 1D photonic lattices to self-banding and non-diffraction prop-

erties of 1D Airy beam was examined. Three different lattices were considered: the

regular (equidistantly ordered identical waveguides), the regular with positive defect

(one of the waveguides has doubled refractive index contrast) and the regular with

negative defect (one waveguide left out) one. The corresponding refractive index
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6.4 Airy beam propagation in 1D regular lattice with defect

profiles are presented in Fig.6.14, where d = 20 µm is a period of lattices, and ∆n

is refractive index contrast. At the same Figure, the intensity distribution of ex-

citing Airy beam relative to the previously mentioned lattices are shown. A width

of the main lobe in Airy beam is 10 µm. The beam propagation was investigated

experimentally (cf. Section 5.2.1) and numerically.

Figure 6.14: Airy beam propagation - refractive index profiles. a) Regular lattice,
b) Regular lattice with positive defect and c) Regular lattice with negative defect

First, to compare appropriate effects we test the Airy beam propagation in the

crystal without waveguides, i.e. in homogeneous medium. There is a typical Airy

beam bending with a transverse displacement at the output, with no diffraction

evident in the main lobe, observed both experimentally, Fig.6.15a and b, and nu-

merically Fig.6.15c, after 10 mm of propagation.

Next, keeping all conditions unchanged, the Airy beam is launched in the regular

lattice, with the main lobe positioned in one waveguide (an incident waveguide), as

it is shown in Fig.6.14a. In Fig.6.15e it is possible to notice that the beam shape is

to a large degree preserved, keeping nearly non-diffraction properties. Coupling of

main Airy beam lobe to a lattice site gives completely opposite result to coupling

of a Gaussian beam (cf. Fig.3.1b). Besides, one can see that the bending of the

main lobe of the Airy beam is slightly weaker, Fig.6.15d-f, in comparison with the

uniform case, Fig.6.15a-c. This implies that by changing refractive index contrast

of the regular lattice, one can shift to a certain extent the output position of the

Airy beam downward, giving the possibility to control an optical energy delivering

position.

It is also studied the influence of defects on the Airy beam propagation, and its

potential for active control and manipulation of the beam acceleration. The results,
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6.4 Airy beam propagation in 1D regular lattice with defect

Figure 6.15: Airy beam propagation in uniform medium and in the regular lattice.
Top row - homogeneous medium, bottom row - the regular lattice. a, d - experiment,
longitudinal intensity profiles, b, e - experiment, corresponding back face intensity
profiles, c, f - numerics, longitudinal intensity profiles

obtained with the same Airy beam as before, but using two different types of lattices

- one with negative and one with positive defect (cf. Fig.6.14) are presented. In

both cases the main lobe of the Airy beam excites the defect guide. In the case

of negative defects a strong beam repulsion is observed, Figs.6.16a-c. The Airy

Figure 6.16: Airy beam propagation in the lattice with negative and positive defect.
Top row - the lattice with negative defect, bottom row - the lattice with positive defect.
a, d - experiment, longitudinal intensity profiles, b, e - experiment, corresponding back
face intensity profiles, c, f - numerics, longitudinal intensity profiles
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6.4 Airy beam propagation in 1D regular lattice with defect

beam propagation is drastically changed in the presence of a positive defect so the

formation of simple localized waves is possible with appropriate positive defects

Fig.6.16d-f.
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Chapter 7

Conclusions and outlook

The study presented in this thesis is set out to explore the behavior of light prop-

agating in the 1D and 2D Fibonacci lattices, i.e. the effect of this specific order

on diffraction of exciting light beam. The main questions are: does this structure

suppress diffraction compared to regular lattice, can it create localization, how the

dimensionality affects these issues, and does the disorder superimposed to the Fi-

bonacci lattice inhibit suppression of diffraction?

The second topic of interest here is the impact of a 1D regular lattice on the

non-diffracting Airy beam, raising questions: does the regular lattice disrupt non-

diffractive property and parabolic trajectory of the beam, and how the presence of a

lattice defect affects the trajectory? These issues were explored both, experimentally

and numerically.

In the experiment, the 1D lattices, the Fibonacci and the regular one (with/without

a defect), were generated in Fe:LNB crystal by a direct laser writing technique. The

2D Fibonacci lattice was optically induced by incoherent superposition of Bessel

beams in Cr:SBN. In order to perform numerical simulations, a software based on

the Beam Propagation Method has been developed. For both crystals, the light

intensity profiles at the exit facet were recorded on a CCD sensor and compared

with numerical results. The comparisons showed a very good agreement between

the predictions and experimental results. Results obtained from simulations have

been used to explain light beam evolution in a more detailed manner.

It has been shown that the 1D spatially modulated Fibonacci lattice does sup-

press diffraction considerably compared to the corresponding regular lattice. For a

relatively small refractive index contrast the effective beam width increases during

the propagation implying that true localized states (those that are characteristic of

67



disordered systems) cannot be achieved. The increase of a refractive index contrast

leads to a strong diffraction suppression so the states become almost completely

localized.

the 2D spatially modulated Fibonacci lattice, similar to the 1D one, does sup-

press diffraction compared to corresponding regular lattice, but in this case the

suppression is not as intense as in 1D case.

A 1D refractive index contrast modulated Fibonacci lattice affects diffraction in

a similar way to a position modulated one. If the modulation of refractive index

contrast is relatively small, diffraction is suppressed to a large degree, but the effec-

tive beam width increases during the propagation, so it do not come to localization.

But if refractive index contrast modulation is high enough, the effective beam width

curve reaches saturation. Even more, the effective width of achieved localized states

in Fibonacci lattice is similar to effective width of localized states in corresponding

disordered lattice. In addition, it is shown that slightly disordered Fibonacci lat-

tice with relatively small refractive index contrast modulation inhibits diffraction

suppression.

Considering the propagation of the Airy beam through the regular 1D lattice,

it has been shown that its transverse beam profile is slightly disrupted and the

transverse acceleration is reduced, but the energy stays localized. The presence of

defect strongly affects the propagation.

The experiments presented in this thesis have certain deficiency. Despite the

flexibility that photorefractive materials provide (multiple writing and erasing of the

structures), commercially available samples were not long enough so the localized

states could not be demonstrated experimentally. Additionally, a refractive index

profile cannot be easily engineered or controlled within these materials. The issues

could be overcome by the use of inexpensive silica glass of arbitrary dimensions, and

femtosecond laser writing technique. In addition, glass samples could be excited

with very strong light beams, which would then allow one to study aforementioned

problems in nonlinear regime.

The research presented in the thesis can be extended to studies of other deter-

ministic aperiodic photonic lattices, such as Thue-Morse, Rudin-Saphiro, etc. It

could give us new fundamental understanding of wave transport properties in these

specially designed structures. This would open new engineering possibilities in light

flow control, and perhaps offer an additional flexibility in applications (optical sig-

nals routing, image transmission, etc.).
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Appendix A

Difference equations of implicit

FD-BPM based on

Crank-Nicolson algorithm

When the domain is discretized (Fig.4.1), one can introduce the substitutions x =

p∆x, y = q∆y and z = l∆z, where p = 1, . . . , P , q = 1, . . . , Q and l = 1, . . . , L, and

P,Q and L are the numbers of elements of the computational domain in x, y and z

direction, respectively. Also, the slowly varying field value, u(x, y, z) is written as

ulp,q. Than, the left-hand side of equation 4.5 can be represented as

∂u

∂z
=
ul+1
p,q − ulp,q

∆z
. (A.1)

The right-hand side of the equation 4.5 involves the second-order partial deriva-

tives of x and y, and can be written as

∂2u

∂x2
=

1

2

{
ul+1
p+1,q − 2ul+1

p,q + ul+1
p−1,q

∆x2
+
ulp+1,q − 2ulp,q + ulp−1,q

∆x2

}
(A.2a)

∂2u

∂y2
=

1

2

{
ul+1
p+1,q − 2ul+1

p,q + ul+1
p−1,q

∆y2
+
ulp+1,q − 2ulp,q + ulp−1,q

∆y2

}
(A.2b)

where the average discretization at z = l∆z and z = (l+1)∆z is taken. This method

of representation of the derivatives is called the Crank-Nicolson method. The rest

part of the right-hand side of equation4.5 is represented as
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(k2 − k2
) = k2

0

{
(nl+1

p,q )2 + nlp,q)
2

2
− n2

r

}
ul+1
p,q + ulp,q

2
. (A.3)

Substitution of previous for expressions in equation 4.5, dividing it with k2
0 and

introducing new variables ∆X = k2
0x, ∆Y = k2

0y and ∆Z = k2
0z, gives

−
ul+1
p−1,q

2∆X2
+
{
−bul+1

p,q−1 + ap,qu
l+1
p−1,q − bul+1

p,q+1

}
−
ul+1
p+1,q

2∆X2
=

−
ulp−1,q

2∆X2
+
{
−bulp,q−1 + ap,qu

l
p−1,q − bulp,q+1

}
−
ulp+1,q

2∆X2
, (A.4)

where

b = 1
2∆Y 2 ,

ap,q = 2jnr

∆Z
+ 1

∆X
+ 1

∆Y
− 1

2

{
(nl+1

p,q )2+(nl
p,q)2

2
− n2

r

}
,

cp,q = −ap,q + 4jnr

∆Z
.

(A.5)

At each z step, one obtains P × Q coupled equations. What follows is solving of

these equations in matrix form.

First, a vector involving the field values in y-direction for each x position, i.e.

each p, is formed:

ulp =


ulp,1

...

ulp,Q.

 (A.6)

Next, a set of all Q equations A.4 for a given p can be written in a compact form of

a matrix difference equation along x-direction as

−Bul+1
p−1 + Apu

l+1
p −Bul+1

p+1 = +Bulp−1 + Cpu
l
p + Bulp+1, (A.7)

where
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B = 1
2∆X2 I,

Ap =



ap,1 −b 0 · · · 0 0

−b ap,2 −b · · · 0 0

0 −b ap,3
. . . 0 0

...
...

. . . . . . −b 0

0 0 0 −b ap,Q−1 −b
0 0 0 0 −b ap,Q


,

Cp =



cp,1 b 0 · · · 0 0

b cp,2 b · · · 0 0

0 b cp,3
. . . 0 0

...
...

. . . . . . b 0

0 0 0 b cp,Q−1 b

0 0 0 0 b cp,Q


,

(A.8)

and I is the Q × Q identity matrix. Now, all of P equations A.7 along x-direction

are assembled in a matrix form:

Aul+1 = Cul (A.9)
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where

Ap =



A1 −B 0 · · · 0 0

−B A2 −B · · · 0 0

0 −B A3
. . . 0 0

...
...

. . . . . . −B 0

0 0 0 −B AP−1 −B

0 0 0 0 −B AP


,

Cp =



C1 B 0 · · · 0 0

B C2 B · · · 0 0

0 B C3
. . . 0 0

...
...

. . . . . . B 0

0 0 0 B CP−1 B

0 0 0 0 B CP


,

ul =


ul1
...

ulP

 .

(A.10)

A and C are square matrices of the dimensions PQ×PQ, and ul is column-matrix of

the length PQ, containing the field value at every pixel of a computational window

at the position l in z-direction.

Previously introduced technique was designed for two-dimensional problems1. In

many practical situations, the one-dimensional approach is sufficient for estimation

of behavior of optical structures. In this situation, corresponding equations become

b = 1
2∆X2 ,

ap = 2jnr

∆Z
+ 1

∆X
− 1

2
(np − nr),

cp = −ap + 4jnr

∆Z

(A.11)

and

Aul+1 = Cul (A.12)

where

1Two transverse dimensions.
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A =



a1 −b 0 · · · 0 0

−b a2 −b · · · 0 0

0 −b a3
. . . 0 0

...
...

. . . . . . −b 0

0 0 0 −b aP−1 −b
0 0 0 0 −b aP


,

C =



c1 b 0 · · · 0 0

b c2 b · · · 0 0

0 b c3
. . . 0 0

...
...

. . . . . . b 0

0 0 0 b cP−1 b

0 0 0 0 b cP


.

(A.13)

In this case A and C are square matrices of the dimensions P ×P , and ul is column-

matrix of the length P . This approach requires significantly less computer resources

than two-dimensional one.
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Maciá, E. and Dominguez-Adame, F. (1996), Physical nature of critical wave func-

tions in Fibonacci systems, Phys. Rev. Lett. 76, 2957–2960. 7, 23

Mafi, A. (2015), Transverse Anderson localization of light: a tutorial, Adv. Opt.

Photonics 7, 459–515. 4, 31

Mahler, L., Tredicucci, A., Beltram, F., Walther, C., Faist, J., Beere, H. E., Ritchie,

D. A. and Wiersma, D. S. (2010), Quasi-periodic distributed feedback laser, Na-

ture Photon. 4, 165–169. 9

81



BIBLIOGRAPHY

Mandelbrot, B. (1967), How long is the coast of Britain? Statistical self-similarity

and fractional dimension, Science 156, 636–638. 15

Mandelik, D., Eisenberg, H. S., Silberberg, Y., Morandoti, R. and Aitchison, J. S.

(2003), Band-gap structure of waveguide arrays and excitation of Floquet-Bloch

solitons, Phys. Rev. Lett. 90, 053902(4pp). 29, 30

Martin, L., Giuseppe, G. D., Perez-Leija, A., Keil, R., Dreisow, F., Heinrich, M.,

Szameit, S. N. A., Abouraddy, A. F., Christodoulides, D. N. and Saleh, B. E. A.

(2011), Anderson localization in optical waveguide arrays with off-diagonal cou-

pling disorder, Opt. Exp. 19, 13636–13646. 30

Mathis, A., Courvoisier, F., Froehly, L., Furfaro, L., Jacquot, M., Lacourt, P. A.

and Dudley, J. M. (2012), Micromachining along a curve: femtosecond laser mi-

cromachining of curved profiles in diamond and silicon using accelerating beams,

Appl. Phys. Lett. 101, 071110(3pp). 11

Merlin, R., Bajema, K., Clarke, R., Juang, F. Y. and Bhattacharya, P. K. (1985),

Quasiperiodic GaAs-AlAs heterostructures, Phys. Rev. Lett. 55, 1768–1770. 6

Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S. and Silberberg, Y.

(1999), Experimental observation of linear and nonlinear optical Bloch oscilla-

tions, Phys. Rev. Lett. 83, 4756–4759. 10

Nee, I., Müller, M., Buse, K. and Krätzig, E. (2000), Role of iron in lithium-niobate

crystals for the dark-storage time of holograms, J. Appl. Phys. 88, 4282–4286. 42

Notomi, M., Suzuki, H., Tamamura, T. and Edagawa, K. (2004), Lasing action due

to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose

lattice, Phys. Rev. Lett. 92, 123906(4pp). 8

Okamoto, K. (2006), Fundamentals of Optical Waveguides, Elsevier Inc. 33, 34

Peithmann, K., Wiebrock, A. and Buse, K. (1999), Photorefractive properties of

highly-doped lithium niobate crystals in the visible and near-infrared, Appl. Phys.

B 68, 777–784. 42

Peltier, M. and Micheron, F. (1977), Volume hologram recording and charge transfer

process in Bi12SiO20 and Bi12GeO20, J. Appl. Phys 48, 3683. 41

82



BIBLIOGRAPHY

Pertsch, T., Dannberg, P., Elflein, W., Bräuer, A. and Lederer, F. (1999), Opti-
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