
Univerzitet u Beogradu

Elektrotehni£ki fakultet

Mirjana �. Stojilovi¢

METODA PROJEKTOVANJA

NAMENSKIH PROGRAMABILNIH

HARDVERSKIH AKCELERATORA

Doktorska disertacija

Beograd, 2013

University of Belgrade

School of Electrical Engineering

Mirjana �. Stojilovi¢

A METHOD FOR DESIGNING

DOMAIN-SPECIFIC

RECONFIGURABLE ARRAYS

Doctoral Dissertation

Belgrade, 2013

Mentor:

dr Lazar Saranovac, vanredni profesor,

Univerzitet u Beogradu � Elektrotehni£ki fakultet

�lanovi komisije:

dr Lazar Saranovac, vanredni profesor,

Univerzitet u Beogradu � Elektrotehni£ki fakultet

dr Jelena Popovi¢ Boºovi¢, docent

Univerzitet u Beogradu � Elektrotehni£ki fakultet

dr Rastislav Struharik, docent

Univerzitet u Novom Sadu � Fakultet tehni£kih nauka

dr Predrag Pejovi¢, redovni profesor

Univerzitet u Beogradu � Elektrotehni£ki fakultet

dr Milan Ponjavi¢, docent

Univerzitet u Beogradu � Elektrotehni£ki fakultet

Datum odbrane:

To my parents, for their immense love and support...

METODA PROJEKTOVANJA

NAMENSKIH PROGRAMABILNIH

HARDVERSKIH AKCELERATORA

Rezime—Namenski računarski sistemi se najčesće projektuju tako da mogu da po-

drže izvršavanje većeg broja željenih aplikacija. Za postizanje što veće efikasnosti,

preporučuje se korišćenje specijalizovanih procesora Application Specific Instruction

Set Processors–ASIPs, na kojima se izvršavanje programskih instrukcija obavlja u za to

projektovanim i nezavisnim hardverskim blokovima (akceleratorima). Glavni razlog za

postojanje nezavisnih akceleratora jeste postizanje maksimalnog ubrzanja izvršavanja

instrukcija. Med̄utim, ovakav pristup podrazumeva da je za svaki od blokova potrebno

projektovati integrisano (ASIC) kolo, čime se bitno povećava ukupna površina proce-

sora. Metod za smanjenje ukupne površine jeste primena Datapath Merging tehnike na

dijagrame toka podataka ulaznih aplikacija. Kao rezultat, dobija se jedan programabilni

hardverski akcelerator, sa mogućnosću izvršavanja svih željenih instrukcija. Med̄utim,

ovo ima negativne posledice na efikasnost sistema.

Često se zanemaruje činjenica da, usled veoma ograničene fleksibilnosti ASIC hard-

verskih akceleratora, specijalizovani procesori imaju i drugih nedostataka. Naime, u

slučaju izmena, ili prosto nadogradnje, specifikacije procesora u završnim fazama pro-

jektovanja, neizbežna su velika kašnjenja i dodatni troškovi promene dizajna. U ovoj

tezi je pokazano da zahtevi za fleksibilnošću i efikasnošću ne moraju biti med̄usobno

isključivi. Demonstrirano je je da je moguce uneti ograničeni nivo fleksibilnosti hard-

vera tokom dizajn procesa, tako da dobijeni hardverski akcelerator može da izvršava

ne samo aplikacije definisane na samom početku projektovanja, već i druge aplikacije,

pod uslovom da one pripadaju istom domenu. Drugim rečima, u tezi je prezentovana

metoda projektovanja fleksibilnih namenskih hardverskih akceleratora. Eksperimen-

v

talnom evaluacijom pokazano je da su tako dobijeni akceleratori u većini slučajeva

samo do 2× veće površine ili 2× većeg kašnjenja od akceleratora dobijenih primenom

Datapath Merging metode, koja pritom ne pruža ni malo dodatne fleksibilnosti.

Ključne reči: Arhitektura procesora, CGRA, fleksibilnost, FPGA, hardverski akceleratori,

rekonfigurabilnost, specijalizacija.

Naučna oblast: Tehničke nauke – elektrotehnika.

Uža naučna oblast: Elektronika.

UDK broj: 621.3.

vi

A METHOD FOR DESIGNING

DOMAIN-SPECIFIC

RECONFIGURABLE ARRAYS

Abstract—Typically, embedded systems are designed to support a limited set of target

applications. To efficiently execute those applications, they may employ Application

Specific Instruction Set Processors (ASIPs) enriched with carefully designed Instructions

Set Extension (ISEs) implemented in dedicated hardware blocks. The primary goal

when designing ISEs is efficiency, i.e. the highest possible speedup, which implies

synthesizing all critical computational kernels of the application dataflow graphs as

an Application Specific Integrated Circuit (ASICs). Yet, this can lead to high on-chip

area dedicated solely to ISEs. One existing approach to decrease this area by paying

a reasonable price of decreased efficiency is to perform datapath merging on input

dataflow graphs (DFGs) prior to generating the ASIC.

It is often neglected that even higher costs can be accidentally incurred due to the lack

of flexibility of such ISEs. Namely, if late design changes or specification upgrades hap-

pen, significant time-to-market delays and nonrecurrent costs for redesigning the ISEs

and the corresponding ASIPs become inevitable. This thesis shows that flexibility and

efficiency are not mutually exclusive. It demonstrates that it is possible to introduce a

limited amount of hardware flexibility during the design process, such that the resulting

datapath is in fact reconfigurable and thus can execute not only the applications known

at design time, but also other applications belonging to the same application-domain.

In other words, it proposes a methodology for designing domain-specific reconfigurable

arrays out of a limited set of input applications. The experimental results show that

resulting arrays are usually around 2× larger and 2× slower than ISEs synthesized using

datapath merging, which have practically null flexibility beyond the design set of DFGs.

vii

Key words: CGRA, datapath, domain-specific customization, flexibility, FPGA routing.

Scientific area: Technical sciences, Electrical engineering.

Specific scientific area: Electronics.

UDK number: 621.3.

viii

Contents

List of figures xi

List of tables xvi

1 Introduction 1

1.1 The Problem . 3

1.2 Structure . 9

2 Background and Related Work 11

2.1 Resource Sharing in Datapaths . 11

2.2 Design Optimizations by Regularity Extraction 15

2.3 Increasing Flexibility through DFG Generalizations 17

2.4 Domain-Specific Arrays . 19

3 Design Framework Overview 23

3.1 Design Flow . 24

3.2 Dataflow Graph Represenation . 27

3.2.1 The Mimosys Clarity tool . 28

3.2.2 Dataflow Graph File Format . 29

4 Array Column Generation 35

4.1 Creating Shortest Common Supersequences 37

4.2 Creating Minimum Area Supersequences . 39

4.3 Algorithm Complexity . 42

ix

Contents

5 Array Generation 45

5.1 Method for Determining the Array Size . 46

5.2 Related Work in Graph-Based Application-Mapping 47

5.2.1 Spatial Mapping Algorithm for Heterogeneous CGRAs 49

5.2.2 Split & Push Kernel Mapping Algorithm 52

5.2.3 Edge-Centric Modulo Scheduling . 53

5.2.4 Graph-Minor Approach . 54

5.3 DFG Placement onto Domain-Specific Arrays 56

5.3.1 Laying Out Graphs with dot . 57

5.3.2 Assigning Nodes to Rows . 61

5.3.3 Assigning Nodes to Columns . 64

5.4 Oversizing The Number of Columns . 67

6 Routing Network Design 71

6.1 Island-Style FPGA Architecture . 74

6.2 Method for Determining the Channel Width 77

6.3 DFG Placement Using VPR . 77

6.3.1 Circuit Netlist (.net) Format . 79

6.3.2 Reconfigurable Datapath Architecture (.xml) Format 82

6.3.3 Circuit Placement (.p) Format . 89

6.4 DFG Routing Using VPR . 91

6.5 Oversizing The Routing Channels . 93

7 Experimental Evaluation 95

7.1 Experimental Setup . 96

7.2 Comparison of Path Fusion Algorithms . 98

7.3 Array Generality Estimation . 100

7.4 Array Dimensions and Utilization . 104

7.5 Routing Network Characteristics . 105

7.6 Effects of Domain Grouping on Generality and Area 106

x

Contents

7.7 Area/Delay Oversize Compared to ASIC . 109

7.8 Area/Delay Oversize Compared to Datapath Merging 112

8 Conclusions 117

Bibliography 134

Biography 135

Biografija 137

xi

List of Figures

1.1 Dataflow graphs corresponding to (a) 16b complex finite impulse response

filter (D1) and (b) 16b least mean square adaptive filter (D2) [TI03a]. 4

1.2 Dataflow graph D1,2 obtained by merging D1 and D2 by sharing the se-

quence {MU L1, ADD1, ADD3, ADD4}. 4

1.3 The DFG D1,2 with the connections and operators used by (a) D1 and (b)

D2 shown highlighted. 5

1.4 Dataflow graph D1,2 obtained by further merging D1 and D2 by sharing

the sequences {MU L2, ADD2} and {MU L10, ADD7} from Figure 1.2. . . . 6

1.5 The DFG D1,2 from Figure 1.4 with the connections and operators used by

(a) D1 and (b) D2 shown highlighted. 7

1.6 DFG D3 corresponding to a 3×3 Sobel filter [TI03b]. 8

2.1 (a) Sample DFG from two-pixel sum of absolute differences. (b) Sample

DFG from radix-2 FFT. (c) A typical result after merging (a) and (b). 12

2.2 (a) An extracted dataflow graph of the 16b least mean square adaptive

filtering application [TI03a]. (b) A path, (c) a subsequence, and (c) a

substring of the path. 14

2.3 (a) An extracted dataflow graph of the IIR filtering application [TI03a]. (b)

Two different patterns selected: MUL–ADD and LSR–ADD. (c) MUL–ADD

pattern from (b) enlarged to contain one more multiplier. (d) LSR–ADD

pattern from (a) enlarged to ADD–LSR–ADD, but without improving the

coverage of the graph. 16

xiii

List of Figures

2.4 A block diagram of a single cell in RaPiD architecture. 20

3.1 The design flow to synthesize domain-specific datapaths. 25

3.2 Mimosys Clarity flow. 28

3.3 A DFG corresponding to 3 × 3 convolution. 29

4.1 Two sample dataflow graphs from (a) a two pixels sum of absolute differ-

ences and (b) radix-2 FFT butterfly. (c) All paths identified in these two

DFGs. (d) An example supersequence. (e) Every DFG path is a subse-

quence of the supersequence. 36

4.2 An example illustrating the steps of the algorithm by Jiang et al. [JL95] to

find the shortest common supersequence (SSeq) based on Majority Merge

(MM) heuristic. 38

4.3 Steps of the novel algorithm for finding the shortest common superse-

quence based on weighted majority merge (WMM) heuristic [BMS98]. . . 40

4.4 Steps of the algorithm based on reusing MACSeq metric of graph-merging

algorithms. 41

5.1 (a) An example of the application kernel. (b) One possible mapping of the

kernel in a) onto a 4×4 CGRA. 48

5.2 (a) The kernel tree of the complex update application from DSPStone

benchmarks [ŽVSM97]. (b) Kernel tree after covering. (c) Configuration tree. 51

5.3 (a) The kernel tree of the complex update application from DSPStone

benchmarks [23]. (b) Kernel tree after covering. (c) Configuration tree. . . 53

5.4 Graph text file example. 59

5.5 A DFG corresponding to 3 × 3 convolution. The graph text file in Figure 5.4

corresponds to this graph, drawn using dot. 59

5.6 Optimization of row utilization for binary trees. 63

5.7 ssigning nodes of a subgraph for placement. 63

5.8 The placement process. 65

xiv

List of Figures

5.9 (a) The basic block extracted from 32b Inverse Two-dimensional DCT (Ta-

ble 7.1) is laid out using dot and appropriate constraints and parameters

to suggest a detailed placement on the array. (b) The suggested placement

of the DFG in (a) on a reconfigurable array, after rounding and scaling the

node coordinates suggested by dot. 68

6.1 (a) A typical CGRA routing network architecture. (b) An island-style FPGA. 72

6.2 An island-style FPGA architecture shown in details. 75

6.3 Routing network parameters. 76

6.4 FPGA switch block topologies. (a) Disjoint switch block[LB93]. (b) Univer-

sal switch block [CWW96]. (c) Wilton switch block [Wil97]. 76

6.5 (a) The content of a functional block and (b) its description in the netlist file. 80

6.6 The connection between routing channels and logic block input pins. . . . 84

6.7 Directional switch block [GEMA04]. 86

6.8 An example of the placement the 3 × 3 convolution DFG shown in Fig-

ure 5.4 that corresponds to the placement file given in the text. 90

6.9 (a) The basic block extracted from 32b Inverse Two-dimensional DCT (Ta-

ble 7.1) is laid out using dot and appropriate constraints and parameters

to suggest a detailed placement on the array. (b) The DFG placed and

routed on a reconfigurable array using VPR. 94

7.1 The ratio between the area of the supersequence generated using the al-

gorithm based on reusing the MACSeq and the area of the supersequence

generated using the modified WMM algorithm. 99

7.2 Generality of the array for different combinations of domains. 108

7.3 The area of the array generated for each individual domain and the com-

binations of any two, three, or four domains, normalized to the area of the

array created for all domains at once. 108

7.4 The effect of dividing the input set of DFGs into two, three, or four sets on

the total area needed to accommodate the arrays. 109

xv

List of Figures

7.5 Area/delay ratio of the arrays generated from all DFGs in the group except

the removed DFG, with respect to an ASIC design of the DFG removed

from the group. 112

7.6 Area/delay ratio of the arrays generated from all DFGs in the group, with

respect to those of the datapath obtained by merging the same DFGs. . . . 114

xvi

List of Tables

3.1 Dataflow Graph File Format . 30

7.1 Data-flow graphs covering classical signal and image processing compu-

tations [TI03a, TI03b, TI10, EEM06, Exp]. 96

7.2 Loop unrolling factors and total number of DFG nodes. 97

7.3 DFGs distributed in groups of different size. 98

7.4 Supersequence length compared to the length of the longest path in a graph.100

7.5 Generality for various groups of benchmarks. 102

7.6 Array size, channel width, and area utilizations for various benchmarks. . 105

xvii

1 Introduction

Embedded systems often use specialized hardware accelerators to improve performance

and reduce energy consumption [Smi97, IL06], especially for applications involving

signal and video processing, communications, and computer vision, among others.

These accelerators can be either designed and synthesized for each target application

separately, or their hardware implementations can be merged into one reconfigurable

accelerator to reduce total die area [BKS04, ZT09]. This so called datapath merging

approach for creating multi-operational datapaths helps reducing the total area of the

accelerator, on one side, but leads to increased latency and thus impaired accelera-

tor performance, on the other side. Besides the requirements for low area and high

performance, there is another, increasingly important design criterion—the flexibility

of reconfigurable accelerators. This flexibility, or re-usability, is mandatory to accom-

modate late design changes or new applications in the same domain, and to avoid

extremely high Nonrecurring Engineering (NRE) costs of incremental chip redesign.

For a given set of applications, the ideal accelerator minimizes difference in terms of

performance, energy consumption, and area in comparison to an ASIC implementation

of the accelerated functionalities. However, flexibility per se imposes some unavoidable

overheads. For example, FPGAs provide high flexibility, but suffer from incredibly poor

logic density, even when designers make good usage of hard DSP block, block RAMs,

1

Chapter 1. Introduction

and transceivers. Thus, despite many efforts, no high-volume commercially successful

product, to date, has successfully embedded FPGAs into ASIC design flows. The other

alternative, datapath merging, incurs limited overhead in the form of a minimal number

of multiplexers inserted into the reconfigurable datapath. Hence, it offers very little,

if any, flexibility beyond the ability to accelerate the applications known at the design

time. Clearly, it is hard not only to define the desired form and amount of flexibility, but

also to limit the unavoidable overheads to a reasonable amount.

This thesis presents a novel approach for designing domain-specific coarse-grained

arrays, in a context in which only a subset of the applications that need to be accelerated

are known at design-time. The approach guarantees that all DFGs in the initial set

of applications can map successfully onto the array, and increases the likelihood that

structurally similar DFGs from the same or similar domains can map successfully as

well. Obviously, the approach exploits the fact that applications belonging to the same

domain share significant amount of computational similarity. For instance, dataflow

graphs representing FIR or IIR filters differ very little from DFGs representing auto-

correlation application. Unlike FPGAs, which are more appropriate for applications

involving bit-level logic and bit manipulations, coarse-grain datapaths are better suited

for multimedia applications that require word-level processing. Additionally, the size of

configuration bitstream for FPGAs is much higher, implying the configuration storage

overhead and longer reconfiguration time.

The experimental evaluation demonstrates that this novel approach achieves flexibility

at the reasonable area and delay overhead:

• The vast majority of DFGs can be mapped onto the domain-specific arrays created

for some other DFGs in the same application domain.

• Flexible arrays are only around 2× larger and 2× slower than an accelerator syn-

thesized using a well-known datapath merging technique [BKS04].

• At the same time, these domain-specific arrays are only about 15× larger and

2

1.1. The Problem

2× slower than an ASIC implementation of a single DFG in isolation, and thus

far more efficient than FPGAs, which are known to be 20–40× larger and 3–4×
slower [KR07].

1.1 The Problem

To illustrate the problem motivating this thesis, a couple of dataflow graphs representing

applications that belong to digital filtering domain are analyzed. The DFGs D1 and D2,

shown in Figure 1.1a and 1.1b, correspond to a 16-bit complex finite impulse response

(FIR) filter and a 16b least mean square adaptive filter [TI03a], respectively. The former

DFG D1 has ten input ports, two output ports, eight multipliers (MUL), two subtractors

(SUB), and six adders (ADD). The latter DFG D2 has seven input ports, one output port,

four multipliers, two shift right operators (SHR), and four adders. Input and output

ports serve to read data from or to write data into memory elements. Clearly, the DFGs

share some computational characteristics—in both of them some multiplications are

followed by additions, and the intermediate results are summed. If both applications

need to be accelerated, both DFGs should be implemented as individual ASIC circuits or

they should be merged first and then synthesized as a single reconfigurable ASIC circuit

to conserve die area [BKS04, ZT09]. The second approach adds very little flexibility in

the final datapath, as will be explained and shown now.

The state of the art datapath merging approach by Brisk et al. [BKS04] looks for the

highest-area common sequences of operators in D1 and D2 and attempts merging the

two DFGs by sharing these operators. To enable the reconfiguration, it adds multiplexers

in front of the merged operators. To achieve the best area savings, the previous two

steps are repeated until no merging opportunities are left. Without loss of generality, it

can be assumed that the areas and delays of operators are related as follows:

Ar ea(MU L) > Ar ea(SU B) > Ar ea(ADD) > Ar ea(SHR), and

Del ay(MU L) > Del ay(SU B) > Del ay(ADD) > Del ay(SHR).

3

Chapter 1. Introduction

IN1IN2 IN3 IN4IN5IN6 IN7 IN8IN9IN10

OUT1 OUT2

MUL1MUL4MUL3 MUL2 MUL5MUL6MUL7MUL8

ADD1ADD2

ADD3ADD5

ADD4ADD6

SUB1SUB2

(a) (b)

IN1 IN2IN4IN5 IN3IN6IN7

MUL1MUL2

MUL3MUL4

ADD1

ADD3

ADD2

ADD4

OUT1

SHL1SHL2

Figure 1.1: Dataflow graphs corresponding to (a) 16b complex finite impulse response
filter (D1) and (b) 16b least mean square adaptive filter (D2) [TI03a].

IN1IN2 IN3 IN4IN5IN6 IN7 IN8IN9IN10

OUT1

OUT2

MUL1MUL4MUL3 MUL2 MUL5MUL6MUL7MUL8

ADD1

ADD2

ADD3

ADD5

ADD4

ADD6

SUB1SUB2

MUL10

MUL11

ADD7

SHL2

SHL1

MUL9

Figure 1.2: Dataflow graph D1,2 obtained by merging D1 and D2 by sharing the sequence
{MU L1, ADD1, ADD3, ADD4}. Four muxes for DFG reconfiguration were added.

4

1.1. The Problem

IN1IN2 IN3 IN4IN5IN6 IN7 IN8IN9IN10

OUT1

OUT2

MUL1MUL4MUL3 MUL2 MUL5MUL6MUL7MUL8

ADD1

ADD2

ADD3

ADD5

ADD4

ADD6

SUB1SUB2

MUL10

MUL11

ADD7

SHL2

SHL1

MUL9

(a)

IN1IN2 IN3 IN4IN5IN6 IN7 IN8IN9IN10

OUT1

OUT2

MUL1MUL4MUL3 MUL2 MUL5MUL6MUL7MUL8

ADD1

ADD2

ADD3

ADD5

ADD4

ADD6

SUB1SUB2

MUL10

MUL11

ADD7

SHL2

SHL1

MUL9

(b)

Figure 1.3: The DFG D1,2 with the connections and operators used by (a) D1 and (b) D2

shown highlighted.

5

Chapter 1. Introduction

IN1IN2 IN3 IN4IN5IN6 IN7 IN8IN9IN10

OUT1

OUT2

MUL1MUL4MUL3 MUL2 MUL5MUL6MUL7MUL8

ADD1

ADD3

ADD5

ADD4

ADD6

SUB1SUB2

MUL10

ADD2

SHL2

SHL1

MUL9

Figure 1.4: Dataflow graph D1,2 obtained by further merging D1 and D2 by sharing the
sequences {MU L2, ADD2} and {MU L10, ADD7} from Figure 1.2.

Then, the highest-area common sequence of operators shared by D1 and D2 is the se-

quence S1 = {MU L1, ADD1, ADD3, ADD4}. The result of merging D1 and D2 by sharing

the sequence S1 is shown in Figure 1.2. A total of four multiplexers is inserted to enable

reconfiguring the datapath to execute both DFG D1 and DFG D2. The connections and

operators used by each DFG are shown highlighted in Figures 1.3 (a) and (b), for D1 and

D2, respectively. In this first step, the total datapath area is reduced compared to the

sum of areas of two individual ASIC circuits, but the final critical path delay is increased

by the delay of two inserted multiplexers.

In the next step, D1 and D2 can be merged by sharing the sequences {MU L2, ADD2}

and {MU L10, ADD7}. The graph shown in Figure 1.4 is then obtained. The connections

and operators used by each DFG are shown highlighted in Figures 1.5 (a) and (b) for D1

and D2, respectively. Two additional multiplexers are added. The final datapath area is

even more reduced, while the critical path delay remains the same. Finally, there are

no more opportunities for merging, because trying to share the multipliers MU L9 or

6

1.1. The Problem

IN1IN2 IN3 IN4IN5IN6 IN7 IN8IN9IN10

OUT1

OUT2

MUL1MUL4MUL3 MUL2 MUL5MUL6MUL7MUL8

ADD1

ADD3

ADD5

ADD4

ADD6

SUB1SUB2

MUL10

ADD2

SHL2

SHL1

MUL9

IN1IN2 IN3 IN4IN5IN6 IN7 IN8IN9IN10

OUT1

OUT2

MUL1MUL4MUL3 MUL2 MUL5MUL6MUL7MUL8

ADD1

ADD3

ADD5

ADD4

ADD6

SUB1SUB2

MUL10

ADD2

SHL2

SHL1

MUL9

(a)

(b)

Figure 1.5: The DFG D1,2 from Figure 1.4 with the connections and operators used by
(a) D1 and (b) D2 shown highlighted.

7

Chapter 1. Introduction

IN1 IN2IN3IN4IN5 IN6 IN7 IN8

SUB1SUB3SUB4

SUB5

MUL1MUL2

MUL3ADD1

ADD2

ADD3

SUB2

SUB6

SUB7 SUB8

OUT1

Figure 1.6: DFG D3 corresponding to a 3×3 Sobel filter [TI03b]. Although belonging to
the same application domain as D1 and D2, it can not be mapped onto their merged
version D1,2 shown in Figure 1.4.

MU L10 (Figure 1.4) with any of the MU L3−MU L8 would create a cycle in the final

DFG, which is not allowed [BKS04]. Hence, the final merged datapath D1,2 is obtained.

One can assume now that in a late design stage a request to accelerate another very sim-

ilar application arises. For example, it could be a request to accelerate DFG D3 shown in

Figure 1.6, corresponding to a 3×3 Sobel filter [TI03b]. It has eight input ports, two out-

put ports, four multipliers, five adders, and two shift-right operators. This application

belongs to the same domain to which D1 and D2 belong, and thus all three DFGs exhibit

significant computational and structural similarities. Hence, it is intuitively expected

that D1,2 could be reconfigured to accelerate D3 as well. However, this is not possible.

Firstly, D1,2 has not enough subtractors to support D3. Even if all adders and subtractors

in D1,2 are replaced with an adder-subtractor operator, D1,2 would not have enough of

them to support D3. Secondly, D3 contains sequences {MU L, ADD, ADD,SU B , ADD}

and {SU B , MU L,SU B ,SU B , ADD}, which are not possible to map on D1,2. Hence, to

provide some additional flexibility beyond the ability to map only the two merged

DFGs, additional resources and interconnections need to be inserted into the final

datapath. How to chose the types of operators and their number, and how to assemble

8

1.2. Structure

them into one datapath that is flexible within an application domain is the topic of this

thesis. In the subsequent chapters a novel technique for generating domain-specific

reconfigurable arrays will be introduced and thoroughly explained, as well as compared

with the state-of-the art datapath merging methodology. In brief, this novel technique

analyzes different applications input by the designer and attempts to distill the essential

computational structures and connectivity in a dedicated reconfigurable array to make

it possible to map new applications. Of course, the generality of the resulting datap-

ath depends very much on how well the original applications cover the spectrum of

computational structures of the target application domain.

1.2 Structure

This thesis is organized in the following way:

• Chapter 2 provides an insight into the existing research work and comparison

with the technique proposed in this thesis. At the same time, it introduces and

defines the terminology to be used throughout the remaining chapters.

• Chapter 3 presents an overview of the methodology for designing domain-specific

reconfigurable arrays and briefly discusses each step in the design flow.

• Chapter 4 focuses on the first step in designing a domain-specific array—design-

ing the array column. This step is crucial for assuring that the array will have all

operators needed to successfully map DFGs specified at the design time. Addi-

tionally, it is highly important for achieving a small area overhead, compared to

existing area-efficient ASIC solutions.

• Chapter 5 explains the column replication procedure and how the array is built.

• Chapter 6 introduces the approach for designing highly flexible and yet efficient

routing network for the domain-specific arrays under consideration. Additionally,

it explains mapping and place&route procedures used by the design tool.

9

Chapter 1. Introduction

• Chapter 7 provides detailed experimental evaluation on a set of applications from

signal-processing domain, including the flexibility and area vs. delay results.

• Finally, Chapter 8 presents concluding remarks.

10

2 Background and Related Work

This chapter provides an insight into the existing research work and comparison with

the technique proposed in this thesis. At the same time, it introduces and defines the

terminology to be used throughout the remaining chapters.

Section 2.1 introduces the methods for resource sharing among application dataflow

graphs, used to reduce the total area needed to accelerate all target applications. The

technique that will be described in Chapter 4 is motivated in part by the work of Brisk et

al. [BKS04], mentioned in this section. Identifying regular patterns in application DFGs

and using them for design optimizations has been a topic of extensive research work.

Section 2.2 presents some of the main contributions. Another approach to improve

system efficiency for a specific set of applications is to customize it. Section 2.3 presents

some results in this area. A special attention is given to designing custom CGRAs, and

this is discussed in Section 2.4.

2.1 Resource Sharing in Datapaths

Reconfigurable computing research has shown that a substantial performance speedup

can be achieved if performance-critical subgraphs of the application dataflow graphs,

most often loop kernels, are executed by especially designed hardware datapaths

11

Chapter 2. Background and Related Work

SUB SUB

(a) (c)(b)

SUB

SUB SUB

SUB SUB

SUB

SUB

SUB

ADD

ADD

ADD ADD

ADD

ADD
ADD

ADD

MUL MUL MUL MUL
MUL MUL MUL MUL

Figure 2.1: (a) Sample DFG from two-pixel sum of absolute differences. (b) Sample DFG
from radix-2 FFT. (c) A typical result after merging (a) and (b). The highest area saving is
achieved by sharing the sequence of two adders, marked in gray.

[CHW00]. These individual datapaths, or so called Functional Units (FUs), can be

implemented as Application-Specific Integrated Circuits (ASICs), Field Programmable

Gate Arrays (FPGAs), Coarse Grain Reconfigurable Arrays (CGRAs), or as hybrid solu-

tions. A way to minimize the total area needed to implement multiple FUs is to allow

hardware resource sharing among them.

Huang and Malik [HM01] studied the resource sharing which could lead to reduced

run-time reconfiguration overhead. Their architectural template consists of coarse

grain blocks and programmable fine-grain interconnection network shared between

blocks. This is similar to other reconfigurable computing projects, such as Pleiades

[Wan00]. The goal of Huang and Malik was to design a single datapath such that all

FUs can be mapped to it using the minimum total number of interconnects, and thus

leading to reduced reconfiguration overhead. To maximize interconnection sharing

between blocks they would solve a maximum bipartite matching problem at each step.

Moreano et. al. [MAHM02] extended Huang and Malik’s work with a technique that

relies on solving the NP-Complete Maximum Clique Problem. Consequently, the quality

of their results depends on the quality of the clique-finding heuristic.

The algorithm for array column generation presented in Chapter 4 of this thesis is

motivated in part by the following, very important, work in datapath merging—the

12

2.1. Resource Sharing in Datapaths

merging algorithm introduced by Brisk et al. [BKS04]. Their algorithm starts from a

set of Directed Acyclic Graphs (DAGs), and not from general graphs, with the goal to

maximize the area reduction achieved by merging.

A directed acyclic graph is a dataflow graph G = (V ,E), where vertices V

represent operations and input/output ports, directed edges E represent data

dependencies between operations, and there are no cycles.

Brisk et al. proposed a polynomial-time heuristic that combines a set of DAGs G =
{G1,G2, ...,Gn} into a super-graph, called a Consolidation Graph (CG). Ideally, the CG

should minimize the total datapath area, but this would require solving an NP-Complete

problem [BGV03]. Therefore, they proposed a heuristic based on finding longest com-

mon subsequences and substrings of two (or more) paths in DFGs.

A path in a DFG is a sequence of its vertices connected by edges, such that

the first node in the sequence is an input port while the last node is an output

port. A subsequence is a part of another sequence obtained by removing some

of its nodes while keeping the order of the remaining nodes.

A substring is defined to be a contiguous subsequence. A path, a subsequence, and

a substring extracted from an example DFG are shown in Figure 2.2. Brisk algorithm

starts by enumerating all of the paths of each DFG and continues by looking for a pair

of paths that would maximize the area reduction if selected for merging. Clearly, those

are the paths that share the Maximum Area Common Subsequence (MACSeq). It is only

up to this point that the algorithm for array column generation proposed in Chapter 4

is similar to Brisk’s algorithm. Further on, the heuristic by Brisk et al. iterates through

global and local phases and merges graphs by the best candidate paths until there are

no more candidate paths for merging.

Zuluaga and Topham [ZT09] continued the work by Brisk et al. They noticed that

extensive resource sharing can produce a considerable increase in the application

13

Chapter 2. Background and Related Work

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

(b)

(c) (d)

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

(a)

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

(b)

(c) (d)

LSR LSR

MUL MUL

ADD ADD

IN1 IN2 IN3 IN4 IN5 IN6 IN7

MUL MUL

ADD

ADD

OUT1

(a)

Figure 2.2: (a) An extracted dataflow graph of the 16b least mean square adaptive
filtering application [TI03a]. (b) A path, (c) a subsequence, and (c) a substring of the
path.

latency. Hence, they presented a heuristic to control the degree of resource sharing

among given DAGs and thus achieve latency constraints.

Although datapath merging introduces a form of flexibility through addition of multi-

plexers and interconnects among operators, it still does not provide sufficient flexibility

beyond the ability to map the dataflow graphs known at the design time. Yet, the aim of

the work in this thesis is achieving significant increase in flexibility of the final datapath

at a moderate cost in area and latency.

14

2.2. Design Optimizations by Regularity Extraction

2.2 Design Optimizations by Regularity Extraction

Dataflow graphs of real applications exhibit high level of regularity, which can be ex-

ploited to improve the area and performance of the hardware layouts. This regularity

implies that there exist subgraphs having multiple instances. They are referred to as

patterns or templates.

Pattern recognition has been exploited in every level of the large circuit design from

layout designs to high-level synthesis [Keu87, RK93, BKKS02, CKG+96, BR97, LKMM95,

KS00]. Rao and Kurdahi [RK93] developed and formalized the problem of regularity

extraction using a graph model, and proposed a string-matching based approach to

cluster similar structures and replace the instances of a pattern with a common imple-

mentation. Their goal was to minimize the usage of distinct multiple clusters as well as

the total number of clusters used. They used linear representation of directed graphs

proposed by Berztiss [Ber75]. However, this linearizion process is the major drawback

because selection order of nodes can dramatically affect the pattern matching result.

Corazao et al. [CKG+96] tried to improve the quality of logical synthesis by considering

patterns at the behavior synthesis step, where they assumed that the pattern library was

given by users. Other interesting works include scheduling and binding algorithms with

patterns by Bringman [BR97] and Ly [LKMM95]. They too assumed that patterns were

given in advance. Another research topic that focuses on extracting regularly occurring

patterns, which is orthogonal to the work presented in this thesis, is the area of creating

custom hardware units to extend the computational capabilities of a processor—custom

Instruction Set Extensions (ISEs) [BKKS02, CFHZ04, YM04, API03, BP07].

Chowdary et al. [CKS+99] presented an approach to extract functional regularity from

datapaths described by a hardware description language (HDL). The task of regularity

extraction was, again, to identify a set of templates and then to cover the given circuit

by a subset of these templates. Their objective was to use large templates having large

number of instances, but this involves a tradeoff; On one side, a large template usually

15

Chapter 2. Background and Related Work

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8

OUT1

OUT2

MUL MUL MUL MUL

ADD ADD

ADD

ADD

ADD

LSR

LSR

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8

OUT1

OUT2

MUL MUL MUL MUL

ADD ADD

ADD

ADD

ADD

LSR

LSR

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8

OUT1

OUT2

MUL MUL MUL MUL

ADD ADD

ADD

ADD

ADD

LSR

LSR

(a) (b)

(c)

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8

OUT1

OUT2

MUL MUL MUL MUL

ADD ADD

ADD

ADD

ADD

LSR

LSR

(d)

Figure 2.3: (a) An extracted dataflow graph of the IIR filtering application [TI03a]. (b)
Two different patterns selected: MUL–ADD and LSR–ADD. (c) MUL–ADD pattern from
(b) enlarged to contain one more multiplier. (d) LSR–ADD pattern from (a) enlarged to
ADD–LSR–ADD, but without improving the coverage of the graph.

has lower number of instances than a smaller template; On the other side, a larger

template implies a better area and performance optimization, while a smaller template

with more instances implies less effort in synthesis and layout design phases. Examples

of various extracted templates from an IIR filtering application are shown in Figure 2.3.

Cong et al. [CJ08] tried to optimize the resource usage of FPGA designs using pattern-

based synthesis techniques. They presented a pattern-based behavior synthesis frame-

work for efficient extraction of similar structures in dataflow graphs, which uses a

mismatch-tolerant metric graph edit distance. The edit distance between two graphs

16

2.3. Increasing Flexibility through DFG Generalizations

can be defined as the minimum number of vertex/edge insertion, deletion, and substi-

tution operations to transform one graph into the other. This metric can also handle

various program variations such as bit-width, structure, and port variations. Cong et al.

applied this pattern-recognition framework to solve FPGA resource reduction problem.

They used the fact that if all pattern instances are scheduled and bounded in a uniform

way, the internal dataflows are free of multiplexors, except for those inserted due to

resource sharing among nodes inside a single pattern instance. That way, the total num-

ber of multiplexors and data routing logic would decrease, as well as the total design

area, delay, and power consumption. Later, Cong et al. presented an approach extended

to include control-flow aware patterns and introduced a generalized edit distance metric

for measuring variations in control-flow and dataflow graphs [CHJ10].

These works are all similar to the methodology described in thesis in that they try to

reuse regularly occurring patterns to optimize the design performance. But, like other

prior datapath merging techniques discussed in 2.1, these did not introduce any further

generality in the final datapath.

2.3 Increasing Flexibility through DFG Generalizations

Yehia et al. [YGBT09] focused on customization in multi-core systems, as an orthogonal

and complementary scalability path to parallelization. Their idea was to parallelize the

application first, and then further improve its performance by customizing either the

parallel sections or the remaining sequential sections. While customization can bring

cost and power efficiency, it can take away some flexibility. Therefore, they proposed an

approach to preserve some flexibility by automatically combining customized circuits

into a larger compound unit, and thus increasing the number of applications that can

benefit from a single circuit. Before creating a compound circuit of two individual

circuits, they first check if one of the circuits can be mapped to another, including

the dataflow and control-flow parts. If direct mapping is not possible, the framework

17

Chapter 2. Background and Related Work

proposed in their paper [YGBT09] alters one of the two circuits by adding operators,

state nodes, configuration multiplexors and interconnects, as long as mapping remains

unfeasible. This process is repeated until all circuits can be mapped on one compound

circuit. They observed that the compound circuit cost does not increase in proportion

to the number of target applications, due to the wide range of common dataflow and

control-flow patterns in programs. The methodology introduced in this thesis differs in

that it does not check if a graph can be mapped to another one to build a compound

solution, but it generates the output array based on analyzing all input graphs at once.

Additionally, it outputs not only a compound but also a regular circuit, inherently

increasing its flexibility.

Clark et al. [CZM03, CZM05] presented the design of a system to automatically identify

and customize instruction set extensions. Their system uses a dataflow graph design

space exploration engine to efficiently identify suitable computation subgraphs from

which to create customized hardware. Additionally, it contains a subgraph matching

framework to identify opportunities to exploit and generalize the hardware to support

more than one application. To enable this more effective usage of the hardware units,

they introduced three generalization techniques. The first is subsumed subgraphs,

which uses the fact that many operators have an identity input, allowing values to

pass through them unmodified. For example, if one functional unit has a sequence

AND–XOR–ADD, it can execute sequences AND–ADD, AND–XOR, and XOR–ADD too.

It suffices to add a multiplexor to the input of every operation to be bypassed and to

connect the output of the previous operation and the identity value to the multiplexor

inputs. The second generalization technique they call wildcards. Two subgraphs are

wildcards if they are identical, except for one different operator. Combining them into

one functional unit is cheap and increases flexibility, although in a limited way. Finally,

the third technique is an extended version of wildcarding—preemptive wildcarding.

This technique allows to generalize graphs by implementing multiple operations in

nodes, e.g., by replacing an ADD or SUB operation with an ADD/SUB unit. Clark et al.

18

2.4. Domain-Specific Arrays

performed these generalization techniques to create a set of different candidates for

hardware implementation. Their selection algorithm would then explore this set and

decide which of the generalized subgraphs to synthesize in hardware. The similarity

between their approach and the approach to achieve hardware flexibility presented

in this thesis is in the use of preemptive wildcarding. However, the latter introduces a

flexible routing network as a much more general alternative to the subsumed subgraphs,

thus achieving significantly better flexibility results.

2.4 Domain-Specific Arrays

Ebeling et al. [ECF+97] introduced RaPiD (Reconfigurable Pipelined Datapath), a coarse-

grained configurable architecture for executing regular computationally-intensive appli-

cations. RaPiD is a 1-D array of computation cells, that comprise of an integer multiplier,

three integer ALUs, six general purpose registers, and three small local memories. A

typical RaPiD chip would contain between 8 and 32 of these cells. A block diagram of a

single cell in RaPiD architecture is shown in Figure 2.4. RaPiD limits applications to at

most two reads and one write per cycle, which is significantly less than the number of

memory accesses supported by the 2-D array described in this thesis. Routing in RaPiD

is in the form of word-size segmented buses running parallel to the axis. Therefore, it

is similar to the routing network between any pair of neighboring rows in the domain-

specific array in this thesis. But, the latter offers significantly more routing opportunities

due to the introduction of vertical routing channels. The RaPiD architecture was man-

ually devised and tuned for a wide variety of circuits within the DSP domain, as well

as the other relevant architectures such as PipeRench [GSM+99], Pleiades [AR96], or

MorphoSys [LSL+00]. Instead, this thesis presentes a method for automated generation

of configurable arrays suited to any application domain input by the designer.

Phillips et al. [PSH04] introduced a template reduction methodology to optimize re-

configurable fabric to the demands of an application domain, as part of the Totem

19

Chapter 2. Background and Related Work

G
P
R

R
A
M

G
P
R

R
A
M

M
U
LT

G
P
R

A
LU

G
P
R

R
A
M

G
P
R

A
LU

Figure 2.4: A block diagram of a single cell in RaPiD architecture. To form the full
architecture, 16 cells are tied along the horizontal axis.

project [CH01]. Initially, they perform profiling to obtain a rich macro cell (template)

providing a superset of all required resources. Then, in the template reduction phase,

they iteratively remove the unneded routing resources and functional units. Compton

and Hauck [CH08] introduced the Totem tool to generate 1-D architectures similar in

style to RaPiD. To achieve a more customized design, Totem varies the number and order

of word-size computation units in a RaPiD-like array, and the length and the number

of tracks in the routing channel. To select architectural components, Totem takes the

minimum number of each type of computation unit needed to implement all of the

given circuits (one at a time). However, the tool presented in this thesis automatically

infers an overhead in the number of components to accommodate larger datapaths

not known at design time. Additionally, Totem constrains computation-unit types to

be evenly distributed through the 1-D array, whereas the method in this thesis uses the

path fusion procedure to perform the distribution of the units. Due to its 1-D nature,

Totem array needs a high number of word-size tracks in the routing channel (Compton

et al. reported up to 34). On the other side, a 2-D array uses less tracks per channel and

provides higher routing opportunities due to the regularity of its routing network.

Ansaloni et al. [ABP08, ABP11] proposed an architectural template for design space

exploration of different CGRA designs. They named this template Expression-Grained

Reconfigurable Array (EGRA), due to its ability to generate complex computational cells

executing expressions, rather than single operations. The basic cell of their template

20

2.4. Domain-Specific Arrays

is inspired by the Configurable Computation Accelerator (CCA) proposed by Clark et

al. [CKP+04] and it is called a Reconfigurable ALU Cluster (RAC). The EGRA structure is

organized as a mesh of RACs, memories, and multipliers. The number and placement of

these elements is part of the architecture parameter space—it is decided at design time

and can vary for different instances of the EGRA. Cells are connected using both nearest-

neighbor connections and horizontal/vertical buses, with one such bus per column

and row of the array. A RAC consists of multiple ALUs, with possibly heterogeneous

arithmetic and logic capabilities. Inside the RAC, ALUs are organized into rows, and the

inputs of the ALUs in subsequent rows are routed from the outputs of the previous rows,

or from constant values. Four types of ALUs can be instantiated; the first one able to

perform bitwise logic operations only and the other three that add a barrel shifter (with

support for shifts and rotates), an adder/subtractor, and both the shifter and adder,

respectively. The number of rows, the number of ALUs in each row, and the functionality

of the ALUs is flexible and can be customized by the designer during the exploration

phase. Therefore, the EGRA architecture can be adapted to the application domain.

The approach described in this thesis is less general in that it assumes array cells are

dedicated operators, rather than more general ALUs. However, this increases efficiency

as such solution is closer to an ASIC implementation.

21

3 Design Framework Overview

The flexibility of domain-specific reconfigurable datapaths need not be absolute; to

that purpose, there exist already FPGAs, which provide the highest degree of flexibility

and are thus used in systems requiring diverse computations. This absolute flexibility

is not always desired, because FPGAs suffer from significantly higher area overhead

and critical path delay increase compared to dedicated, and thus less flexible, solutions.

For a limited set of applications belonging to a single, or to multiple similar domains,

it would perhaps be useful to investigate the similarities among those applications so

as to design an architecture having better area/delay trade-off than FPGAs. The work

presented in this thesis focuses on creating a single reconfigurable datapath (array)

based on a set of input applications belonging to a same domain. This datapath is

selectively flexible, and thus the novel methodology can be referred to as a methodology

for designing selectively-flexible reconfigurable arrays.

A datapath is considered flexible if it can support the execution of a number of different

applications, whereas it is selectively flexible if its flexibility is limited to a specific appli-

cation domain. The computational characteristics of a domain are characterized, and

thus limited, to (1) the type of operations, (2) their number, and (3) the interconnections

among them. To achieve the domain-specific flexibility of the hardware datapath, the

novel design technique analyzes different applications input by the designer, attempts

23

Chapter 3. Design Framework Overview

to distill the essential computational structures and connectivity in a dedicated recon-

figurable array, and introduces selective flexibility into this array to make it possible to

execute new applications from the same domain. This approach builds on:

1. the knowledge of resource sharing among datapaths (Chapter 2.1),

2. design optimizations by exploiting regularity in application DFGs belonging to a

same domain (Chapter 2.2), and

3. generalizing the final datapath so as to increase flexibility (Chapter 2.3).

3.1 Design Flow

Figure 3.1 illustrates the fundamental steps of the SFRA design technique to capture the

key features of a number of input applications:

• The initial step of the design methodology is to take the input applications, written

in a programming language (for example in C), and to represent them in the form

of Control Flow Graphs (CFGs). In a CFG each node in the graph represents a basic

block, i.e. a straight-line piece of code without any jumps or jump targets. This

block is represented in the graph form as well, as a data-flow graph (DFG). Then,

the largest or the most frequent of these blocks are selected as candidate DFGs

for acceleration. This step is performed on all input applications, to generate a

training set of DFGs to be used in all subsequent steps of the design flow.

• How well a domain-specific hardware represents an application domain depends

heavily on the way the most relevant characteristics of that domain are identified

and then used to guide the design steps. Datapath merging approaches look

for the highest-area common-subsequences in input DFGs, and try merging by

sharing them. This approach, in turn, looks into all paths of the input DFGs to

extract the types of operations and the sequences in which they appear. Then,

24

3.1. Design Flow

ADD

MUL

SUB

+
*
-

+
*
-

+

-
*
+

-
*
+

-
*
+

-
*
+

-
*
+

-
*

scheduled node

Supersequence

+
*
-

+
*
-

+
*
-

+

-

+
*
-

+
*
-

+
*
-

*

Path fusion
(Chapter IV)

Array generation
(Chapter V)

Interconnect
dimensioning

(Chapter VI)

IN

-

+ +

* *

IN IN IN

OUT

Array nodes

Array nodes and interconnects

Dataflow graphs

DFGs

DFGs

DFGs

+
*
-

+
*
-

+
*
-

+

-

+
*
-

+
*
-

+
*
-

*

.C.C.C.C

Source code

Domain-specific reconfigurable array

Figure 3.1: The design flow to synthesize domain-specific datapaths. Firstly, a set of
candidate DFGs from input applications are generated. Then, those DFGs are analyzed
to extract a column of the datapath. This column is replicated to create a regular 2-D
array structure. Finally, an FPGA-like statically configured routing network is added to
enable routing the DFGs.

25

Chapter 3. Design Framework Overview

it fuses all sequences to obtain a single supersequence, which defines the basic

block of the array—its column. The reason behind this idea is that sequences of

operators are inherent to the target domain and, once a supersequence is created,

it is very likely that all sequences found in new DFGs belonging to the same

domain will already be included. By definition, a supersequence is an ordered

sequence of operators, which includes all the sequences of operations present

in the input applications. Additionally, any two operators form a sequence if

there exist a sequence of vertices connected by edges between these two operator

nodes.

• To generate a 2-D array, the supersequence is replicated. Hence, the array struc-

ture is regular because every row contains only one type of operator. Assuming

that the array is composed by Nr ×Nc operators in total, and knowing that each

column is composed by the operators in the supersequence, the number of rows

Nr must equal the length of the supersequence. The number of columns, Nc ,

should be as large as to guarantee successful mapping of the input set of DFGs.

In general, it has no upper limit—it is only the available die area that limits it.

However, it should be as small as possible to achieve a proper balance between

the datapath flexibility and the area overhead. Without loss of generality, it is

assumed that there are two memory read (input) and memory write (output) ports

available per column of the array. This assumption is due to the fact that all nodes

in the array are either one-input or two-input operators.

• In typical CGRA architectures, only the nearest four or eight nodes can pass data

between them. Clearly, this is very restrictive, and not a suitable solution for an

architecture that needs to provide high routing opportunities. FPGAs, on the other

hand, have more complex routing networks that are crucial for their successful

usage for a wide range of applications. These networks consist of horizontal

and vertical routing channels, which are interconnected using switch blocks,

and to which every functional block, or a set of blocks, is connected in some

26

3.2. Dataflow Graph Represenation

way. The methodology described in this thesis adopts this concept and adjusts

it to the usage in CGRAs. The architecture of the routing network is essentially

the same; there are vertical buses between subsequent rows and columns of

the reconfigurable array, to which the array operator input and output ports are

connected. However, these buses are 32-bit wide and cannot be used for bit-based

routing [YR06]. This helps reducing the amount of configuration storage, because

instead of using 32b to reconfigure a switch used to connect two buses, it suffices

to use a single bit only. Additionally, all array nodes are coarse-grain and thus

operate on words, not on individual bits.

The reconfiguration of the datapath is performed by shifting in configuration bits and

storing them in configuration memory cells. It is essentially achieved as in any FPGA

and in many coarser grain statically programmed arrays, and is not addressed in detail

in this thesis. Applications are statically mapped on the datapath, much as in an FPGA:

reconfiguration happens only before execution of one of the applications.

Such a datapath array should feature computational structures that enable a high

degree of generality for a particular domain at a reasonably small overhead in the

number of unused operators and redundant interconnects. In the following chapters,

all mentioned steps of the technique to generate domain-specific reconfigurable arrays

from a collection of DFGs are described in details.

3.2 Dataflow Graph Represenation

Dataflow graphs extracted from the corresponding application code are represented

in the same textual format that is used by the software tool Clarity [BE06], originally

designed for automatic identification of instruction set extensions (ISEs) and their

hardware implementation. In order to process the gcc (GNU compiler collection)

intermediate representation and return DFGs in Clarity intermediate representation,

an additional piece of code (script) had to be developed.

27

Chapter 3. Design Framework Overview

Application Source Application Data Set Architectural Contraints

Analysis Profiling Accelerator Generation

Candidate
Accelerators

Interface GenerationVHDL GenerationCode GenerationTest Bench Generation

Verification
Test Bench Modified Application Source

Accelerator VHDL
Description

Accelerator/PowerPC
Interface Xilinx XPS Project

MIMOSYS Design Automation Tool

MIMOSYS

Figure 3.2: Mimosys Clarity flow; from the application source code and some constraints,
one can generate a complete Xilinx Platform Studio project with accelerators [BE06].

3.2.1 The Mimosys Clarity tool

Clarity is a tool for automatic identification of ISEs for application acceleration, which

was developed by the company Mimosys, in cooperation with EPFL. It is used by re-

searchers at EPFL, and it is not publicly available. Adopting the same format of DFG

representation does not constrain the features of the methodology presented in this

thesis, but ensures easier integration into the Clarity tool, for potential future work.

In Clarity, the identification of ISEs is performed directly from an application C source

code, guided by the execution profile of the application, the number of I/O parameters

available for the accelerator and the model of the execution costs for operations. The tool

provides visualization of the execution profiling information in the form of control-flow

graphs and corresponding data-flow graphs for each node in the CFGs. It allows ISEs

to contain memory either as constant arrays only or as constant and read/write arrays.

Additionally, it provides an option to select a subset of identified ISEs for hardware

implementation on various hardware platforms. Clarity automatically creates test

benches for each accelerator along with the necessary simulation and synthesis scripts.

Within Clarity, ModelSim simulator can be invoked to verify the functionality of the

accelerator. The generated synthesis scripts enable the synthesis of the accelerator on

a target technology and the evaluation of the critical path and area. Among the other

28

3.2. Dataflow Graph Represenation

+[0]

+[1]

IN1

*[2]

+[3]

*[4] *[5]

IN2 IN3 IN4 IN5 IN6 IN7

Figure 3.3: A DFG corresponding to 3 × 3 convolution. The text file used as the example
in Table 3.1 depicts the connection and structure of this DFG.

features, the tool generates an intermediate textual representation of the execution

profiling information, which can be used by different ISE identification algorithms. The

results of ISE search can afterwards be easily passed back to Clarity. The Mimosys Clarity

flow is shown graphically in Figure 3.2.

3.2.2 Dataflow Graph File Format

The format of the file describing a DFG shown in Figure 3.3 is discussed in details in the

following table.

29

Chapter 3. Design Framework Overview

Table 3.1: Dataflow Graph File Format

Keyword Explanation

N M I T N is the sum of the number of DFG nodes and the number

of output ports. M is the number of times the DFG is exe-

cuted in one application run. I is the number of DFG input

ports. T is the number of DFG output ports. Example:

6 1 7 1

corresponds to a graph with seven input ports, one output

port, and five nodes (N = M�T).

ext_in This line is followed by a N × I array having information on

the connections between input ports and nodes: (i , j) >
0 ⇒ node i is connected to the input port j , i = 0..N −1,

j = 1..I , e.g.:

ext_in

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 2 0 0

0 0 0 0 0 1 2

The first line explains that the node 0 has no connections

with the input ports. The second line shows that the node

number i = 1 is connected to the input port I N 1 (j = 1).

Based on the third line, the node number i = 2 is connected

to two input ports I N 2 (j = 2) and I N 3 (j = 3), and so on.

The values within rows always increase by a factor of 2×,

in the direction of increasing column number j .

Continued on next page

30

3.2. Dataflow Graph Represenation

Keyword Explanation (Continued from previous page)

ext_out This line is followed by T (T = 1 lines in the form x y , where

x denotes the node number, and (y−1) is the output outpu

of the node that is a DFG output port at the same time. For

nodes having only one output, y equals zero, e.g.:

ext_out

0 0

This means that the output of the node 0 is the DFG output

port at the same time.

hw_sync_lat

hw_lat

sw_lat

This line is followed by N lines representing the latencies of

nodes. The value -9999.0 stands for a forbidden node type.

Otherwise, latencies are zeros.

dest This line is followed by N lines, each one giving the total

number of outputs of the corresponding node that are

driving other nodes, e.g.:

dest

0

1

1

1

1

1

This means that the node 0 is not driving other nodes,

while all other nodes have one output that is connected to

one, or more, nodes in the DFG.

Continued on next page

31

Chapter 3. Design Framework Overview

Keyword Explanation (Continued from previous page)

adj_list This line is followed by N lines, each one giving the out-

degree of the corresponding node. The out-degree might

be different from the total number of outputs, since some

outputs might be left floating. The sum of all values in

these lines equals E—the total number of internal edges in

the graph. The subsequent E lines in the form x y give in-

formation about edges. The source of each edge is known—

it is the node having a non-zero value in the previous N

lines. Thus, the only missing information is the destina-

tion, which is given in the value x. The value y is the index

of the input of the destination node, as a node may have

several inputs. For two input nodes, the left input is num-

bered as 1, while the right input is numbered as 2. E.g.:

adj_list

0

1

1

1

1

0 1

1 2

0 2

3 1

3 2

Continued on next page

32

3.2. Dataflow Graph Represenation

Keyword Explanation (Continued from previous page)

This means that all nodes but the node zero are sources

of one edge. The first node is connected to the left input

of the node zero. The second node is connected to the

right input of the node number one. The third node is

connected to the right input of the node zero, and so on.

memory_deps Unused.

opcodes The next N lines give the internal operation codes for each

node in the DFG. If opcode equals 1, the corresponding

node is a forbidden node. The encoding of the operation

codes is as follows: bits 58–63 = output bitwidth–1 (range

1–64); bits 55–57 = (number of memory ports–1), if bits

39–50 are not zero (range 1–8); bits 51–54 = type: 0/1 =

signed/unsigned integer, 2/3 = float/double;bits 39–50 =

memory table if allowed, if not zero; bits 32–38 = opcode;

bits 0–31 = literals, etc.

bitwidths The next N lines contain bitwidths of input operands for

every node. If the node is forbidden, bitwidth is set to

-1. Otherwise it is calculated by (i) concatenating the fol-

lowing set of six bits, in this very order: bitwidth(op 0) – 1,

bitwidth(op 1) – 1, bitwidth(op 2) – 1, etc., and then (ii) con-

verting this binary number into a decimal value. It is this

decimal value that is stored as <bitwidths> parameter.

end The end of file.

33

4 Array Column Generation

The key idea behind the methodology introduced in this thesis is in the way the array

column is generated. Unlike in prior research, here the array column is observed as the

key element that must capture the computational characteristics that are representative

of an application domain. These characteristics are (i) the types of operators needed

to execute applications belonging to that domain and (ii) the sequencing of operators

corresponding to the flow of data in application DFGs. In this work it is assumed

that mapping DFGs onto domain-specific CGRAs is performed following a top-down

approach, and thus preserving the natural data-flow between operators (discussed in

more details in Chapter 6).

The process of defining the number of operators and the way they are sequenced within

the array column will be refered here as path fusion. The name of the process suggests

that all DFG paths need to be enumerated, analyzed, and somehow combined. Figure 4.1

shows two sample dataflow graphs from (a) a two pixels sum of absolute differences

(SAD) and (b) radix-2 FFT butterfly. As defined in Section 2.1, a path in a graph is a

sequence of vertices connected by edges, such that the first node in the sequence is an

input port (memory read) while the last node is an output port (memory write). Hence,

Figure 4.1c shows all distinct paths of the two DFGs. The outcome of the path fusion

process is a single sequence, a supersequence (SSeq) of nodes, such that all enumerated

35

Chapter 4. Array Column Generation

(a) (b) (c) (d) (e)

IN

+

IN IN IN

IN

OUT

+

* * * *

IN IN IN IN

ININ

OUT OUT OUT OUT

+

+

+
Paths of the input DFGs

*

3

*

5

*

4

*

21

+

+ + +

+ +

*

SSeq

+

+

+

*

3

*

5

*

4

*

2

*

1

+ + + + +

+ + + + +

+ + + + +

Figure 4.1: Two sample dataflow graphs from (a) a two pixels sum of absolute differences
and (b) radix-2 FFT butterfly. (c) All paths identified in these two DFGs. Memory read
and write nodes are not included. (d) An example supersequence. There are many
possible solutions. (e) Every DFG path is a subsequence of the supersequence, i.e. it can
be obtained by removing some elements while preserving the order of the remaining
elements.

paths are subsequences of it. Clearly, there exist many such sequences. Figure 4.1d

shows only one possible solution, and (e) illustrates how all paths are subsequences

of the sequence in (d), and can thus be derived from it by deleting some elements,

without changing the order of the remaining elements. An array created by replicating

the SSeq sufficient number of times certainly provides all necessary operators to enable

executing the DFGs in (a) and (b), because every path is contained within the array

column. This is a very important feature of SSeq.

By creating a supersequence of all paths found in input DFGs and using it as the array

column, not only that all needed resources are provided, but also additional resources

are introduced, which leads to increased flexibility of the array. This flexibility is specific

for the application domain to which input DFGs belong and, clearly, it comes at a

cost of increased die-area. To achieve a reasonable area overhead, the supersequence

area should be minimized. The problem of finding a minimum area SSeq is similar to

one of the classical problems in computer science and genetics—finding the Shortest

Common Supersequence (SCS). That is an NP complete problem, for which various

approximation algorithms exist. One of the most known is the algorithm by Branke et

al. [BMS98].

36

4.1. Creating Shortest Common Supersequences

In Section 4.1, a modified algorithm by Branke et al. is explained and implemented

to generate one possible SSeq. Then, a novel heuristic for finding the minimum area

supersequence is developed and presented in Section 4.2. This heuristic is based on

reusing the Maximum Area Common Subsequence (MACSeq) metric of existing graph-

merging algorithms [BKS04]. Finally, the algorithm complexity analysis is given in

Section 4.3.

4.1 Creating Shortest Common Supersequences

Branke et al. [BMS98] formulated the problem of finding the shortest common superse-

quence (SCS) as follows:

Given a finite set of strings L over an alphabet Σ, find a string of minimal

length that is a supersequence of each string in L.

By definition, a string is a finite sequence of symbols chosen from an alphabet, or, in

the context of application DFGs, a path in the dataflow graph. One of the very well

known heuristics for finding a SCS is the Majority Merge (MM) [JL95], which builds

the supersequence starting from an empty string in the following way: it looks at the

first symbol in each string in L and chooses the most frequent one, removes it from the

strings where it has been found as the first symbol, and appends it to the supersequence.

The process is repeated until all strings are emptied. Figure 4.2 illustrates the algorithm

steps on the example set of paths extracted from DFGs shown in Figure 4.1.

If used to find the shortest supersequence of a set of strings, majority merge achieves

poor results, because it does not take into account that strings might have different

lengths. To overcome that, Branke et al. [BMS98] proposed new heuristics, one of

which is the Weighted Majority Merge (WMM). That algorithm selects the candidate

symbol with the maximum sum of weights of its occurrences at the front of the strings.

The weight of a symbol is assumed to be the length of the string suffix, excluding the

37

Chapter 4. Array Column Generation

++

+ +

+

+

1 5

32

4

+

*

3

*

5

*

+

4

+

*

2

+

1

+ +

Paths of the input DFGs

SSeq

*

+

+

+

+

+

32

+

541

*
SSeq

*

+

SSeq

+

*

SSeq

+

+

*

SSeq

+ +

1

3 5

4

+

3

5

+

+

*

SSeq

(a) (b) (c) (d) (e) (f)

Figure 4.2: An example illustrating the steps of the algorithm by Jiang et al. [JL95] to find
the shortest common supersequence (SSeq) based on Majority Merge (MM) heuristic.
(a) The most frequent operator at the beginning of the paths is the multiplier. It is thus
selected to start the SSeq. (b) The multiplier is removed from the beginning of the paths,
and the next most frequent operator, the subtractor, is selected and appended to the
SSeq. (c) The subtractor is removed from the paths. The next candidate operator is
the adder, which is then appended to the SSeq. (d) Two adders and two subtractors
remained. Assuming that the ties are broken so that an adder is selected next, then
(e) the only remaining operator, the subtractor, is selected and the final SSeq in (f) is
obtained.

symbol itself. However, this approach is not suitable for solving the problem of finding

a supersequence of all paths enumerated from application DFGs. This is because

operators in these paths differ not only by type but also by area they occupy. Thus, the

shortest sequence is not necessarily the smallest area one. For example, the sequence

containing two multipliers and one adder might occupy more area than the sequence

of one multiplier and three adders, although the latter is longer.

This section introduces a novel algorithm to find a minimum area supersequence rather

than the minimum length one, based on the WMM heuristic. This algorithm calculates

the weight of the symbol as the sum of the area of the operator implementing that

symbol and of the areas of all following symbols in the same path. If there are multiple

candidates, the algorithm takes the one with the longer string suffix. The algorithm

steps are as follows:

1. Initialize the supersequence to the empty sequence and enumerate all paths of

each DFG.

2. Choose the candidate operator op by computing the sum of weights for all opera-

38

4.2. Creating Minimum Area Supersequences

tors at the front of the paths and by finding the one that maximizes this sum, and

append op to the supersequence.

3. Update all paths by removing op from the front.

4. Repeat steps (2) and (3) until all paths are empty.

Figure 4.3 illustrates the process of finding the supersequence (SSeq) for the DFGs

shown in Figures 4.1 (a) and (b). Excluding for simplicity one-node paths, the first

DFG has one path P1 = {S, A, A}, while the second DFG has four different paths, P2 =
{M ,S, A}, P3 = {M ,S,S}, P4 = {M , A, A} and P5 = {M , A,S}. Here, S represents subtraction,

A addition, and M multiplication. Assuming that the areas of different operators are

related as Ar ea(M) > Ar ea(S) > Ar ea(A), the maximum weighted sum is found for the

multiplier M :

W ei g ht (M) = 4× (Ar ea(M)+ Ar ea(S)+ Ar ea(A)) , (4.1)

which is then inserted into the SSeq and removed from the paths P2,3,4,5. Next, the

maximum weighted sum is found for the subtractor, which is then appended to the SSeq

and removed from P1,2,3. Then, the adder is selected, appended to the SSeq and removed

from P1,2,4,5. Next, between an adder and a subtractor, the subtractor is selected due

to its higher area (Ar ea(S) > Ar ea(A)). Finally, only the adder remains, so the final

supersequence generated by the algorithm becomes: SSeq = {M ,S, A,S, A}.

4.2 Creating Minimum Area Supersequences

Besides the algorithm presented in the previous subsection, an additional novel heuris-

tic is proposed in this section. It is based on reusing the Maximum Area Common

Subsequence (MACSeq) metric of other existing graph-merging algorithms [BKS04].

This way, the algorithm gives priority in the path fusion to those paths that share the

MACSeq. The idea is the following: if the paths Pi and P j sharing the MACSEq are

39

Chapter 4. Array Column Generation

++

+ +

+

+

1 5

32

4

+

*

+

*

3

*

5

*

+

4

+

*

2

+

1

+ +

Paths of the input DFGs

SSeq

* *

+

+

+

*

+

+

*

+

+

+

+

+

32

+

541

*
SSeq SSeq SSeq SSeq SSeq

+ +

1

3 5

4

+

+

1

4

(a) (b) (c) (d) (e) (f)

Figure 4.3: Steps of the novel algorithm for finding the shortest common supersequence
based on weighted majority merge (WMM) heuristic [BMS98]. (a)The multiplier (M)
is the operator occurring at the beginning of the paths and having the highest weight
(Equation 4.1). It is thus selected to start the SSeq. (b) The multiplier is removed from
the beginning of the paths, and the next operator at occurring at the beginning of the
paths and having the highest weight, the subtractor (S), is selected. (c) The subtractor is
removed from the paths. The next candidate operator is the adder (A), which is then
appended to the SSeq. (d) Two adders and two subtractors remain. Assuming that
the ties are broken so that an adder is selected next, the only remaining operator, the
subtractor, is selected (e) and the final SSeq is obtained (f).

combined into a single path Pi,j first, then the remaining paths in the input set (i) will be

either completely contained in the path Pi,j, or (ii) they will likely share more operators

with Pi,j than with another path created by fusing any two paths from the input set. This

is a slightly different approach towards minimizing the total area of the supersequence

than the approach described in the previous section.

The algorithm steps are as follows:

1. Enumerate all paths of each input DFG and group them into multiple sets de-

pending on their length (number of nodes).

2. Starting from the set having the longest paths, perform pairwise search for the

MACSeq between paths, using the algorithm for finding the Longest Common

Subsequence (LCS) [CZ09] and calculating the LCS area as the sum of areas of

its operators. Since the result of the LCS search algorithm depends on the order

of input paths Pi and P j , i 6= j , it is run for both (Pi ,P j) and (P j ,Pi) as inputs. If

there are multiple pairs of paths sharing the MACSeq, this step reports the pair

40

4.2. Creating Minimum Area Supersequences

+

*

5 23

+

*

4

+

1

++ +

*

523

+

*

++

1

+

*

4523

+

*

14523

+ +

SSeq

+

*

+

+

*

5

*

3

*

+

2

+

*

4

+

1

+ +

Paths of the input DFGs

23

+

*

2

3

+

*

4

+

1

+

+

523

+

*

+

*

4523

+
4

523

(a) (b) (c) (d) (e)

Figure 4.4: Steps of the algorithm based on reusing MACSeq metric of graph-merging
algorithms. The paths highlighted in gray are selected for merging. The colored nodes
form MACSeq.

that was found first. Additionally, it always reports the order of paths Pi and P j

used by LCS search algorithm for which the MACSeq was found.

3. Perform path fusion on the ordered pair of paths (Pi ,P j) sharing the MACSeq

(the order is repored by the previous step). Fusing two paths, begins by aligning

all their respective nodes belonging to the MACSeq (see Figure 4.4). Then, the

fused path is initialized to the MACSeq, aligned as in paths Pi and P j . Finally, all

nodes of Pi and P j not belonging to the MACSeq are added to the fused path. In

order to do so, all nodes are added in the same relative position with respect to the

MACSeq as in the original path. First are added the nodes of Pi and, after them,

those of P j . Once the fused path is obtained, it replaces Pi and P j in the set of

paths yet to fuse.

4. Repeat (2) and (3) until only one path is left in the set.

5. Move the resulting path to the next set containing the paths of smaller length and

repeat (2) to (5) until only one path is left: the supersequence.

In practice, the fused path converges quickly into the supersequence, as the shorter

paths are most likely already contained in previously fused longer paths.

Figure 4.4 describes how this algorithm is implemented on the same DFGs used for

41

Chapter 4. Array Column Generation

Figure 4.1: As explained in Section 4.1, the following five paths can be extracted from the

two DFGs: P1 = {S, A, A}, P2 = {M ,S, A}, P3 = {M ,S,S}, P4 = {M , A, A} and P5 = {M , A,S}.

In this case, the algorithm groups all the paths in the same set because they all have

the same length. To find the MACSeq, it can be assumed again that the areas of the

different operators are related as Ar ea(M) > Ar ea(S) > Ar ea(A). Accordingly, the

MACSeq corresponds to {M ,S}, which is contained in P2, P3, and P5. The first pair that

reports MACSeq is (P2,P3). Therefore, P2 is fused with P3, resulting in P23 = {M ,S, A,S}.

The next found MACSeq is {M , A,S} found for the pair of paths (P5,P23), resulting in

fused path P523 = {M ,S, A,S}. Similarly, the next path selected for fusing is P4, so the

fused path becomes P4523 = {M ,S, A, A,S}. Finally, the only remaining path, P1, is

selected. This path is already included in P4523, so the supersequence SSeq becomes

P14523 = {M ,S, A, A,S}.

Clearly, the two heuristics may give different results. For the example DFGs in Figure 4.1,

the total area of the SSeq created by modified weighted majority merge algorithm and

the algorithm based on finding MACSeqs is the same, but that might not always be the

case. Thus, the performances of the two algorithms will be thoroughly analyzed and

compared in the experimental part of this work.

4.3 Algorithm Complexity

The algorithms for finding a supersequence involve enumerating all paths of the input

DFGs. In the worst-case, this may lead to an exponential number of paths, and thus

reaching exponential complexity. Yet, most DFGs derived from real applications do not

exhibit this property, despite having a relatively large number of nodes.

Even if the number of paths in a graph were to be exponential, one could design a

heuristic to limit the number of enumerated paths. For example, one could enumerate

only the unique paths in a graph using a straightforward application of topological

sort, and then insert a thresholding mechanism to decide between proceeding with

42

4.3. Algorithm Complexity

exhaustive or limited enumeration, depending on the number of paths found. As will

be shown in the experimental chapter, in the experiments presented in this thesis a

relatively low (in the order of a millisecond) execution time of both supersequence

generation algorithms is observed, regardless of the size of the input DFG. Hence, the

number of enumerated paths was not constrained.

43

5 Array Generation

Once a supersequence capturing the characteristics of an application domain is gen-

erated, the array column is completely defined and as such used to create a regular

domain-specific array. The array generation is performed by replicating the column

so that each row in the array is composed of the same type of operators. Hence, the

array is homogeneous in one dimension. The value chosen for the number of array

columns, Nc , affects the total area of the array as well as its generality. The methods

used to determine the optimal value of the parameter Nc are the topic of this chapter.

First, the key steps for finding Nc are elaborated in Section 5.1. Since one of these steps

implies mapping application DFGs onto CGRAs, a detailed review of the state-of-the-

art in this area is provided in Section 5.2. Then, a novel approach for mapping DFGs

is introduced and explained in details in Section 5.3. This approach is essential not

only for finding the optimal Nc value, but also for achieving the generality of the final

reconfigurable array. Once Nc is chosen, the definition of the array size is complete.

However, to provide generality beyond the size of the input set of DFGs, the algorithm

for finding Nc can apply an oversizing factor to enlarge the minimum value of Nc .

The amount of oversizing can either be provided by the circuit designer or devised

automatically, based on the characteristics of the input DFGs. The automated approach

for finding a good oversizing factor is described in Section 5.4.

45

Chapter 5. Array Generation

5.1 Method for Determining the Array Size

The optimal number of array columns, Nc , can be defined as the value that (i) leads to a

minimum-size array, while (ii) ensuring that all application DFGs known at the design

time can fit on this minimum-size array. In other words, it must be possible to map all

DFGs from the input set of applications on the Nr ×Nc array, where Nr (the number of

rows) equals the length of the supersequence and Nc equals the number of columns.

Assuming that a designer wants to create a single array for accelerating a set of N

applications belonging to a same domain, the dataflow graphs are first extracted from

the application kernels and then put together in a set. This set will be referred to as

the set G of the size N , containing DFGs from D1 to DN . The algorithm to devise the

minimum value of Nc for the set G starts by creating a supersequence from all DFGs

in the set G and building an array by replicating this supersequence a large number

of times (Algorithm 1). Without loss of generality, two input and two output ports per

column of the array are inserted. Then, a DFG Di , where 1 ≤ i ≤ N , is mapped onto this

array. The number of occupied operators per each row of the array is calculated, and the

maximum found value assigned to Nc [i]. The last two steps are repeated for all DFGs

in G . The maximum of all Nc [i] values is Nc , the minimum required number of array

columns ensuring that all input DFGs can fit.

The most important step of this algorithm is the implementation of the function for

mapping an application DFG onto a reconfigurable array. Mapping a DFG onto a CGRA

translates to finding a suitable distribution of DFG nodes among the corresponding

array operators. The way how it is done affects not only the minimum needed array size,

but also its ability to capture and preserve domain-specific generality.

To leverage on the topological regularity existing in DFGs belonging to the same do-

main, a mapping algorithm that mimics effective graph drawing algorithms is chosen.

Moreover, since graph drawing algorithms tend to keep graph edges as short as possible,

to minimize the number of edge crossings and emphasize symmetries, the require-

46

5.2. Related Work in Graph-Based Application-Mapping

Algorithm 1: An algorithm to estimate the minimum number of array columns Nc .

/* Create a supersequence from all DFGs in the set G. */

arrayColumn = createSupersequence(G);

/* Using the previously found supersequence, create an array */

/* having a maximum allowable, MAX_INT, number of columns. */

Array_MAX_INT = createArray(array_column, MAX_INT);

/* Mapping the DFGs Di (1 ≤ i ≤ N) on an array having */

/* unlimited number of columns (Array_MAX_INT). */

for 1 ≤ i ≤ N do
Array[i] = map(Di , Array_MAX_INT);
Nc [i] = maxNumberOfOccupiedNodesPerRow(Array[i]);

/* Reporting the minimum required size of the array */

/* required for Di to fit in it. */

Nc = MAX1≤i≤N(Nc [i]);

ments imposed on the routing network are alleviated. Such features are particularly

important for a domain-specific array introduced in this work. Several researchers have

used the same idea of implementing a graph-layout-based application mapping onto

CGRAs. The relevant related work is discussed in the following Section. The details of

the algorithm used for mapping DFGs in this work are elaborated afterwards.

5.2 Related Work in Graph-Based Application-Mapping

Compilation for CGRAs has traditionally been focused on two issues [AYP+06], [YSP+08],

[PFM+08], [Rau94], [LBF+98], [VNK+01], [MVV+02], [LB03], [eLCD03]: (i) placing op-

erations (arithmetic, logic, multiplication, and load/store) of a loop kernel onto the

array operators, and (ii) assuring the flow of data (routing) among operators using the

existing, usually sparse, routing resources. The loop kernel can then be transformed

into a pipeline on a CGRA, completing one iteration every cycle or every II cycles, where

II is the initiation interval of the pipeline [Rau94].

47

Chapter 5. Array Generation

L L

+

L

!

+

S

FU0 FU2 FU3

FU6 FU7

FU8

FU
15

L

L

L

S

+

!

+

FU Array

L – LOAD
S – STORE

*

*

*

*

MUXMUX

ALU

Reg

RF

C
o

n
text R

egister
FU

Read from neighbors

Write to neighbors

a) b)

Figure 5.1: (a) An example of the application kernel. (b) One possible mapping of the
kernel in a) onto a 4×4 CGRA. It is assumed that FUs are identical, composed of an
ALU, multiplexers at the ALU inputs, and register files. Additionally, only connections
between four neighboring FUs are provided.

Mapping an application DFG to a regular CGRA structure can be thought of as finding a

suitable transformation between the DFG and an array of interconnected functional

units (FUs). Figure 5.1 shows an example DFG and one possible mapping of that DFG

onto a 4×4 CGRA. It is assumed that each FU is composed of an arithmetic and logic

unit (ALU), multiplexers at the ALU inputs, and register files (RFs), and that FUs can

communicate only with immediate neighboring FUs. There are many possible ways in

which this mapping can be done. In this Section, several relevant papers are discussed:

• First, the spatial mapping algorithm published by Ahn et al. [AYP+06], which uses

Sugiyama method [STT81] for drawing layered graphs to find the node placement.

• The algorithm by Yoon et al. [YSP+08] based on Split & Push algorithm [BPV00].

• The edge-centric approach by Park et al. [PFM+08], in which mapping is guided

by the affinity cost function, directly related to the proximity of DFG nodes.

• Finally, the most recently published graph-minor approach by Chen et al. [CM12].

48

5.2. Related Work in Graph-Based Application-Mapping

5.2.1 Spatial Mapping Algorithm for Heterogeneous CGRAs

Ahn et al. [AYP+06] analyzed the problem of automatically mapping applications onto

Multiple Instruction Multiple Data (MIMD) heterogeneous CGRAs (HCGRAs). In HC-

GRAs each functional unit can be configured separately. Hence, the overall performance

depends mainly on the application mapping, which should exploit the parallelism

embedded in an application and the computational resources of the hardware simulta-

neously. In the even earlier works several attempts of mapping applications to CGRA

were made, but with some differences and limitations. Kim et al. performed manual

mapping [KKP+05], Mei et al [MVV+02] provided no support for sharing of common

resources among FUs [MVV+02], Lee et al. assumed homogeneous FUs [LB03], while

Venkatarani et al. used single instruction multiple data (SIMD) CGRA [VNK+01].

Application mapping can be classified into two categories: temporal and spatial map-

ping. In temporal mapping, necessary configurations are all stored in the configuration

cache and the configuration of each FU is dynamically changed with time. In spatial

mapping, each FU has a fixed configuration, and the data to be processed are routed

through FUs. Temporal mapping may reduce the number of FUs required for mapping

in comparison with spatial mapping. In spatial mapping, the mapping is limited by the

topology and size of the reconfigurable array, but it has no configuration overhead and

thus reduces the configuration storage. Therefore, the spatial mapping strategy is in

some cases more effective for embedded applications, and it is applied in this work.

Ahn et al. [AYP+06] proposed an algorithm for spatial mapping using methods for

drawing hierarchical graphs. They first analyzed the application code to detect loop

kernels and represent them in a tree form, called the kernel tree. In a kernel tree,

each node is an atomic operation, such as addition or multiplication, while an edge

represents a data dependence between operators. An example of the application code

extracted from complex update application from DSPStone benchmarks [ŽVSM97] is

shown in the following algorithm.

49

Chapter 5. Array Generation

Algorithm 2: An example code extracted from DSPStone benchmarks [ŽVSM97].

for (i = 0; i < N ; i+= 2) do
temp1 = c[i]+a[i]∗b[i];
d [i] = temp1–a[i +1]∗b[i +1];
temp2 = c[i +1]+a[i+1]∗b[i];
d [i +1] = temp2 +a[i]∗b[i +1]

Figure 5.2a shows the kernel tree extracted from this code. Ahn et al. [AYP+06] assumed

that FUs are composed of one ALU, preceded by multiplexers at its every input and

followed by a shifter and pipelining register. By changing the configuration of the

FU, various combinations of operations can be executed on it, e.g., loading operators

on both inputs followed by multiplication, performing ALU operation followed by

shifting, or loading only one operator and shifting. Several kernel operations can be

mapped on one FU, if the corresponding configuration exists. Using the set of possible

configurations, Ahn et al. transform the kernel tree to a configuration tree in which each

node represents a configuration for each FU, possibly covering, and thus executing,

more than one operation of the kernel tree.

Ahn et al. divided the algorithm for spatial mapping into three phases: covering, par-

titioning, and layout. The covering problem is essentially analogous to instruction

selection problem [API03]. To solve it, they implemented a compiler that takes as input

the kernel code, computes the covers for nodes in the kernel tree as shown in Figure 5.2b,

and produces as output the configuration tree in Figures 5.2c. Several nodes in the

kernel tree can be replaced by one node in the configuration tree if there is a configura-

tion of FU in the CGRA that supports their execution on a single FU. In the partitioning

phase, they partition the nodes of the configuration tree into different clusters, each

scheduled later to each column of the PE array. Later, in the laying-out phase, these

partitions are input to their integer linear programming (ILP) solver for finding vertical

assignment of nodes in the CGRA. The algorithm always tries to assign two partitions

with heavy data traffic as close as possible, which usually leads to minimized number of

FUs that are used as route-through only.

50

5.2. Related Work in Graph-Based Application-Mapping

(a)

(b) (c)

L L L L L L L L

L

+

-

S

L

+

+

S

a[i] a[i] b[i] b[i] a[i+1] a[i+1] b[i+1] b[i+1]

c[i] c[i+1]

d[i+1]d[i]

FU1 FU2

FU3

FU4

FU7

FU8

FU5

FU6

* * * *

L L L L L L L L

L

+

-

S

L

+

+

S

a[i] a[i] b[i] b[i] a[i+1] a[i+1] b[i+1] b[i+1]

c[i] c[i+1]

d[i+1]d[i]

* * * *

L – LOAD
S – STORE

FU2 FU3

FU7

FU8

FU1 FU4

FU5

FU6

Figure 5.2: (a) The kernel tree of the complex update application from DSPStone bench-
marks [ŽVSM97]. (b) Kernel tree after covering. (c) Configuration tree.

After vertical assignment, Ahn et al. use the Sugiyama method [STT81] for drawing

layered graphs to find the node positions that

• minimize edge crossings and

• keep adjacent the node pairs that exchange data.

The same idea is used in this thesis.

Experimental evaluation [AYP+06] has shown that this algorithm does not always pro-

duce optimal solutions, although in many cases its performance is comparable to those

obtained with hand optimizations.

51

Chapter 5. Array Generation

5.2.2 Split & Push Kernel Mapping Algorithm

Yoon et al. [YSP+08] focused on solving the problem of mapping a kernel of a given loop

onto a large-scale CGRA, while simultaneously minimizing the number of resources

required. They proposed a graph-drawing based approach called split-push kernel

mapping (SPKM). It is based on the Split & Push algorithm used in the graph-drawing

area [BPV00]. In Figure 5.3 an example of mapping a four-operation kernel graph onto

a 2 × 2 CGRA is shown. The algorithm starts with all nodes of a kernel graph located

at the same coordinate Figure 5.3a. Then, it uses cuts to split vertices into two distinct

groups. A cut is a plane orthogonal to one of the axes (shown by dotted lines). After the

node separation, the vertices in one of the two groups are pushed to a new coordinate.

Figure 5.3b shows the result of Split & Push along the horizontal dotted line. This

procedure is repeated until every vertex has distinct coordinate, as shown in Figure 5.3c.

To minimize the number of used rows in the mapping, Yoon et al. proposed a three-stage

heuristic. The first stage is a column-wise scattering, in which vertices are distributed

to the minimum number of utilized rows in the same column. The second stage is the

routing FU insertion, in which routing FUs are generated and connected with existing

vertices. The third stage is a row-wise scattering, in which they try to avoid diagonal

edges and edge crossings by placing the nodes that have connections between different

rows in the same column.

The authors compared the SPKM with the approach in [AYP+06] on a set of kernel

graphs from benchmarks such as Livermore loops, MultiMedia and DSPStone, and

on a set of randomly generated kernel graphs. The results showed that SPKM can on

average map 4.5 × more applications than the approach in [AYP+06]. SPKM is also able

to generate mappings requiring smaller number of rows than the approach [AYP+06]

in 62% of the applications. Additionally, SPKM has only 5% overhead in mapping time,

while both approaches are significantly faster than ILP.

52

5.2. Related Work in Graph-Based Application-Mapping

(a) (b) (c)

3 1

4 2

3 1

4 2

3 1

4 2

Figure 5.3: (a) The kernel tree of the complex update application from DSPStone bench-
marks [23]. (b) Kernel tree after covering. (c) Configuration tree.

5.2.3 Edge-Centric Modulo Scheduling

Traditional schedulers [MVV+03, PFKM06] address the scheduling task in a node-centric

manner by focusing on assigning DFG nodes to FUs. Park et al. [PFM+08] argue that

selecting intelligent paths from producing to consuming FUs, which do not block

other operand paths is crucial for achieving higher throughput schedules. Hence, they

propose an edge-centric modification of modulo scheduling, in which the scheduler

focuses primarily on routing, while placement is a by-product of the routing process.

Modulo scheduling is a software pipelining technique that exposes parallelism by over-

lapping successive loop iterations to find a valid schedule that will minimize the interval

between successive iterations (initiation interval, or II) [Rau94].

In an edge-centric approach, the scheduler does not place operations up front. Instead,

it selects an edge from the already placed producers or consumers of the operator and

attempts routing that edge. To do that, the router searches for an empty slot capable of

executing the target operation. In a node-centric approach, the router would instead

route towards a placed operation. In the edge-centric approach, once a compatible slot

is found, the target operation is placed in it and the scheduler continues routing DFG

edges to remaining nodes. Minimization of the number of the routing resources used is

achieved by assigning a statically determined fixed cost to the routing resources, thus

forcing the router to look for a path minimizing the total cost. The authors propose

53

Chapter 5. Array Generation

propose using affinity cost [PFKM06]. The affinity cost of a pair of operations reflects

their proximity in the DFG. Hence, it forces the router to place operators near their

producers and consumers whenever possible, and thus reduce the number of used

routing resources. To avoid routing failure, occupancy probability is associated to all

scheduling slots to find which resources are likely to be used by other edges in the future.

To evaluate the performance of their approach, they selected a set of loops from typical

media applications, such as H.264 decoder, 3D graphics, AAC decoder, MP3 decoder,

and others, to map onto various CGRA configurations. The results showed that the edge-

centric approach improved performance by 25% over the traditional modulo scheduling

and achieved 85-98% of the performance compared to the state-of-the-art simulated

technique DRESC [MVV+03] with compilation time reduced by 18×. However, the draw-

back of this approach is that its performance strongly depends on the characteristics of

DFG structures and the underlying CGRA architectures.

5.2.4 Graph-Minor Approach

Chen et al. [CM12] noticed that none of the previous approaches attempted to share

routes corresponding to different graph edges having the same source node. Addition-

ally, most of the existing techniques did not even model explicit routing through register

files. Most approaches implicitly assumed the availability of a sufficient number of

registers and interconnections between them as well as functional units, even though

the register files consume significant amount of area and substantially impact CGRA

performance [MVV+03].

The authors introduced another approach that integrates register allocation with

scheduling through explicit modeling of the register files and their connectivity with

the functional units. Essentially, they transformed a CGRA mapping problem with

route sharing into a graph-minor problem and proposed a framework based on graph

mapping for solving this problem. To model the register files and their connectivity,

54

5.2. Related Work in Graph-Based Application-Mapping

Chen et al. introduced some modifications to Modulo Routing Resource Graph (MRRG).

Initially, MRRG was proposed by Mei et al. [MVV+03] as a resource-management graph

that captures interconnections among FUs and register files. Park et al. [PFKM06] intro-

duced a slightly modified version of MRRG, that was used by Chen et al. According to

them, MRRG is a directed graph whose nodes represent an FU or a register file, while

edges represent the connectivity between nodes in a time-space view.

Chen et al. used the graph-minor [RS99] based formulation of the application mapping

problem on CGRA with route sharing. An undirected graph G′ is called a minor of the

graph G if G′ is isomorphic to a graph that can be obtained by edge contractions on a

subgraph of G . An edge contraction is an operation that removes an edge from a graph

while simultaneously merging together the two vertices it used to connect. Since the

definition of the graph-minor is restricted to undirected graphs, they extended it by

defining the edge contraction operation for directed graphs.

The algorithm for CGRA with route sharing by Chen et al. is as follows. First the mini-

mum possible II is computed. Then, the modulo routing resource graph corresponding

to the CGRA architecture and the minimum II is created. Further on, a subgraph G′ in

G , such that the application dataflow graph is a restricted minor of G′, is searched for. If

such graph exists and can be found, then the DFG can be mapped to the CGRA with the

initiation interval II. Otherwise, II is incremented by one, and the previously mentioned

steps are performed again. The whole process is repeated until a MRRG with sufficiently

large II is generated and the DFG can satisfy the graph-minor test.

To evaluate the performance of the algorithm, Chen et al. used a set of kernels from

standard benchmarking suites and three different register file configurations: one with

no register files, one with local shared register files, and one with a central shared reg-

ister file. The target CGRA architecture was a 4×4 array with possibly heterogeneous

units that can be found in ADRES [BBKG07], MorphoSys [LSL+00], and other known

CGRAs. They measured the achieved performance for different CGRA configurations

(different number of memory units, different register file configurations). The results

55

Chapter 5. Array Generation

have shown that adding registers may not necessarily improve II, contrary to the conclu-

sions published by Kwok et al. [KW05], who recommended a global register file with a

large number of registers. The reason was that the algorithm for register allocation may

end up with a schedule that uses a large number of registers, while sharing routes helps

reducing register file pressure and thus achieves a valid schedule using smaller number

of registers. Compared to DRESC [MVV+02], their algorithm yields improvement in

the compilation time more than an order of magnitude, along with increased average

resource utilization (62% compared to 54% for DRESC).

5.3 DFG Placement onto Domain-Specific Arrays

As seen in the previous section, graph-based approaches for application mapping

onto CGRAs have been used extensively. When input applications belong to a single

domain, their DFGs exhibit topological regularity, which should be exploited to devise

an efficient mapping algorithm. One way to leverage on this regularity is to use a

placement algorithm that mimics effective drawing algorithms. Those algorithms tend

to produce graph layouts with graph edges as short as possible, minimized number

of edge crossings, and emphasized symmetries. For example, related work by Ahn et

al. [AYP+06] has relied on the Sugiyama method [STT81] for drawing layered graphs to

define the horizontal node positions, for a fixed vertical node assignment. A similar

approach is implemented here, using the well-known publicly-available package for

manipulating graphs and their drawings—Graphviz [GN00].

Besides path fusion, the way application mapping is done is a very important step

towards achieving the goal of this work—automatically creating domain-specific recon-

figurable arrays. Preserving the topological regularity of DFGs even after their placement

on the array, increases the probability that this array could also accelerate other appli-

cations sharing similar computational structures, and thus belonging to the same or a

similar domain.

56

5.3. DFG Placement onto Domain-Specific Arrays

Three subsection follow. Subsection 5.3.1 describes the way Graphviz tool is invoked and

the algorithm it uses to draw hierarchical graphs. Subsection 5.3.2 presents a method for

guiding the graph-drawing tool to place DFG nodes on specific horizontal coordinates,

resembling array rows. Finally, subsection 5.3.3 describes methods for snapping nodes

to array columns and for tuning the horizontal node positions, when the suggested

placement by the tool cannot be implemented on a real array as is.

5.3.1 Laying Out Graphs with dot

Graphviz toolkit contains two libraries, Libgraph and Dynagraph. Libgraph supports

reading, writing, and manipulating graph abstractions, allowing fine-tuning of perfor-

mance critical code. Dynagraph is layered on top of Libgraph and realizes a framework

for displaying incrementally changing graphs. Both share a common graph specifi-

cation language. Libgraph embodies a common attributed graph data language for

graph manipulation tools. Embedding tool-specific data and command syntax in graph

descriptions makes it difficult to write compatible graph filters. By delegating graph

file I/O to Libgraph, graph tools are syntactically compatible by default. The Libgraph

language is conventionally known as the dot format, after its best-known application.

The dot language provides syntax for defining graphs, nodes and edges, plus the ability

to attach string-valued name-attribute pairs to graph components.

dot draws directed graphs. It reads graph text files with the extension .dot and writes

drawings, either as graph files or in a graphics format such as GIF, PNG, SVG, or

PostScript. Graph drawing is done in four main phases [GKN06]:

• Since the layout procedure used by dot relies on the graph being acyclic, the first

step is to break any cycles which occur in the input graph by reversing the internal

direction of certain cyclic edges.

• The next step assigns nodes to discrete ranks or levels. In a top-to-bottom drawing,

ranks determine y coordinates. Edges that span more than one rank are broken

57

Chapter 5. Array Generation

into chains of “virtual” nodes and unit-length edges.

• The third step orders nodes within ranks to avoid crossings.

• The fourth step sets x coordinates of nodes to keep edges short, and the final step

routes edge splines; In mathematics, a spline is a sufficiently smooth polynomial

function that is piecewise-defined, and possesses a high degree of smoothness at

the places where the polynomial pieces connect [Che09].

This is the same general approach used by the majority of hierarchical graph drawing

programs, which are based on the work of Warfield [War77], Carpano [Car80], and

Sugiyama [STT81]. dot accepts input described using DOT language. This language

describes three kinds of objects: graphs, nodes, and edges. Besides dot, which makes

layouts of directed graphs, there is one more layout utility in Graphviz package, which

accepts the same input and draws undirected graphs. It is called neato [Nor04]).

Figure 5.4 shows an example graph text file in the dot language corresponding to a 3 ×
3 convolution application DFG shown in Figure 5.5. The first line gives the graph name,

G, and type, digraph. The lines that follow create nodes, edges, or subgraphs, and set

attributes. Names (labels) of all these objects may be C identifiers, numbers, or quoted

C strings. A node is created when its name first appears in the file. An edge is created

when nodes are joined by the edge operator "−>". Running dot on this file (for example

called graph1.dot) is done using the following command:

$dot -Tps graph1.dot -o graph1.ps,

and yields the drawing of Figure 5.5, a basic block extracted from 3 × 3 convolution.

It is often needed to adjust the representation or placement of nodes and edges in the

layout. This is done by setting attributes of nodes, edges, or subgraphs in the input file.

Attributes are name-value pairs of character strings. Node or edge attributes are set off

in square brackets. Nodes are labeled by the node name and drawn, by default,

shape=ellipse, width=.75, height=.5,

where dimensions are in inches. Other common shapes are box, circle, record, and

58

5.3. DFG Placement onto Domain-Specific Arrays

digraph G {

/* Labeling graph nodes */
1 [label="1 (IN)"];
2 [label="2 (IN)"];
3 [label="3 (IN)"];
4 [label="4 (IN)"];
5 [label="5 (IN)"];
6 [label="6 (IN)"];
7 [label="7 (IN)"];
8 [label="8 (MUL)", color = gray, style = filled];
9 [label="9 (MUL)", color = gray, style = filled];
10 [label="10 (MUL)", color = gray, style = filled];
11 [label="11 (ADD/SUB)", color = gray, style = filled];
12 [label="12 (ADD/SUB)", color = gray, style = filled];
13 [label="13 (ADD/SUB)", color = gray, style = filled];
14 [label="14 (OUT)"];

/* Drawing graph edges */
 1->11;
 8->11;
 2->8;
 3->8;
 4->9;
 5->9;
 6->10;
 7->10;
 9->12;
 10->12;
 11->13;
 12->13;
 13->14;
}

Figure 5.4: Graph text file example.

1 (IN)

11 (ADD/SUB)

2 (IN)

8 (MUL)

3 (IN) 4 (IN)

9 (MUL)

5 (IN) 6 (IN)

10 (MUL)

7 (IN)

12 (ADD/SUB)

13 (ADD/SUB)

14 (OUT)

Figure 5.5: A DFG corresponding to 3 × 3 convolution. The graph text file in Figure 5.4
corresponds to this graph, drawn using dot.

59

Chapter 5. Array Generation

plaintext. Nodes and edges can specify a color attribute, with black the default. This

is the color used to draw the node’s shape or the edge.

Two attributes that play an important role in determining the size of a dot drawing are

nodesep and ranksep. The former specifies the minimum distance, in inches, between

two adjacent nodes on the same rank. The second deals with rank separation, which is

the minimum vertical space between the bottoms of nodes in one rank and the tops

of nodes in the next. This attribute sets the rank separation, in inches. Alternatively,

one can set ranksep=equally, which guarantees that all ranks are equally spaced, as

measured from the centers of nodes on adjacent ranks. In this case, the rank separation

between two ranks is at least the default rank separation. For example:

ranksep="1.0 equally"

causes ranks to be equally spaced, with a minimum rank separation of 1 inch.

In graphs with time-lines, or in drawings that emphasize source and sink nodes, one

has to constrain rank assignments in reference with the minimum rank, which occurs at

the top of the drawing. The rank of a subgraph may be set to same, min, source, max, or

sink. The value same causes all nodes in the subgraph to occur on the same rank. If set

to min, all nodes in the subgraph are guaranteed to be on a rank at least as small as any

other node in the layout. This can be made strict by setting rank=source, which forces

the nodes in the subgraph to be on some rank strictly smaller than the rank of any other

nodes (except those also specified by min or source subgraphs). The values max or sink

play an analogous role for the maximum rank. These constraints induce equivalence

classes of nodes, and are key for making dot graph drawing algorithm suitable for

mapping application DFGs on domain-specific coarse-grained arrays. Nodes belonging

to the same rank can be thought of as the nodes to be placed in the same array row.

Since the DFGs are to be layed out in top-down fashion, nodes having different ranks in

dot correspond to nodes having different depth in a graph.

A depth of a node is the maximum length of a path from input ports to

the node, among all paths containing that node.

60

5.3. DFG Placement onto Domain-Specific Arrays

5.3.2 Assigning Nodes to Rows

The procedure of laying out a dataflow graph starts by marking each dot rank to the

corresponding row in the array. Assuming that the supersequence found in the path

fusion step equals the sequence SSeq = {OpRow1,OpRow2, ...,OpRowNr }, where Nr

equals the number of rows in the array and OpRowi marks the type of the operator in

the i -th row, the following piece of text in dot input file defines all possible ranks that

DFG nodes can take (note that dot enumerates ranks in decreasing order):

{ /* the operators */

node [shape=plaintext];

"IN" → "OpRowr" → "OpRowr−1" →...→ "OpRow1" → "OUT";

};

The next step is to write out DFG nodes, divided into groups based on their ranks

(rows to be placed in). To decide the row in which to place a node, nodes are first

grouped according to their depths. Since nodes, in general, can belong to multiple

paths in the graph, the depth of a node is defined as the maximum length of a path

from input ports to the node, among all paths containing that node. For example, node

11, an adder/subtractor belonging to the DFG shown in Figure 5.5, is contained by two

partly overlapping paths: P1 = {8 (MUL), 11 (ADD/SUB), 13 (ADD/SUB)} and P2 = {11

(ADD/SUB), 13 (ADD/SUB)}. In the path P1, the depth of this node equals two, while in

the path P2 its depth equals one. Thus, the final depth of the node 11 is the larger of the

two values and thus equals two.

However, there is one drawback of this approach. In particular, in DSP applications

it is often the case that nodes belong to a binary tree of identical operators, due to

accumulation of partial results. Thus, if nodes are to be distributed in different rows

according to their depth only, the overall row utilization would be very low. To improve

it, a binary tree optimization procedure is proposed and implemented:

61

Chapter 5. Array Generation

Binary tree optimization: The graph nodes that form a binary tree are

repeatedly assigned to rows with as high rank as appropriate, as long as there

are free operators in those rows.

The procedure for assigning nodes to array rows can be summarized in the following

top-down approach:

1. Group nodes by depth.

2. Assign all inputs to the row containing input ports.

3. Start from the group of operators having the minimum depth d .

4. For all nodes in the selected group, do the following:

• If the node is a part of a binary tree assign it to the row with the same operator

type and the rank equal or lower than that of the predecessor node(s).

• If the node is not a part of a binary tree, assign it to the row with the correct

operators having lower rank than that of the predecessor node(s).

5. Move to the group of nodes having depth d +1.

6. Repeat steps (4) and (5) until all nodes are assigned to a row.

Figure 5.6 shows how the optimization of row utilization is achieved for binary trees: (a)

illustrates a chain of operators due to accumulation of multiple partial results, frequently

found in DSP application DFGs; (b) shows how this chain is transformed into a binary

tree; (c) suggests that the row utilization can be improved by assigning the tree nodes to

one of the predecessor node rows.

Two important facts should be noticed. First, by construction of the supersequence and

of the array, all nodes can always be placed greedily on the rows of the array. However,

due to the binary tree optimization, some rows in the datapath may never be used

by any of the input DFGs. To optimize total array area, these rows are automatically

62

5.3. DFG Placement onto Domain-Specific Arrays

(a) (b) (c)

Figure 5.6: Optimization of row utilization for binary trees. (a) Part of a typical DFG with
accumulation of multiple partial results. (b) The chain of operators transformed into a
binary tree. (c) Tree nodes assigned to one of the previous rows to minimize the tree
height and thus improve row utilization.

ADD/SUB(r = 5)

MUL(r = 4)

LSL/LSR(r = 2)

OUTPUT PORTS

IN 1 IN 2 IN 4 IN 5IN 6IN 3

d = 1

r = 5

IN 1 IN 2 IN 3 IN 4 IN 5 IN 6

d = 1

r = 5

d = 2

r = 4

d = 2

r = 4

d = 3

r = 3

d= 4

r = 3
(a) (b)

MUL (r = 6)

INPUT PORTS

ADD/SUB(r = 3)

ADD/SUB(r = 1)

ADD / SUB ADD / SUB

MUL MUL

ADD / SUB

ADD / SUB

ADD / SUB ADD / SUB

ADD / SUB ADD / SUB

MUL MUL

1 2

3 4

5

6

1

3 4

2

5 6

Figure 5.7: Assigning nodes of a subgraph for placement. (a) Subgraph with node
depths d marked. Nodes having the same depth and performing the same operation
are assigned to the same row (rank r). Nodes are always assigned lower rank than their
predecessors, unless they are a part of a binary tree (Node 6). (b) The same subgraph
after placement by dot.

removed from the array. The array in Figure 5.6c uses one row less than the array in

Figure 5.6b. Second, removing rows from the array this way has no effect on its ability

to support new sequences of operators belonging to other applications, as long as the

resources available are sufficient.

In Figure 5.7, a subgraph of DFG D7 used in the experimental evaluation (Chapter 8) is

shown. Nodes 1, 2, 5, and 6 perform addition/subtraction. Nodes 3 and 4 perform multi-

plication. The supersequence obtained by merging D7 with other DFGs is the sequence

{M , AS, M , AS,L, AS} where M stands for multiplication, AS for addition/subtraction,

63

Chapter 5. Array Generation

and L for left/right shift. The first node in the supersequence has the rank 6 (there are 6

rows in the datapath), while the last node has the rank 1. Node depths are marked on

the subgraph shown left: nodes 1 and 2 have the lowest depth, and perform operation

AS. They are assigned the highest ranked row of adders/subtractors, the row with the

rank r = 5. Nodes 3 and 4 have depth d = 2. They can be assigned to the row with the

rank r = 6 or the row with the rank r = 4; however, following the top-down approach,

they are assigned to the row with rank r = 4 because it is lower than the rank of the

rows of predecessor nodes 1 and 2. Similarly, node 5 is assigned the row with rank r = 3.

Node 6 belongs to a binary tree and thus its predecessor, node 5, performs the same

operation. Therefore, to minimize the tree height, node 6 is assigned the row with rank

r = 3, the same as the predecessor.

Once the supersequence and DFG nodes with their ranks assigned are passed to dot,

the tool is forced to place operators only within the rows, without the possibility to move

any operator from one row to another.

5.3.3 Assigning Nodes to Columns

Besides drawing graph layouts, dot outputs layout information in a textual file. The

default output format is the attributed dot format (Tdot) [GKN06], which reproduces

the input graph description, along with layout information, such as coordinates of

nodes and edges, total graph size, and node dimensions. Coordinate values increase up

and to the right. Positions are given by two integers separated by a comma, representing

the X and Y coordinates of the location specified in points (1/72 of an inch). A position

refers to the center of its associated object (node, edge, label).

To map data-flow graphs as if only a discrete set of values of node and port coordinates

is allowed, the dot is guided in the following way:

• Nodes and ports are defined as rectangular boxes.

• The width of nodes is set to 1.8 in.

64

5.3. DFG Placement onto Domain-Specific Arrays

+

*

+

*

*

+

+ +

+

+ +

+

+

+ +

+

+

+

+ +

+

+

+

* *

* *

* *

- - - -

-

- - -

- - - +

-

- -

>> >> >> >>>>

>> >> >> >>

>>

>> >>

>>>>>>>>

* *

<<

<<

IN

LSL/LSR

ADD/SUB

MUL

ADD/SUB

ADD/SUB

LSL/LSR

ADD/SUB

ADD/SUB

MUL

ADD/SUB

LSL/LSR

ADD/SUB

LSL/LSR

OUT

(a) (b)

Figure 5.8: The placement process. (a) A basic block extracted from 32b Inverse Two-
dimensional DCT (Table 7.1). (b) The DFG from (a) is laid out using dot and appropriate
constraints and parameters to suggest a detailed placement on the array.

• The width of ports is set to 0.8 in.

• The separation between nodes is set to 0.2 in.

Hence, the centers of any two nodes in the same row (with the same vertical coordinate)

cannot be separated by less than 1 in. Consequently, if rounded to the nearest integer,

the node centers are guaranteed to be non-overlapping. Additionally, not more than

two input (output) ports can be layed out next to one another above (below) a node to

which they are connected. An example dot layout of a DFG extracted from 32b inverse

two-dimensional DCT is shown in Figure 5.8.

When designing the array, the graph layout as suggested by dot should be preserved

because dot layouts emphasize regular patterns that are characteristic to a domain.

Therefore, the array size should be sufficiently flexible not to constrain the DFG place-

ment. For each of the DFGs that are input to the analysis, the minimal number of array

columns Nc,mi n needed to place them, while completely preserving dot layout, can be

devised from the dot output file:

Nc,mi n = MAX horizontal distance between any pair of node centers

MIN horizontal distance between any pair of node centers
. (5.1)

65

Chapter 5. Array Generation

The final array size should be sufficiently large to accommodate every input DFG.

However, when a designer wants to map a DFG that has not been available during the

design time, he has to find the correct placement using an array of fixed size. If, after

laying out the DFG by dot, the DFG nodes are too distant and thus cannot fit the array,

a rescaling of the coordinates suggested by dot is initiated. First, all coordinates are

simply scaled horizontaly. The scaling factor fs is chosen to be as large as possible, to

preserve the most of the layout suggested by dot. Thus, the scaling factor equals the

ratio of the number of columns required to place the DFG and the number of columns

available in the array, and is less than one:

fs = The number of columns required by dot placement.

The number of columns available in the array.
≤ 1. (5.2)

Scaling is done by multiplying the node center coordinates (output by dot) with the

scaling factor fs . Since the scaling factor is a real number, rounding the scaled coordi-

nates to obtain node positions respective to array columns may cause some nodes that

are in the same row to overlap, i.e. desire to occupy a single column. To avoid this, an

algorithm to redistribute nodes within columns is proposed and implemented.

• First, all nodes belonging to a row are sorted in increasing order of their horizontal

coordinate (recall here that in the dot outputs the coordinates increasing up and

to the right).

• Starting from the node with the lowest horizontal coordinate value, the algorithm

proceeds by attempting to place it in the column closest to the rounded and scaled

coordinate value.

• If the node desires to be placed in the already occupied slot, the algorithm first

checks if there are empty slots in one of the columns on the left side of the candi-

date one.

– If there are empty slots, the algorithm shifts previously placed nodes towards

the left. This shifting is done carefully to keep the overall geometrical relation

66

5.4. Oversizing The Number of Columns

among nodes as to resemble those suggested by dot. To guide the shifting

a special function calculating the cost of displacing already placed nodes

is introduced. This function first identifies the first empty slot on the left.

Then it estimates the cost of shifting all nodes that are on the right side of

this empty slot to the left for a single column. The following displacement

cost function is used to estimate the cost of shifting nodes:

fdi spl acement_cost =
∑

Nempty_cell<i<Ncandidate_cell

(xi ,pr ev −xi ,new)2. (5.3)

The cost is calculated as the sum of squared differences between the node

previous coordinate xi ,pr ev and the node coordinate that would be obtained

after shifting in the left xi ,new , for all nodes i placed on the right side of

the empty cell, i.e. between columns Nempty_cell and Ncandidate_cell. If the

estimated cost is less than the cost of placing the conflicting node in the first

available cell on the right, than the nodes are shifted, and the node is placed

in the candidate cell. Otherwise, the node is placed in the first free cell on

the right of the candidate cell.

– If there are no empty slots on the left side of the candidate cell, then the

shifting cannot be performed, and the new node has to placed in the first

empty slot on the right side of the candidate cell.

Algorithm 3 gives the details of the procedure for redistributing nodes within rows. Fig-

ure 5.9 shows the DFG from Figure 5.8a placed on a reconfigurable array after rounding

and scaling the node coordinates.

5.4 Oversizing The Number of Columns

To provide generality beyond the size of the input set of DFGs, the array generation

methodology can apply an oversizing factor to provide for more than just a minimum

67

Chapter 5. Array Generation

IN

LSL/LSR

ADD/SUB

MUL

ADD/SUB

ADD/SUB

LSL/LSR

ADD/SUB

ADD/SUB

MUL

ADD/SUB

LSL/LSR

ADD/SUB

LSL/LSR

OUT

IN

LSL/LSR

ADD/SUB

MUL

ADD/SUB

ADD/SUB

LSL/LSR

ADD/SUB

ADD/SUB

MUL

ADD/SUB

LSL/LSR

ADD/SUB

LSL/LSR

OUT

(a) (b)

Figure 5.9: (a) The basic block extracted from 32b Inverse Two-dimensional DCT (Ta-
ble 7.1) is laid out using dot and appropriate constraints and parameters to suggest a
detailed placement on the array. (b) The suggested placement of the DFG in (a) on a
reconfigurable array, after rounding and scaling the node coordinates suggested by dot.

number of columns Nc,min. Due to the array architecture, the number of input/output

ports is directly related with the number of columns. Hence, the oversizing factor

Fcol,oversize influences both the final number of columns and the final number of array

ports. The value of the oversizing factor can be either chosen arbitrarily (estimated by a

designer) or devised automatically. The final number of columns in the array Nc would

then equal the minimum number of columns needed to support placing all input DFGs

increased for the value of the oversizing factor:

Nc = Nc,min +Fcol,oversize, where Fcol,oversize ≥ 0. (5.4)

The algorithm for analyzing input DFGs and estimating the oversizing factor is is based

on measuring the minimum oversizing which would have been necessary to implement

any of the given DFGs if it were not part of the initial set. For example, one can assume

that the designer has provided a set G containing N DFGs. For each DFG Di (1 ≤ i ≤ N)

from G , a set Gi containing all DFGs except Di is created, and path fusion is used to

find the supersequences SSeqi . Further, two arrays are created. The first is the array

created by replicating SSeqi as many times as needed to assure all DFGs in Gi can be

68

5.4. Oversizing The Number of Columns

Algorithm 3: The algorithm to redistribute nodes within a row.

for 1 ≤ r ≤ Nr do
for each node n assigned to this row do

candi d ateCol umn = scaled&rounded horizontal coordinate of the node n;

if candi d ateCol umn > tot al Number O f Columns then
Report insufficient number of columns in the array and return;

if theLastOccupi edCol umn < candi d ateCol umn then
pl aceNode(n,candi d ateCol umn);
theLastOccupi edCol umn = candi d ateCol umn; Continue;

if theLastOccupi edCol umn == candi d ateCol umn then
if theLastOccupi edCol umn 6= theRi g ht MostColumn then

if theF r eeOnT heLe f tCost < theDi spl acementCost then
F r eeLastSl ot (theLastOccupi edCol umn);
pl aceNode(n, theLastOccupi edCol umn); Continue;

else
pl aceNode(n, theLastOccupi edCol umn +1); Continue;

else
F r eeLastSlot (theLastOccupi edCol umn);
pl aceNode(n, theLastOccupi edCol umn); Continue;

if theLastOccupi edCol umn > candi d ateCol umn then
if theLastOccupi edCol umn 6= theRi g ht MostColumn then

Keep moving already placed nodes until the cost of moving is balanced
with the displacement cost of the node;
Place the node n in the next column on the right; Continue;

else
Free the slot in the last occupied column and place the node n in the
next column on the right; Continue;

placed onto it. The number of columns in this array is denoted as Nc (Gi). The second is

the array created by replicating the same supersequence, but as many times as needed

to place Di . The number of columns in this second array is denoted as Nc (Di). The

oversizing factor equals:

Fi =


Nc (Di)−Nc (Gi) if Nc (Di)−Nc (Gi) ≥ 0,

0 otherwise.
(5.5)

69

Chapter 5. Array Generation

The maximum of all candidate Fi oversize factors, where i is in the range 1 ≤ i ≤ N , is

the final oversizing factor Fcol,oversize:

Fcol,oversize = max
1≤i≤N

{Fi }. (5.6)

70

6 Routing Network Design

Once the appropriate operators are arranged in a 2D array, routing resources need to be

added. As much as the flexibility of the array depends on the choice of the operator types

and their distribution, it also depends on the characteristics of the routing network,

which should reflect the characteristics of a target application domain.

Typically, CGRA routing networks are regular and sparse, composed of short connections

between neighboring nodes only, as shown in Figure 6.1a. These connections are buses

composed of multiple one-bit routing tracks, because the operators perform word-level

manipulations. Although area efficient, such networks have several drawbacks:

• They are of limited flexibility.

• They are not tuned to the requirements of an application domain.

• For long connections, the operators have to be used to route data, and thus can

not be used for their basic functionality.

The most flexible routing networks can be found in FPGAs, because they are designed

with the goal to support variety of applications. An FPGA consists of a large number

of small configurable logic blocks (CLBs) arranged in a 2D array and a programmable

routing network composed of a number of independent one-bit tracks to enable CLB

71

Chapter 6. Routing Network Design

FU FU FU

FU FU

FU

FU

FU

FU FU

FU FU FU

FU FU FU

I/O I/O I/O I/O

I/O I/O I/O I/O

I/O I/O I/O

I/O

I/O

I/O

I/OI/OI/O

I/O

I/O

I/O
CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

a) b)

Figure 6.1: (a) A typical CGRA routing network architecture. (b) An island-style FPGA:
2D array of configurable logic blocks with routing channels between rows and columns
and input/output ports on the sides.

inputs and outputs to connect and form a complex circuit. To achieve high flexibility,

these routing networks are very segmented and thus many routing switches are provided

to support connecting different routing segments. Therefore, the most of FPGA die-area

is consumed by routing resources [FK08]. Additionally, the delay of a circuit mapped

onto an FPGA is due mostly to the delay induced by the transistors in the routing

switches, rather than the CLBs that perform computation.

A state-of-the-art routing architecture is the island-style FPGA routing architecture, em-

ployed by all major FPGA vendors. The island-style FPGA architecture uses a symmetric

structure in which CLBs are laid out in an array of islands. A simplified view of such

a routing architecture is shown in Figure 6.1b. The CLBs are surrounded by routing

channels composed of multiple routing tracks. At the periphery of the array are input

and/or output ports for connecting CLBs to external devices.

If this kind of routing architecture is to be implemented on a CGRA, the die-area con-

sumed by routing resources would certainly be higher than that of a non-flexible routing

network found in typical CGRAs. However, if looked into closely, this routing architec-

72

ture offers significant opportunities for designing a domain-specific CGRA:

• It offers high flexibility that is crucial for achieving hardware generality beyond

the ability to support the input set of applications only.

• Although routing network segmentation and switch insertion causes considerable

signal-propagation delay, in CGRAs this delay is not as dominant as in FPGAs,

because FUs in CGRAs exhibit much higher delay than CLBs in FPGAs.

• Configuration overhead for routing switches in CGRAs is significantly smaller

than in FPGAs, because routing tracks in CGRAs are essentially 16-bit or 32-bit

buses and not one-bit wires found in FPGAs. Hence, only one configuration bit

per a wide multiplexer in routing switches suffices for CGRAs, whereas FPGAs

need one configuration bit per each single wire entering a routing switch.

• By varying the parameters of the routing network, which are introduced and

discussed in more details in the following section, it is shown that it is possible to

tune the routing network performance to fit the requirements of an application

domain and save some of the die-area consumed by it. However, this is not

possible with fixed and short interconnections found in typical CGRAs.

For the listed reasons, this type of routing network architecture is selected for further

analysis and incorporation into an array of operators described in Chapter 5, and thus

complete the design of a domain-specific CGRA. Without loss of generality, it is initially

assumed that each routing segment spans only one functional unit and that all vertical

and horizontal routing channels contain the same number of 32-bit buses. Hence, the

main challenge is to find a minimum number of buses per channel that will provide

successful mapping of all application DFGs known at the design time and guarantee

high generality of the array.

The organization of this Chapter is as follows. In Section 6.1 an island-style FPGA archi-

tecture and its routing network are described in details. Then, Section 6.2 explains the

73

Chapter 6. Routing Network Design

algorithm to devise a minimum number of buses per channel that provides successful

mapping of all input DFGs and guarantees high generality. To place and route DFGs,

an existing open-source tool called Versatile Place and Route (VPR) is used. This tool

was developed at the University of Toronto [BR00] and has been widely adopted by

researchers in the domain of FPGA architectures and reconfigurable hardware archi-

tectures in general. Section 6.3 explains in details the process of placing a DFG using

VPR, including the format of netlist description file (Subsection 6.3.1) and the format

of reconfigurable datapath architecture (Subsection 6.3.2). Section 6.4 explains the

format of circuit placement description file (Subsection 6.3.3), which is used by VPR

algorithms for DFG routing. Finally, a way to increase the routing channel width beyond

the minimum is the topic of Section 6.5.

6.1 Island-Style FPGA Architecture

Island-style FPGA architecture is the most common FPGA architecture. It is comprised

of an array of configurable logic blocks (CLBs). On the sides of the array are input and/or

output ports for connecting FPGA internal signals with the external devices. There are

typically two I/O ports per row or column of the array. Between I/O ports and CLBs, as

well as between every consecutive pair of CLB rows or columns, are routing channels.

These channels are composed of a set of wiring tracks, that can be of different length. A

detailed drawing of an island-style FPGA is shown in Figure 6.2.

Routing channels are defined by the channel width W , which equals the number of

routing tracks inside a channel. Usually, W is constant throughout the CLB array.

However, in the case of directionally-biased FPGAs [BR96], vertical channels have more

routing tracks than horizontal channels. Additionally, in the case of non-uniform

FPGAs [BR96], the center region has higher channel width than outer regions. Other

layouts also exist, depending on where the manufacturer expects the greatest routing

congestion. The parameter specifying how many CLBs the track is spanning is called

74

6.1. Island-Style FPGA Architecture

SW

CLB

SW

CLB

SW

CLB

SW

SW

CLB

SW

CLB

SW

CLB

SW

SW

CLB

SW

CLB

SW

CLB

SW

SW SW SW SW

I/O I/O I/O

I/O

I/O

I/O

I/OI/OI/O

I/O

I/O

I/O CB

Figure 6.2: An island-style FPGA architecture shown in details. The FPGA is composed
of a 2D array of configurable logic blocks with routing channels between consecutive
rows and columns and input/output ports on the sides. Inputs and outputs of logic
blocks are connected with the neighboring routing channels via connection blocks
(CBs). Routing wires in different channels are connected via switch boxes (SBs).

the segment length L. In commercial FPGAs the routing channels most often contain

tracks of different segment length, because that may improve the routing area and the

critical path delay. Connection boxes (CBs in Figure 6.2) connect the routing tracks

inside channels with the input and output pins of the CLBs. These pins can be on any

side of CLB (up/down/left/right). A connection block is described using two parameters.

The input flexibility Fcin, indicates how many tracks per channel can be connected to

each CLB input. The output flexibility Fcout indicates how many tracks per channel are

connected to each CLB output.

Figure 6.3a shows a routing channel of the width W = 3, which contains tracks of the

length L = 1, L = 2, and L = 3. Figure 6.3b shows three input connection boxes, at the

top, the left, and the right side of the logic block, respectively. Their flexibility equals

Fcin = 0.25 because only one out of four (W = 4) wires from the routing channels can be

75

Chapter 6. Routing Network Design

CLB CLB CLB CLB

= 1L
= 2L
= 4L

CLB CLB CLB CLB

= 3W
CLB

IN

OUT

25.= 0
cin
F

50.= 0
cout
F

= 3sF

IN

IN

= 4W

a) b)

Figure 6.3: A routing channel can contain tracks of different lengths L. The number
of tracks per channel equals the channel capacity W . The output connection block
flexibility Fcout indicates how many tracks per channel are connected to each CLB
output. The switch block flexibility Fs is the number of possible connections a wire
segment can make to other wire segments inside a switch block.

4

3

2

1

0

4

3

2

1

0

0 1 2 3 4

0 1 2 3 4

a)

4

3

2

1

0

4

3

2

1

0

0 1 2 3 4

0 1 2 3 4

b)

4

3

2

1

0

4

3

2

1

0

0 1 2 3 4

0 1 2 3 4

c)

Figure 6.4: FPGA switch block topologies. (a) Disjoint switch block[LB93]. (b) Universal
switch block [CWW96]. (c) Wilton switch block [Wil97].

connected to any of the input ports of the CLB. Similarly, there is one output connection

block at the bottom side of the CLB, with the flexibility Fcin = 0.50.

A Switch Block (SB) is used to make connections between tracks in adjacent routing

channels. Its flexibility, Fs , defines for a wiring segment entering the switch block

the number of other wiring segments it can be connected to [LKJ+09]. Hence, the

switch block in Figure 6.3b has Fs = 3. The most used topologies of switch blocks are

the following: the Disjoint Switch Block [LB93], the Universal Switch Block [CWW96],

and the Wilton Switch Block [Wil97]. They are shown in Figure 6.4. In the Disjoint

block, when a routing wire is implemented using track i , 1 ≤ i ≤W , all segments that

76

6.2. Method for Determining the Channel Width

constitute that wire are restricted to the track i . Hence, all tracks are partitioned into

W subsets, and this reduces the overall routability, compared to other switch blocks.

In the Universal switch block, the focus is on maximizing the number of simultaneous

connections that can be made. The Wilton switch block is very similar to the Disjoint

block, except that each diagonal connection is rotated by one track. This results in

increased number of routing choices for each connection. The Wilton block is the most

used one by the commercial FPGAs.

The choice of a switch block is the key to the overall flexibility of an FPGA architecture.

Besides, it affects the design speed, since the transistors in SBs add capacitance and

resistance loading to each routing track. Nevertheless, since a large portion of an FPGA is

devoted to the routing resources, the die area required by each switch block determines

the overall logic density of the device.

6.2 Method for Determining the Channel Width

The algorithm for calculating the minimum channel width needed to support mapping a

set of DFGs (Algorithm 4) starts by creating an array of operators following the methods

described in the previous Chapters. Then, for every DFGs Di in a group G , a netlist,

placement, and architecture description files are created and passed to VPR tool. VPR

performs circuit placement and routing, and reports the minimum channel width Wi

needed for successful routing. The final array channel width W is the maximum of all

reported Wi values, as it is the value that ensures successful routing of all input DFGs.

6.3 DFG Placement Using VPR

To place and route a DFG onto a reconfigurable array, an open source tool called VPR

(Versatile Place and Route) is used. This tool has been developed at the University of

Toronto [BR00] and has been used extensively by researchers in reconfigurable hardware

77

Chapter 6. Routing Network Design

Algorithm 4: An algorithm to estimate the minimum channel width W .

/* Creating an array of operators from all DFGs in the set G, */

/* following the procedures described so far. */

arrayInit = createArray(G);

/* Placing and routing the DFGs Di (1 ≤ i ≤ N) on the arrayInit */

/* and reporting the minimum channel width necessary to */

/* successfully route every single one, individually. */

for 1 ≤ i ≤ N do
array[i] = map(Di , arrayInit);
netlist = createNetlistFile(Di , array[i]);
placement = createPlacementFile(array[i]);
architecture = createArchitectureFile(array[i]);
createEmptyRoutingFile(array[i]);
VPRoutput = runVPR(netlist, architecture, placement, routing);
channelWidth[i] = minChannelWidth(VPRoutput);

/* Result. */

W = MAX1≤i≤N(channelWidth[i]);

architectures. Inputs to VPR consist of a technology mapped netlist and a text file

describing the target architecture. VPR can place a circuit, or a pre-existing placement

can be read in. Then, VPR can perform either a global routing or a combined global and

detailed routing of the placed benchmark circuit. Global routing balances the densities

of all routing channels, while detailed routing assigns specific wiring segments for each

connection [BFRV92, HA96]. The place and route results consist of node coordinates,

as well as statistics, such as routed wire-length, track count, maximum net length, and

area consumed by routing resources and others. This statistics is crucial for evaluating

the utility of the architecture under test.

The tool is invoked by typing:

> vpr netlist.net architecture.xml placement.p routing.r [-options],

where:

78

6.3. DFG Placement Using VPR

• The netlist.net is the netlist file describing a DFG.

• The architecture.xml file describes the architecture of an FPGA-like hardware

on which the DFG should be realized.

• If VPR is placing a circuit, it writes out the node coordinates into the placement.p

file. If VPR is routing a previously placed circuit, it reads in the node coordinates

from the placement.p file.

• The routing result is written into the file routing.r.

• VPR has a lot of optional command line options (-options). For example, one can

enable/disable graphical outputs (-nodisp), timing analysis (timing_analysis

{on|off}), printing some extra statistics (-full_stats), or he can choose

whether VPR should place or not the input DFG (-route_only).

6.3.1 Circuit Netlist (.net) Format

VPR allows for three circuit elements: input pads, output pads, and functional blocks

(FBs or CLBs). Input and output pads are specified using the element type keywords

.input and .output, respectively. Functional blocks are specified by .[name]. The

name is a user defined type of the FB, which must correspond with the type specified in

the architecture file (Section 6.3.2). For example, a functional block of the type .clb in

the netlist should be specified as the .clb in the architecture.xml file as well.

The format of describing a functional block in the netlist.net is the following:

element_type_keyword block_name

pinlist: net_a net_b net_c ...

subblock: subblock_name pin_num1 pin_num2 ...

After defining the type and the name of the functional block, a list of nets connected to

each pin of the functional block is given in the pinlist. The first listed net connects

to the pin 0 of a functional block, and so on. If any FB pin is to be left unconnected,

79

Chapter 6. Routing Network Design

.clb clb_1
 pinlist: in_1 in_2 out_clb_1 clk
 subblock: sb 0 1 2 3

a)

b)

in_1

in_2

clk

LUT + FF

subblock sb

functional block clb_1

out_clb_1
0

1

3

2

Figure 6.5: (a) The content of a functional block and (b) its description in the netlist file.

the corresponding entry in the pinlist should be the reserved word open. The content

of the functional block is described within the subblock lines. Each functional block

must have at least one subblock line, and can have up to max_subbl ocks (a user

defined attribute) subblocks per block. A subblock is a K -input O-output boolean

logic element (LE) and a flip flop, as shown in Figure 6.5. The parameter K is set via

the max_subblock_i nput s attribute, while O is set via the max_subblock_out put s

attribute in the architecture.xml file. Each subblock line should contain the name

of the subblock and the FB pins, or the subblock output pins, to which LE pins are

connected. If an LE pin is unconnected, the corresponding pin entry is marked as open.

The order in which the LE pins are specified is the following: first the input pins, then

the output pins, and the last the clock input. If the FB is a combinatorial circuit, the

clock input should be left open.

Input and output pads have only one pin. The name of a net connected to the pad is

given after the pinlist keyword. The format of describing pads is the following:

80

6.3. DFG Placement Using VPR

.input pad_name_a

pinlist: signal_name_a

.output pad_name_b

pinlist: signal_name_b

The following lines give a complete netlist description of the 3 × 3 convolution DFG

shown in Figure 5.4.

INPUT ports

.input in_1

pinlist: in_1

.input in_2

pinlist: in_2

.input in_3

pinlist: in_3

.input in_4

pinlist: in_4

.input in_5

pinlist: in_5

.input in_6

pinlist: in_6

.input in_7

pinlist: in_7

OUTPUT ports

.output out_14

pinlist: out_clb_13

CONFIGURABLE LOGIC BLOCKS

.clb clb_8

pinlist: in_2 in_3 out_clb_8 open

81

Chapter 6. Routing Network Design

subblock: sb 0 1 2 open

.clb clb_9

pinlist: in_2 in_3 out_clb_9 open

subblock: sb 0 1 2 open

.clb clb_10

pinlist: in_2 in_3 out_clb_10 open

subblock: sb 0 1 2 open

.clb clb_11

pinlist: in_2 in_3 out_clb_11 open

subblock: sb 0 1 2 open

.clb clb_12

pinlist: in_2 in_3 out_clb_12 open

subblock: sb 0 1 2 open

.clb clb_13

pinlist: in_2 in_3 out_clb_13 open

subblock: sb 0 1 2 open

6.3.2 Reconfigurable Datapath Architecture (.xml) Format

The area and performance of a reconfigurable array depend on the type and implemen-

tation of its architecture. VPR can output area and delay measurements to evaluate the

datapath performance, provided that the area and delay of all basic components are

specified. To simplify the use of VPR, a collection of compatible architecture files [KR08a,

KR08b] containing accurate area and delay measurements is provided at The intelligent

FPGA Architecture Repository (iFAR) website www.eecg.toronto.edu/vpr/architectures/.

These island-style architectures differ in logic block parameters, such as LUT size, and

routing parameters, such as segment lengths. Additionally, careful transistor sizing of

each architecture is performed, for different technologies ranging from 22 nm to 180 nm

82

6.3. DFG Placement Using VPR

CMOS. The architecture description that fits well the expected architecture of the recon-

figurable CGRA is given in the N10K04L01.FC20FO10.AREA1DELAY1.CMOS65NM.BPTM

architecture file. This file contains all the area and delay parameters of buffers, multi-

plexers, and wire segments, estimated for 65 nm CMOS technology. It is the architecture

description with the highest available number of tracks per channel, such that the track

length equals one. This is important, because it implies that one switch block is instanti-

ated in every crossing between a horizontal and a vertical routing channel. All attribute

values that will be mentioned in this Chapter are adopted from this specification.

Since the architecture is specified in an .xml file, the description is composed of a

hierarchy of start and end tags with optional attributes and content inside each tag

providing additional information. The following lines show the opening and closure of

the outermost (<architecture>) tag.

<!� VPR Architecture Specification File �>

<architecture>

#Architecture description

</architecture>

This tag contains five other tags: <layout>, <device>, <switchlist>, <segmentlist>,

and <typelist>.

The <layout> tag specifies the size and shape of the 2-D array. The size can either

be explicitly given as the size in the x-direction (width) followed by the size in the

y-direction (height). Here is an example of a 16 × 7 array:

<layout width="16" height="7"/>

Otherwise, the size can be chosen automatically to be the minimal that fits the given

circuit, using the keyword auto. The aspect ratio of the array is given after the auto

keyword and is the ratio of width and height. Here is an example of an array having

equal number of columns and rows:

83

Chapter 6. Routing Network Design

LB
IN

Routing tracks

Connection Block

Isolation buffers

Figure 6.6: The connection between routing channels and logic block input pins.

<layout auto="1.0"/>

The content inside <device> tag specifies device information and contains the tags

<sizing>, <timing>, <area>, <chan_width_distr>, and <switch_block>. The fol-

lowing example illustrates a device having the same number of tracks in horizontal

and vertical routing channels, which are connected using Wilton switch blocks. When

bidirectional segments are used, each wire segment can connect to three other wire

segments in the switch block (fs="3"). Parameters R_minW_nmos (the resistance of

minimum-width NMOS transistor), R_minW_pmos (the resistance of minimum-width

PMOS transistor), and ipin_mux_trans_size (the size of transistors in multiplexers at

the logic block inputs, given in the minimum transistor units) specify parameters used

by the area model built into VPR. The multiplexers at the inputs of logic blocks, shown

in Figure 6.6, are implemented as two-level multiplexers.

<device>

<sizing R_minW_nmos="4502.470215"

R_minW_pmos="12028.500000"

ipin_mux_trans_size="1.203190"/>

<timing C_ipin_cblock="0.000000e+00"

T_ipin_cblock="6.753000e-11"/>

<area grid_logic_tile_area="7206.319824"/>

84

6.3. DFG Placement Using VPR

<chan_width_distr>

<io width="1.000000"/>

<x distr="uniform" peak="1.000000"/>

<y distr="uniform" peak="1.000000"/>

</chan_width_distr>

<switch_block type="wilton" fs="3"/>

</device>

The <switchlist> tag contains a group of <switch> tags, which specify the types of

switches and their properties. The following example defines a switch of a multiplexer

type and specifies the delay through the switch (Tdel), the output (Cout) and the input

capacitance of the switch (Cin), its resistance (R), and a unique alphanumeric string that

matches the segment definition (name). The attributes buf_size and mux_trans_size

are needed for directional switches, and specify the area of the buffer in minimum-

width transistor area units and the size of each transistor in the mux in the switch,

respectively. The structure of a directional switch used inside Wilton switch block is

shown in Figure 6.7.

<switchlist>

<switch type="mux"

buf_size="11.698900" mux_trans_size="1.989870"

Tdel="5.344000e-11" Cout="0.000000e+00"

Cin="0.000000e+00" R="0.000000" name="0"/>

</switchlist> <

The <segmentlist> tag encompasses a group of <segment> tags that define the types

of wire segments inside routing channels and their properties. The following example

describes unidirectional segments of length one (spanning only one logical block). Since

the most of the delay in the routing network is due to the delay in switch blocks, the

wire capacitance and resistance per unit length are here neglected and set to zero. The

type attributes describe the depopulation of a switch block (sb type) and connection

85

Chapter 6. Routing Network Design

0 1 2 3

0

1

2

3

a) b)

Figure 6.7: Directional switch block [GEMA04]. (a) The Wilton switch block pattern for a
channel having the width W = 4. Tracks 0 and 2 pass data towards left and down, while
tracks 1 and 3 pass data towards right and up. (b) The realization of the directional
switch between tracks 0 and 1 and between tracks 2 and 3.

block (cb type) respectively. In this example, since the wire length equals one, there

is one switch block on each end of the wire, and thus the switch block depopulation

pattern equals 1 1. Similarly, there is only one connection block per a unit-length wire,

and thus the connection block depopulation pattern equals 1.

<segmentlist>

<segment length="1" type="unidir"

Rmetal="0.000000" Cmetal="0.000000e+00">

<mux name="0"/>

<sb type="pattern">1 1</sb>

<cb type="pattern">1</cb>

</segment>

</segmentlist>

The characteristics of input/output ports and functional blocks are defined within

the <typelist> tag. In the following example, io_capacity is set to two, meaning

that there are two input and output ports per row and column of the array and some

estimates on the input and output pad delay are given. Additionally, it is set that an input

86

6.3. DFG Placement Using VPR

pin of functional blocks can be connected to no more than four wires in the routing

channel bordering the pin (fc_in_type), while an output pin can be connected to any

of the wires in the channels bordering the pin (fc_out_type = "full").

<io capacity="2"

t_inpad="5.624000e-11" t_outpad="1.729000e-11">

<fc_in type="abs">4</fc_in>

<fc_out type="full"/>

</io>

After the definition of input and output ports, configurable logic blocks are defined.

Firstly the name of a functional block is specified. This name must correspond exactly

with the name for the block in the netlist. The name format is .[name] (e.g. .clb).

It is possible to define the height of a functional block, in case it spans more than

one tile. However, that is not the case for the configurable array that is the topic of

this work. Tags fc_in and fc_out set the number of tracks to which each logic block

input pin connects in each channel bordering the pin. The value used is always the

minimum between the specified value and the channel width. The type attribute

indicates whether the specified value should be interpreted as the absolute number

of tracks to which each pin connects (abs), or as the fraction of tracks in a channel

to which each pin connects (fractional). Within the <pinclasses> tag, the pins of

the functional block are specified. In this specific example, two input, one output,

and one global input pin are defined. Moreover, this example shows how to restrict

all logic blocks to 2-input 1-output operators, while allowing an additional input for

the global clock signal. Also, the input pins are positioned on the top side, while the

output pins are positioned on the bottom side of the functional block (Figure 6.6).

The line <loc type="fill" priority="1"/> specifies that the array of logic blocks

is homogeneous, composed of this particular CLB type only. Finally, VPR allows setting

the values of (i) the delay from the output of the subblock to the logic block output

pin (T_sblk_opin_to_sblk_opin), (ii) the delay from the output of a subblock to the

87

Chapter 6. Routing Network Design

input of another subblock within the same clb (T_sblk_opin_to_sblk_ipin), and

(iii) the delay from an input pin of a clb to an input pin of a subblock within that clb

(T_fb_ipin_to_sblk_ipin). In the case when the operator delays are significantly

higher than these delays, they can be set to zero.

<type name=".clb">

<fc_in type="abs">4</fc_in>

<fc_out type="full"/>

<pinclasses>

<class type="in">0 1</class>

<class type="out">2</class>

<class type="global">3</class>

</pinclasses>

<pinlocations>

<loc side="top">0 1 3</loc>

<loc side="bottom">2</loc>

</pinlocations>

<gridlocations>

<loc type="fill" priority="1"/>

</gridlocations>

<timing>

<tedge type="T_sblk_opin_to_sblk_ipin">0.000000e+00</tedge>

<tedge type="T_fb_ipin_to_sblk_ipin">0.000000e+00</tedge>

<tedge type="T_sblk_opin_to_fb_opin">0.000000e+00</tedge>

</timing>

<subblocks max_subblocks="1" max_subblock_inputs="2">

<timing>

<T_comb>

<trow>0.000000e+00</trow>

88

6.3. DFG Placement Using VPR

<trow>0.000000e+000</trow>

</T_comb>

<T_seq_in>

<trow>0.000000e+00</trow>

</T_seq_in>

<T_seq_out>

<trow>0.000000e+00</trow>

</T_seq_out>

</timing>

</subblocks>

</type>

6.3.3 Circuit Placement (.p) Format

The first line in the placement file specifies the name of the circuit netlist file and the

architecture file that are used to create this placement. These names have to match the

names used in the command line invocation of the tool. The next line gives the size of

the logic block array used by the placement file for domain-specific arrays:

Array size: Nr x Nc logic blocks,

where Nr and Nc equal the number of rows and columns in the array, respectively. The

remaining lines are in the format:

block_name x y subblock_number,

where the block_name corresponds with the name of the same block in the netlist

file. The coordinates x and y correspond to the row and column of the array in which

the block is placed, respectively. The subblock number specifies which of the several

possible input/output pad locations in the row x and the column y contain this pad,

and it is used if there is more than one pad per row/column in the array. The logic

89

Chapter 6. Routing Network Design

CLB
(1,3)

CLB
(2,3)

CLB
(3,3)

CLB
(4,3)

CLB
(1,2)

CLB
(2,2)

CLB
(3,2)

CLB
(4,2)

CLB
(1,1)

CLB
(2,1)

CLB
(3,1)

CLB
(4,1)

PADS

(1,4)
0

(1,4)
1

PADS

(2,4)
0

(2,4)
1

PADS

(3,4)
0

(3,4)
1

PADS

(4,4)
0

(4,4)
1

PADS

(1,0)
0

(1,0)
1

PADS

(2,0)
0

(2,0)
1

PADS

(3,0)
0

(3,0)
1

PADS

(4,0)
0

(4,0)
1

8
(MUL)

9
(MUL)

10
(MUL)

11
(ADD/SUB)

12
(ADD/SUB)

13
(ADD/SUB)

PADS

1
(IN)

PADS

2
(IN)

3
(IN)

PADS

4
(IN)

5
(IN)

PADS

6
(IN)

7
(IN)

PADS PADS PADS

14
(OUT)

PADS

a) b)

Figure 6.8: An example of the placement the 3 × 3 convolution DFG shown in Figure 5.4
that corresponds to the placement file given in the text. Since the data is transferred
in a top-down approach, the arrays are designed to have input ports on the top side
and output ports on the bottom side.(a) The coordinate system used by VPR. (b) The
placement of nodes and ports.

bock x and y coordinates lie in the range 1..Nr and 1..Nc respectively. Since the pads

are placed on the sides of the array, their x (y) coordinates equal either zero or Nr +1

(Nc +1). Since the data is transferred in a top-down approach, the arrays are designed

to have input ports on the top side and output ports on the bottom side.

Summary: A complete placement description of

the 3 × 3 convolution DFG (Figure 5.4) shown placed in Figure 6.8b.

block name x y subblk block number

���������� � � �����- �����������-

in_1 1 4 1 #0

in_2 2 4 0 #1

in_3 2 4 1 #2

90

6.4. DFG Routing Using VPR

in_4 3 4 0 #3

in_5 3 4 1 #4

in_6 4 4 0 #5

in_7 4 4 1 #6

out_14 3 0 0 #7

clb_8 2 3 0 #8

clb_9 3 3 0 #9

clb_10 4 3 0 #10

clb_11 2 2 0 #11

clb_12 3 2 0 #12

clb_13 3 1 0 #13

6.4 DFG Routing Using VPR

VPR can be run in one of two basic modes. In its default mode, VPR places a circuit and

then repeatedly attempts to route it in order to find the minimum number of tracks

required by the specified architecture to successfully route this circuit. If routing is

unsuccessful, VPR increases the number of tracks in each routing channel and attepts

routing again; if routing is successful, VPR decreases the number of tracks before trying

to route it again. Once the minimum number of tracks required to route the circuit

is found, VPR exits. The second mode of VPR is invoked when a user specifies a fixed

channel width for routing. In that case, VPR places a circuit and attempts to route it

only once, with the specified channel width. If the circuit will not route at the specified

channel width, VPR reports that it is unroutable. To specify the channel width the

attribute -route_chan_width is used.

Routing is an NP complete problem [GV04] that is generally separated in two phases

using the divide and conquer paradigm [AD04]:

91

Chapter 6. Routing Network Design

• a global routing that balances the densities of all routing channels, and

• a detailed routing [BFRV92, HA96] that assigns specific wiring segments for each

connection.

VPR can perform either global or combined global and detailed routing. This is set using

the attribute

-route_type
{
global|detailed}

.

The global router performs a coarse route to determine, for each connection, the mini-

mum distance path through routing channels that it has to go through. If the net to be

routed has more than two terminals the global router will break the net into a set of two-

terminal connections and route each set independently. The global router considers for

each connection multiple ways of routing it and chooses the one that passes through the

least congested routing channels. By keeping track of the usage of each routing channel,

congestion is avoided; and the principal objective of the global router, balancing the

usage of the routing channels, is achieved. Once all connections have been coarse

routed, the solution is optimized by ripping up and rerouting each connection a small

number of times. After that, the final solution is passed to the detailed router.

The detailed router determines for each two point connection the specific wiring seg-

ments to use in the routing channel assigned by the global router. To do this, detailed

routing algorithms construct a directed graph from the routing resources to represent

the available connection between wires, connection blocks, switch blocks and logic

blocks. The search performed on this directed graph is usually based on Dijkstra’s algo-

rithm to find the shortest path between two nodes. The paths are labeled according to a

cost function that takes into account the usage of each wire segment and the distance of

the interconnecting points. The distance is estimated by calculating the wire length in

the bounding box of the interconnecting points using a Manhattan metric. Most of the

routers relax the bounding box constraints and allow searching for possible solutions in

the surrounding routing channels of the bounding box. This is done to avoid subsequent

92

6.5. Oversizing The Routing Channels

iterations of ripping out and re-routing if the solution lies on the near outside of the

bounding box. The selection of the routing algorithm used by VPR is done using the

following attribute:

-router_algorithm
{
breadth_first|timing_driven|directed_search}

.

The default routing algorithm used by VPR is the timing-driven one, which focuses on

both achieving a successful route and achieving good circuit speed. The breadth-first

router focuses solely on routing a design successfully, and it is is capable of routing a

design using slightly fewer tracks than the timing-driving router. The directed-search

router is routability-driven and uses an A* heuristic to improve runtime over breadth-

first.

Since the most important feature of a domain-specific array is its generality, it is crucial

to achieve high probability of successful routing of various circuits. Additionally, since

each routing track is a complete 32-bit bus, it is desirable to minimize the channel width.

For these reasons, breadth-first routing algorithm was selected.

6.5 Oversizing The Routing Channels

Similarly to the column oversizing described in Chapter 5, designer has the possibility to

define a channel-width oversizing factor to increase the routability of the final datapath

beyond the minimum. It suffices to specify the channel width higher than the minimum

needed. Clearly, the cost is in additional die-area consumed by the routing resources.

An example of the circuit routed by VPR is shown in Figure 6.9. First, the basic block

extracted from 32-bit Inverse Two-dimensional DCT (Table 7.1) is laid out using dot

and appropriate constraints and parameters to suggest a detailed placement on the

array. Then, this placement information is used to run VPR routing algorithm, the result

of which is shown in Figure 6.9b.

93

Chapter 6. Routing Network Design

IN

LSL/LSR

ADD/SUB

MUL

ADD/SUB

ADD/SUB

LSL/LSR

ADD/SUB

ADD/SUB

MUL

ADD/SUB

LSL/LSR

ADD/SUB

LSL/LSR

OUT

IN

LSL/LSR

ADD/SUB

MUL

ADD/SUB

ADD/SUB

LSL/LSR

ADD/SUB

ADD/SUB

MUL

ADD/SUB

LSL/LSR

ADD/SUB

LSL/LSR

OUT

(a)

(b)

Figure 6.9: (a) The basic block extracted from 32b Inverse Two-dimensional DCT (Ta-
ble 7.1) is laid out using dot and appropriate constraints and parameters to suggest a
detailed placement on the array. (b) The DFG placed and routed on a reconfigurable
array using VPR.

94

7 Experimental Evaluation

This chapter focuses on assessing the performance of the novel method to design

domain-specific reconfigurable arrays. At first, the two algorithms for designing an

area efficient supersequence, described in Sections 4.1 and 4.2, are compared. Then,

a generality of domain-specific arrays is defined and measured, and an insight into

the drawbacks of the current implementation is provided. Additionally, the effects of

grouping various domains on generality and total area of the arrays are analyzed. Finally,

the areas of domain-specific arrays and critical path delays of applications when placed

and routed onto them are compared with respect to ASIC, FPGA, and a well known

datapath merging technique by Brisk et al. [BKS04].

Although the experimental evaluation of energy consumption of the domain-specific

arrays is not performed, it is clear that the methodology itself inherently promises good

performance and low energy consumption due to two factors. Firstly, at the level of the

computational units—they are implemented using standard cells and thus they are as

high performance and power efficient as they can be in a semi-custom design flow, and

certainly significantly better than in FPGAs. Secondly, at the level of interconnections

among units—the methodology strives to achieve short and regular routing, therefore

helping shortening the critical path and keeping power consumption to a minimum,

while using minimal resources.

95

Chapter 7. Experimental Evaluation

Table 7.1: Data-flow graphs covering classical signal and image processing computa-
tions [TI03a, TI03b, TI10, EEM06, Exp].

DFG Name Description

D1 DSPLIB_C64_autocor_UNROLL12_BB_2 Autocorrelation
D2 DSPLIB_C67_dotp_cplx_UNROLL3_BB_1 Complex Dot Product
D3 IMGLIB_C64_corr3x3_UNROLL3_BB_2 3x3 Correlation for 8b Data
D4 IMGLIB_C64_sobel3x3_UNROLL2_BB_1 16b Sobel 3x3
D5 DSPLIB_C64_fir_cplx_UNROLL4_BB_2 16b Complex FIR
D6 DSPLIB_C64_fir_lms_UNROLL16_BB_1 16b LMS Adaptive Filter
D7 DSPLIB_C64_fir_sym_UNROLL8_BB_2 16b Symmetric FIR Filter
D8 DSPLIB_C64_iir_UNROLL4_BB_1 IIR Filter
D9 DSPLIB_C64_fftr4_UNROLL2_BB_3 16x16 Radix 4 DIF FFT
D10 DSPLIB_C67_fftmix_BB_2 Forward FFT with Mixed Radix
D11 DSPLIB_C67_fftr2_UNROLL4_BB_3 Forward FFT with Radix 2
D12 EEMBC_dct_BB_1 DCT h264 Encoder Library
D13 EEMBC_idct_BB_1 IDCT h264 Encoder Library
D14 ExPRESS_mpeg_idct, BB_1 32b Inverse 2-D DCT
D15 ExPRESS_mpeg_idct, BB_4 32b Inverse 2-D DCT
D16 IMGLIB_C64_dct_BB_2 8x8 Block FDCT with Rounding
D17 IMGLIB_C64_dct_BB_8 8x8 Block FDCT with Rounding
D18 IMGLIB_C64_idct_BB_2 IDCT on 8x8 DCT Coef. Blocks
D19 IMGLIB_C64_idct_BB_8 IDCT on 8x8 DCT Coef. Blocks

7.1 Experimental Setup

To estimate the performance of domain-specific arrays, nineteen different DFGs from

applications available in benchmarks and commercial libraries, such as TMS320C64x

DSP Library [TI03a], TMS320C64x Image/Video Processing Library [TI03b], TMS320C67x

DSP Library [TI10], MPEG-2 Decode EEMBC benchmark [EEM06], and ExpressDFG In-

struction Scheduling Benchmarks [Exp] have been selected. These DFGs cover various

classic signal and image processing computations, such as FFT, DCT, IDCT, FIR, IIR,

and autocorrelation. To increase the number of nodes in DFGs and thus the overall

speedup, loop unrolling using different unrolling factors is applied. Loop unrolling is

a compiler optimization technique applied to application kernels, which are usually

loops, to reduce the frequency of branches and loop maintenance instructions. Loop

unrolling replicates the code inside the loop body a number of times, where this number

96

7.1. Experimental Setup

Table 7.2: Loop unrolling factors and total number of DFG nodes.

Loop Unrolling Number of
DFG factor nodes

D1 12 24
D2 3 24
D3 3 18
D4 2 28
D5 4 32
D6 16 40
D7 8 24
D8 4 22
D9 2 80
D10 1 40
D11 4 40
D12 1 42
D13 1 42
D14 1 55
D15 1 64
D16 1 60
D17 1 61
D18 1 59
D19 1 77

of copies is called the loop unrolling factor. Hence, the total number of loop iterations

becomes the initial number of iterations divided by the loop unrolling factor. To achieve

the best array utilization, DFGs are simultaneously unrolled until all of them require

a similar number of columns in the array for high area operators, such as multipliers.

In other words, they are unrolled until the maximum number of multipliers per depth,

defined in Section 5.3.2, for every DFG is similar. Table 7.1 lists all 19 DFGs along with

their descriptions, while Table 7.2 gives the loop unrolling factors and the final number

of DFG nodes.

Further on, all DFGs are divided into various groups. G1A, G1B, G1C, and G1D include

DFGs belonging to similar computational domains. Group G1A contains all correla-

tions, G1B FIR and IIR filters, G1C all FFTs, and G1D all DCTs/IDCTs. Groups G2A to G2F

comprise all combinations of any two domains, while groups G3A to G3D comprise all

97

Chapter 7. Experimental Evaluation

Table 7.3: DFGs distributed in groups of different size. Group G1A contains all correla-
tions, G1B FIR and IIR filters, G1C all FFTs, and G1D all DCTs/IDCTs. Groups G2A to G2F

comprise all combinations of any two domains, while groups G3A to G3D comprise all
combinations of any three domains. Finally, G4A comprises all four domains.

Group name Group size [DFG] Group contents

G1A 4 D1 −D4

G1B 4 D5 −D8

G1C 3 D9 −D11

G1D 8 D12 −D19

G2A 8 D1 −D8

G2B 7 D1 −D4,D9 −D11

G2C 12 D1 −D4,D12 −D19

G2D 7 D5 −D8,D9 −D11

G2E 12 D5 −D8,D12 −D19

G2F 11 D9 −D19

G3A 11 D1 −D11

G3B 16 D1 −D8,D12 −D19

G3C 15 D1 −D4,D9 −D19

G3D 15 D5 −D19

G4A 19 D1 −D19

combinations of any three domains. Finally, group G4A comprises all four domains, and

thus, all the DFGs. Table 7.3 shows the distribution of DFGs D1 to D19, described in

Table 7.1, among the groups.

7.2 Comparison of Path Fusion Algorithms

To compare the two algorithms for finding the area-efficient supersequences, described

in Sections 4.1 and 4.2, they are run on all sets of DFGs in Table 7.3. Then, the ratios

between the area of the supersequence generated using the algorithm based on reusing

the MACSeq and the area of the supersequence generated using the modified weighted

majority merge algorithm are measured. To estimate the area of operators, every one

of them is synthesized, placed, and routed using a 65nm standard cell library. The

total area of the supersequence is the sum of areas of its nodes (operators). The ratios

between the area of the supersequence generated using the algorithm based on reusing

98

7.2. Comparison of Path Fusion Algorithms

A
re

a
ra

tio
 o

f s
up

er
se

qu
en

ce
s

0

0.2

0.4

0.6

0.8

1.0

1.2

G1B G1C G2A G2D G3A G1A G4A G2B G2F G2E G3D G3B G1D G2C G3C

Figure 7.1: The ratio between the area of the supersequence generated using the algo-
rithm based on reusing the MACSeq and the area of the supersequence generated using
the modified WMM algorithm. The former algorithm achieves superior results, and is
thus used in the rest of the experimental evaluation of the methodology.

the MACSeq and the area of the supersequence generated using the modified WMM

algorithm are sorted in descending order and shown in Figure 7.1.

Clearly, the algorithm based on reusing the MACSeq metric is superior, since the created

supersequences are at least as area-efficient as those generated by the modified WMM

algorithm, for all groups. This may be attributed to the fact that MACSeq heuristic

is most directly related to the goal of minimizing area because it performs a greedy

selection based on the actual richest mergeable sequences, while WMM bases the

same selection on the available opportunity (cumulative area of the units after the

merged nodes) without really assessing whether this opportunity will translate in actual

merging. Finally, that is why MACSeq heuristic is chosen for the rest of the experimental

evaluation of the methodology.

To estimate the overhead in the column length compared to the longest path in dataflow

graphs, the following experiment is performed. For each of the groups G1A to G4A,

a domain-specific array using the novel methodology and the MACSeq algorithm is

99

Chapter 7. Experimental Evaluation

Table 7.4: Supersequence length compared to the length of the longest path in a graph.

Group Maximum SuperSeq Max / SuperSeq
Name Path Length Length Length

G1A 6 3 0.50
G1B 9 7 0.78
G1C 5 5 1.00
G1D 12 13 1.08
G2A 9 7 0.78
G2B 6 5 0.83
G2C 12 13 1.08
G2D 9 8 0.89
G2E 12 15 1.25
G2F 12 13 1.08
G3A 9 8 0.89
G3B 12 15 1.25
G3C 12 13 1.08
G3D 12 15 1.25
G4A 12 15 1.25

created. Then, the supersequence length is measured and compared to the length

of the longest path found in DFGs belonging to the group. The results are given in

Table 7.4. In 6 out of 15 groups (40% of all cases) the supersequence is actually shorter

than the longest path by at least 11% up to 50%. Therefore, MACSeq algorithm finds

supersequences that are not significantly longer than the longest path in the considered

DFGs. Additionally, the tree height minimization procedure is the reason why the array

column length can be shorter than the longest path. Namely, at the end of the tree hight

minimization phase, al unused rows of the array are removed. In the remaining 9 cases,

the supersequence was longer than the longest path, but only up to 25%.

7.3 Array Generality Estimation

For each of groups G1A to G4A, the generality of the created reconfigurable array can be

estimated in the following way: if N is the number of DFGs in group G , each DFG Di ∈G

is removed in turn from G itself and an array from the remaining N −1 DFGs is created.

100

7.3. Array Generality Estimation

Then, the tool attempts to map Di onto the array following the same place&route flow

used for the array generation (Section 3.1), with the exception that the channel width is

in this case known and fixed. The generality for group G is then defined as the ratio of

the number of successfully mapped excluded DFGs in the N experiments to the total

number of DFGs N :

Gener al i t y(G) = The number of successfully mapped excluded DFGs.

The total number of DFGs N .
. (7.1)

The algorithm to estimate generality is as follows.

Algorithm 5: An algorithm to estimate the array generality.

/* From each group G one DFG is removed, and an array is created */

/* from the remaining DFGs. Then, the algorithm tries to map */

/* the removed DFG onto the new array. */

/* Generality increases only if mapping is feasible. */

for All groups G do

numM appedDFGs[G] = 0;

for 1 ≤ i ≤ si ze(G) do

ar r ay[i] = cr eate Ar r ay(G −Di);

f l ag = mappedSuccess f ul l y(Di , ar r ay[i]);

if flag then
numM appedDFGs[G]++;

g ener al i t y[G] = numM appedDFGs[G]/si ze[G];

The results are shown in Table 7.5: generality is higher than 75% in most of the cases.

The possible reasons a DFGs can fail mapping are the following: insufficient number of

columns or ports in the array, failed routing due to insufficient channel width, or limited

generality of the supersequence leading to insufficient number of rows in the array for

successful mapping. The reasons that caused mapping failures in the experimental

101

Chapter 7. Experimental Evaluation

Table 7.5: Generality for various groups of benchmarks.

Group name Generality [%] Generality′ [%] Generality′′ [%]

G1A 50 50 75

G1B 50 50 50

G1C 67 67 67

G1D 75 88 75

G2A 75 75 75

G2B 86 86 86

G2C 83 83 83

G2D 71 71 71

G2E 83 83 92

G2F 82 82 82

G3A 82 82 82

G3B 88 88 94

G3C 87 87 87

G3D 87 93 93

G4A 89 95 95

setup are discussed in the following subsections.

Limited generality of the supersequence

In each group at least one DFG has failed the top-down placement, described in Sec-

tion 5.3, due to lack of rows in the datapath. What causes this is the fact that the

generality of the supersequence highly depends on how well the input application

dataflow graphs capture the main characteristics of the domain.

Insufficient channel width

In group G4A, DFG D6 fails to route. The channel width in the datapath has been set

initially to four buses per horizontal/vertical routing channel, which is the minimum

needed to successfully route the remaining DFGs in the group. As shown in Section 5.4,

102

7.3. Array Generality Estimation

it is possible for the designer to define the channel width oversizing factor, and thus

increase the routability at the expense of higher area allocated for routing resources. Due

to the regularity of the routing network, a minimum increase in channel width provides

high increase in the probability for successful routing. After increasing the channel

width for additional two buses beyond the minimum, which is conservative because

VPR restricts the number of buses to an even number, DFG D6 can be successfully

routed and the generality for group G4A increases from 89% to 95%.

To estimate how often constraining the channel width to a minimum needed value leads

to routing failures, generality is measured also when the channel width is not limited.

The column labeled Generality′ in Table 7.5 summarizes the results and shows that the

generality increases in 20% of all tests.

Insufficient number of columns or ports

Since the array size is fixed fairly tightly based on the input DFGs, if the excluded DFG

needs even a little more space to fit into the reconfigurable datapath, mapping may be

impossible. One way to avoid this problem is to use the automatic increase in number

of columns, described in Section 5.4, or to manually define the total number of columns

of the final array. By increasing the number of columns beyond the minimum one gets

more computational and routing resources, and thus an increased generality, at the cost

of increasing the array size. Additionally, increased array size allows DFG mappings to

resemble more the dotmapping, which is usually scaled horizontally to fit narrow arrays.

The problem of insufficient number of ports is analogous, because it is assumed to have

two input/output ports per column of the array. To estimate how often constraining the

number of columns and ports to a minimum needed value leads to mapping failures,

generality is measured also when the array size is not constrained in that way. The

column labeled Generality′′ in Table 7.5 summarizes the results and shows that the

generality increases in 33% of all tests.

103

Chapter 7. Experimental Evaluation

7.4 Array Dimensions and Utilization

For each group in Table 7.3, a reconfigurable array is designed following the novel

methodology. Table 7.6 shows the obtained array dimensions (the number of rows Nr

× the number of columns Nc) and the minimum channel width. The minimum array

size is achieved for group G1A, storing the DFGs belonging to the same domain: 3 rows

× 15 columns. Predictably, the maximum array size is obtained for group G4A, storing

all domains at once: 15 rows × 24 columns. The number of columns in the array is the

minimum needed to enable successful mapping of all DFGs in the domain. Therefore,

when two or more domains are joined, the new array has the number of columns equal

to the maximum of all values Nc found for each domain separately. For example, groups

G1B and G1C need 15, or 24 columns respectively, for successful mapping of all their

DFGs. Hence, the union of those two groups G2D needs at least 24 columns in the array.

To find the array area utilization for every group, both the area of the array and the area

occupied by DFGs when mapped onto it are evaluated. For that purpose, synthesis,

placement, and routing of all the operations found in the DFGs is performed using the

gate implementations of a 65nm standard cell library. For each operation the possibility

to use either a direct output or a registered output is provided. Added pipelining registers

are organized as bypassable registers placed after every functional unit, as in FPGAs. To

estimate the routing area, VPR is used. Since VPR does not natively support bus-based

connections, an appropriate technology configuration file along with the real number of

wires is prepared. This approach conservatively overestimates the routing area because

VPR assumes that each wire can be routed independently, whereas the reconfigurable

array uses bus-based interconnects. The maximum and average area utilization per

groups are shown in Table 7.6. Maximum area utilization ranges from 30% for the array

generated for all domains at once (G4A), up to 78% for the array generated for group

G1C, storing the DFGs belonging to the same domain. Highest values of average area

utilizations are found for groups G1A and G1C, each storing the DFGs belonging to a

104

7.5. Routing Network Characteristics

Table 7.6: Array size, channel width, and area utilizations for various benchmarks.

Group Array Size Channel Max Area Average Area Routing Area /

Name Nr ×Nc Width Utilization [%] Utilization [%] Array Area [%]

G1A 3×15 4 58 51 28

G1B 7×19 6 71 30 40

G1C 5×24 6 78 54 44

G1D 13×12 4 48 45 38

G2A 7×19 6 71 29 40

G2B 5×24 6 78 39 44

G2C 13×15 4 39 26 38

G2D 8×24 6 52 28 41

G2E 15×19 6 38 19 45

G2F 13×24 4 33 20 38

G3A 8×24 6 52 24 41

G3B 15×19 6 38 17 45

G3C 13×24 4 33 18 38

G3D 15×24 4 30 16 35

G4A 15×24 4 30 15 35

particular domain. The more domains get mixed within a group, the more average

area utilization decreases, indicating that this methodology is optimized to provide

area-efficient domain-specific arrays.

7.5 Routing Network Characteristics

The routing network is comprised of wiring segments of length one, distributed among

vertical and horizontal routing channels, which all have constant channel width. The

ratio of the area dedicated for routing resources to the total array area is shown in

Table 7.6, and it is in the range 28–45%, where higher ratios are found for the arrays

having higher channel width. Interestingly, these results are significantly better than

what is reported in programmable logic devices—according to the paper by Feng and

105

Chapter 7. Experimental Evaluation

Kaptanogly from Actel Corporation [FK08] up to 90% of a Programmable Logic Device

chip is occupied by the programmable interconnect, including wires, switches and

configuration bits.

Since the array uses only four or six buses per routing channel (Table 7.6), it is not

immediately clear if having different segment lengths in routing channels (as in FPGAs)

might help increasing the generality and/or decreasing the array area. To get a sense,

experiments are repeated, but with a routing network using both segments of the length

one and of the length two (note that the regular and ordered placement requires less

long-distance communication). The results have shown that adding longer segments

seems to never bring additional generality with exactly the same (or less) routing re-

sources. When using mixed segment lengths the array requires channel width six to

successfully route all DFGs (four is no longer enough). Consequently, increased routing

opportunities lead to increased generality (in 2 groups out of 15), but also to a slight

increase in the array area of 5–7% (in 7 out of 15 groups). Additionally, various segment

lengths in some cases lead to reduced routing opportunities and thus decreased general-

ity (in two groups out of 15). Only for those arrays where channel width was not affected

by introducing segments of the length two the total area of the array is decreased for

about 10% (in 8 out of 15 groups). Therefore, it seems that there is no true and clear

superiority of using segments of different length.

7.6 Effects of Domain Grouping on Generality and Area

The technique presented in this thesis aims at designing domain-specific arrays. To ver-

ify that it is indeed well tailored for that purpose, the following tests are performed. First,

reconfigurable arrays are generated for each individual domain, for all combinations of

two or three domains, and for all domains at once. Then, for each of these arrays their

generality and area are measured. The results are plotted in Figure 7.2 and Figure 7.3.

106

7.6. Effects of Domain Grouping on Generality and Area

Figure 7.2 shows that increasing the number of domains at the input leads to increased

generality, due to larger and thus richer input set of DFGs. Twelve out of fifteen group-

ings achieve generality higher than 70%. Only two groups with four DFGs, G1A and G1B

(Table 7.3), achieve generality equal to 50%, due to a very small set of input DFGs.

Figure 7.3 shows the array areas normalized to the area of the array generated for all

domains at once. Clearly, increasing the number of domains systematically leads to in-

creased area. However, when generated for individual domains, the array is considerably

smaller, proving that this methodology is indeed optimized to provide domain-specific

arrays.

If input DFGs belong to various domains, one may wonder whether it is more area

efficient to generate a single reconfigurable array out of all DFGs, or it is better to divide

the input set of DFGs into two or more disjoint sets and generate the same number of

arrays. To answer this question new experiments are performed, relying on the nature of

groups shown in Table 7.3. For example, group G4A storing all DFGs can be represented

as a union of the following two disjoint sets: G1A ∪G3D, or G2A ∪G2F, etc. Additionally, it

can be represented as a union of the following three disjoint sets: G1B ∪G1D ∪G2B, or

G1C ∪G1D ∪G2A, etc. Hence, the input set of four domains can be divided into two or

three sets, and the sum of areas of the arrays generated for those sets can be measured.

Then, the results can be normalized to the area of the array generated for all domains at

once.

The effects of dividing the input set of DFGs into two, three, or four sets on the total

area needed to accommodate generated arrays are shown in Figure 7.4. The results

indicate that it is more area efficient to create one instead of multiple domain-specific

arrays (one per each domain). This evidences the fact that even though the original

DFGs belong to four different domains, they actually share many common computation

characteristics that can still be exploited to build a rather efficient array.

107

Chapter 7. Experimental Evaluation

One array for
all domains at once

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
G

en
er

al
ity

 [%
]

One array for
any three domains

One array for
any two domains

One array for
each individual domain

Figure 7.2: Generality of the array for different combinations of domains. Increasing
the number of domains leads to increased generality, due to increased input set size.
However, even for single domains the generality is reasonably high, at least 50%.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 a
re

a

One array for
all domains at once

One array for
any three domains

One array for
any two domains

One array for
each individual domain

Figure 7.3: The area of the array generated for each individual domain and the combi-
nations of any two, three, or four domains, normalized to the area of the array created
for all domains at once. Increasing the number of domains per group leads to increased
area. But, when generated for individual domains, the array is considerably smaller and
thus area efficient, proving that this novel methodology effectively tailors the array to
the domain.

108

7.7. Area/Delay Oversize Compared to ASIC

One array for
all domains at once

Union of all possible
two arrays for all partitions

Union of all possible
three arrays for all partitions

Union of all arrays
for individual domains

N
or

m
al

iz
ed

 a
re

a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 7.4: The effect of dividing the input set of DFGs into two, three, or four sets on
the total area needed to accommodate the arrays. The group G4A storing all DFGs was
divided into two, three, or four disjoint groups and the sum of areas of generated arrays
was measured. This sum was then normalized to the area of the array created for all four
domains at once. The results indicate that the single array generated for all domains at
once is the most area efficient solution compared to any multiple-array solution.

7.7 Area/Delay Oversize Compared to ASIC

Next, the reconfigurable array area and delay are estimated and compared with a 65nm

standard cell ASIC implementation. For all DFGs D1 to D19 it is assumed, conservatively,

that their ASIC implementations require no routing area besides the area required for

the operators and pipeline registers, and that all shifts are by a constant value and

can be implemented via wiring in the ASIC. Thus, the area of a DFG implemented

as ASIC Ar ea Asi c(G ,Di) is the sum of areas of individual operators, including the

pipeline registers. To find the area and delay of operators, they are synthesized, placed,

and routed using a 65nm standard cell library. Again conservatively, it is assumed

that the delay of the ASIC implementation equals only the delay through the critical

path of the components of the DFG; routing delays are ignored. To find a critical path

delay Del ay Asi c(G ,Di), the algorithm for finding all paths in a graph, mentioned in

Section 4.2, was adapted.

109

Chapter 7. Experimental Evaluation

To estimate the critical path delay of a DFG mapped onto a domain-specific array and

the total area of the array, VPR is used. VPR outputs a detailed report containing the

information on the array area, the area occupied by routing network, as well as critical

path delay of placed and routed DFGs. Yet, VPR imposes one constraint—it assumes all

operators are identical. To circumvent this constraint, all operator areas and delays are

set to zero in the input architectural file. Hence, VPR can report correctly the area and

delay used by the routing network only. Area used by routing resources is then added to

the sum of areas of individual operators to find the total array area. In the same way,

the critical path delay reported by VPR is added to the critical path delay of the DFG (in

which routing delays are ignored) to obtain the final critical path delay.

The following experiment is run on all individual groups (domains) from Table 7.3, as

well as for all combinations of two and three domains, and for all domains at once.

Assuming that DFGs input to the experiment comprise a set called G , for each DFG

Di in G , the algorithm creates a domain-specific array Ai from all the remaining DFGs

G −Di . Then, it tries placing and routing the DFG Di on the array Ai . If it succeeds, the

area of Ai (Ar ea(Ai)) and the critical path delay of Di (Del ay(Ai ,Di)) are evaluated.

Finally, the area ratio equals

Ar r ayRati o(G ,Di) = Ar ea(Ai)

Ar ea Asi c(G ,Di)
, (7.2)

while the delay ratio equals

Del ayRati o(G ,Di) = Del ay(Ai ,Di)

Del ay Asi c(G ,Di)
. (7.3)

The array ratio gives a sense of the cost in die-area to execute an application DFG on a

highly flexible domain-specific array, compared with the most area-efficient alternative

(ASIC), which, on the other hand, has no flexibility at all. Similarly, the delay ratio shows

the decrease in the application execution-speed when its DFG is placed and routed on a

flexible array, instead of being implemented as the most efficient ASIC alternative.

110

7.7. Area/Delay Oversize Compared to ASIC

The array ratio and delay ratio pairs found for all groups G comprising of individual

domains, all combinations of two or three domains, and all DFGs at once, are plotted in

Figure 7.5. Area ratios are given at x-axis, while the delay ratios are given at y-axis. Since

these values are scaled with respect to ASIC areas and delays, the point at coordinates

(1,1) corresponds to ASIC implementations of all DFGs. The gray area marked as FPGA

represents the area/delay space where results would be expected if DFGs were to be

mapped on an FPGA, achieving perfect generality if enough LUTs are present in the

architecture. The boundaries of the FPGA area roughly correspond to the data published

by Kuon and Rose [KR07]. Their study provides detailed experimental measurements

of the differences between FPGAs and ASICs in terms of logic density, circuits speed,

and power consumption for core logic. Kuon and Rose’s results [KR07] show that for

circuits containing only look-up table-based logic and flip-flops, the ratio of silicon area

required to implement them in FPGAs and ASICs is on average 32× when hard DSP

blocks are not used, whereas it decreases to 24× when these blocks are used. These

numbers present an optimistic lower bound on the area gap because they assume that

all logic array blocks can be fully utilized. Additionally, they report the critical path delay

ratio to be on average 3.4× when hard DSP blocks are used, and even a slightly higher

ratio, around 3.5×, when these blocks are used in the design.

The results from Figure 7.5 show that the majority of the DFGs result in arrays with an

area up to 15× larger than the corresponding ASIC area, and thus significantly more

area-efficient than FPGAs with DSP blocks, due to the usage of specialized coarse grain

operators. Additionally, the average delay increase compared to ASICs is less than 2×,

which is again superior to FPGAs with DSP blocks, due to the efficient word-based

communication network. Hence, the novel methodology succeeds in populating the

area-delay design space that currently separates ASIC from FPGA implementations

while still providing a high generality. However, there are two DFGs that have high area

ratio compared to their ASIC implementation—DFGs D12 and D13. They do not contain

high-area operators, such as multipliers. Consequently, the results in Figure 7.5 appear

111

Chapter 7. Experimental Evaluation

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Area ratio compared to ASIC

D
el

ay
 r

at
io

 c
om

pa
re

d
to

 A
S

IC

ASIC

FPGA

All domains at once Any three domains Any two domains Individual domains

Figure 7.5: Area/delay ratio of the arrays generated from all DFGs in the group except the
removed DFG, with respect to an ASIC design of the DFG removed from the group. The
datapath is usually up to 20× larger and up to 2× slower than the corresponding ASIC
design (with some deviations in extreme cases). The results are clustered by the number
of domains in the group. The shaded FPGA zone is as reported in prior studies [KR07].

skewed, but these data points appear as outliers.

Clearly, the idea of using custom-designed coarse-grained operands as basic building

blocks results in both reduced area and improved critical path delay compared to using

fine-grained FPGA fabric. Additionally, the amount of configuration storage for both

operands and routing network decreases significantly due to the bus-based connectivity,

where wires do not need to be configured independently.

7.8 Area/Delay Oversize Compared to Datapath Merging

To estimate the area and delay oversize of the domain-specific reconfigurable arrays

compared with the datapath-merging methodology, the algorithm introduced by Brisk et

al. [BKS04] is implemented entirely. Another, more recent datapath merging algorithm

presented by Zuluaga and Topham [ZT09] is not selected because it is based on the

algorithm by Brisk et al. and because it introduces new features that are not directly

relevant to this work. Namely, they introduce latency constraints in the merging process

to explore the space of possible implementation alternatives instead of trying to find

a unique solution, while the datapath merging by Brisk is focusing on maximizing the

112

7.8. Area/Delay Oversize Compared to Datapath Merging

area savings. However, that algorithm is not very efficient for complex DFGs as those

used in this work. Hence it had to be modified to improve the algorithm runtime.

Datapath merging algorithm [BKS04] assumes as an input a set of directed acyclic graphs

(DAGs) G = {G1,G2, ...,Gn}. It has two phases, global and local, that repeat and alternate

until all DAGs are not merged, or until there are no more candidates for merging.

The global phase starts with decomposing each DAG Gi ∈G into a set of input-to-output

paths Pi , where the set P = {P1,P2, ...,Pn} stores the sets of paths corresponding to each

DAG. Then, it looks for the candidate DAGs Gi and G j to merge, by finding the pair of

paths px and py , 1 ≤ x ≤ |Pi |, 1 ≤ y ≤ |P j |, 1 ≤ i , j ≤ n, i 6= j , such that they share the

maximum-area common-subsequence MACSeq. Then, it merges Gi and G j by sharing

the nodes in MACSeq and inserting multiplexers that enable configuring the datapath

to execute either Gi ir G j . Finally, Gi and G j are replaced by their merged version G ′.

The local phase begins with new DAG G ′, and continues merging nodes inside G ′,

trying to avoid creating cycles in G ′. To accommodate large graphs, Brisk et al. [BS06]

recommend to replace the enumeration of all paths by a pruning heuristic that limits

the set P to a reasonable size. Hence, the implementation of the algorithm in this thesis

includes one such heuristic:

• First, the size of the sets Pi , 1 ≤ i ≤ n is limited to 100 different paths per set, as

estimated based on the size of the input DFGs (Table 7.2) and frequent overlaps

among paths in the graphs.

• Then, to select good candidates for Pi while enumerating the paths, the algorithm

checks if a newly found path is a subsequence of the path already present in Pi . If

yes, the algorithm ignores it and continues enumerating. This way Pi will contain

the paths offering various maximum-area common-subsequences.

To estimate the datapath area, multiplexers of various size were synthesized, placed,

and routed using the same 65nm standard cell library. These multiplexers were inserted

113

Chapter 7. Experimental Evaluation

Area ratio compared to datapath merging

All domains at once Any three domains Any two domains Individual domains

0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

2.5

3.0

2.5

Figure 7.6: Area/delay ratio of the arrays generated from all DFGs in the group, with
respect to those of the datapath obtained by merging the same DFGs. The array is usually
around 2× larger except extreme cases, while the critical path delay of applications
mapped onto it is in most cases up to 2× higher than the corresponding delay of the
applications when run on merged datapath. The results are clustered by the number of
domains in the group.

in the datapath while merging. The areas of operators have been already calculated for

the previous experiments. The area of a merged datapath approximatelly equals the

sum of areas of its operators and inserted multiplexers. Conservatively, the area used

for routing is neglected. To estimate the routing delay and the area of the array, the

methodology described in previous section is used.

Ideally, if DFGs within a group are perfectly merged, one would expect that the merged

datapath is as large as the DFG reporting the maximum area utilization in Table 7.6,

with the addition of the area of the inserted multiplexers, but reduced for the area

used for routing in the reconfigurable array. Since the area used for multiplexers is

certainly less than the total area used for FPGA-like routing network in domain-specific

reconfigurable arrays, it can be expected that for individual domains the area ratio

should be less than 100/48 ' 2.08, for any two domains less than 100/33 ' 3.03, and

for any three domains and all domains at once less than 100/30 ' 3.33 (Table 7.6). The

experimental results presented in Figure 7.6 show that the array is up to 3× larger than

the merged datapath, while for majority of the groupings this ratio is only up to 2.2×.

For two groups, G2F and G3C, area of the routing network was considerably higher than

114

7.8. Area/Delay Oversize Compared to Datapath Merging

the area of the multiplexers in the merged datapath. To understand why, one should

look at the size of the array generated for G2F: it equals 13 rows × 24 columns. Group

G2F is the union of groups G1C and G1D (Table 7.3), where G1C needs an array of the size

5×24 and G1D of the size 13×12. Obviously, the array created for G2F introduces 50% of

unused routing resources, so the area ratio is somewhat higher in this particular case.

Figure 7.6 also shows that the delay ratio is up to 2.5×, in most of the cases up to 2×.

In total, the results indicate that the novel method for designing domain-specific arrays

succeeds in generating datapaths with a reasonable level of generality at speeds compa-

rable to those of datapaths created by merging the DFGs—designs which have, arguably,

practically no generality.

115

8 Conclusions

Semiconductor technology keeps following Moore’s law—transistor density doubles

roughly every 18 months. Yet, an improvement in one aspect is often accompanied

by increasing constraints in other aspects, which need to be carefully managed; With

transistors going into deep submicron scales, chip power consumption increases, man-

ufacturing cost rises, variability increases, and reliability decreases. To reduce energy

consumption and improve performance, embedded systems use specialized hardware

accelerators [Smi97, IL06], especially for applications involving signal and video pro-

cessing, communications, and computer vision.

Specialization is the key to efficiency. It can be achieved by designing and synthesizing

ASIC accelerators for each target application separately, but this approach is not very

area-efficient. A better way would be to merge these accelerators into a single reconfig-

urable datapath of smaller die-area, as proposed by Brisk et al. [BKS04] and Zuluaga et

al. [ZT09]. However, this improvement comes at the cost of increased latency and thus

impaired accelerator performance.

The flexibility of such ASIC accelerators is very limited—they can be used to execute only

those applications that are known at the design time. Yet, providing more flexibility is

necessary to accommodate late design changes or new applications in the same domain,

in order to avoid the extremely high nonrecurring engineering costs of incremental

117

Chapter 8. Conclusions

chip redesign. On the other side, the circuits that provide the highest flexibility, FPGAs,

suffer from incredibly poor logic density, even when system designers make good usage

of DSP Blocks, block RAMs, and transceivers. Additionally, the fine-grained nature of

FPGAs is particularly nonoptimized for digital signal processing applications, which

utilize common operations such as multiplications and additions, and thus benefit

more from efficient coarse-grained components. Hence, a number of reconfigurable

systems with a coarser-grain structure (CGRAs) has been designed. Usually, they are

not specialized to fit the characteristics of a specific application domain, but to a wider

range of applications.

This thesis presented a novel approach in designing coarse-grain reconfigurable arrays;

this technique is different in several aspects:

• Instead of designing the array in an intuitive way and then checking how well it fits

for an input set of applications, the array design process is automated and guided

by a special algorithm for analyzing the characteristics of those applications.

• A limited amount of flexibility is inserted in the arrays in a controlled manner, so

that it is very likely that arrays will not only run the input applications, but also

many of the computationally similar applications.

• The resulting arrays are domain-specific, i.e., they are tailored to an application

domain, represented by the input set of applications.

• The resulting arrays present a good compromise between absolutely flexible FPGA

alternatives and almost completely inflexible ASIC alternatives, and are well suited

to digital signal processing domains, due to their coarse-grained nature.

The novel design method is composed of four main phases. Firstly, a set of candidate

DFGs from the input applications is generated. Then, those DFGs are analyzed to

extract the column of the datapath. This column is replicated to create a regular 2D

array structure. Finally, an FPGA-like statically configured routing network is added to

118

enable routing the DFGs. All these phases are implemented in a standard programming

language to build a complete tool for designing domain-specific reconfigurable arrays.

This tool can be used in multiple ways. For example, chip developers can use it to

automatically design the architecture of the arrays to be incorporated in larger VLSI

circuits, or to perform a detailed experimental evaluation of the benefits and drawbacks

of the proposed methodology, or to compare the array performance with the ASIC and

FPGA alternatives.

The related work in designing domain-specific CGRAs focused on (i) ways of tuning the

characteristics of the operator that is replicated throughout the array [ABP08, ABP11,

PSH04] and thus exploring different CGRA configurations, or on (ii) ways of choosing

operators for 1D arrays having very small number of input/output ports and limited

interconnectivity [CH08]. This work is different in several aspects:

• Here the arrays are two-dimensional and built by replicating the column through-

out the array. Hence, each array row is homogeneous and composed of a single

operator type.

• Then, the allowed number of I/O ports is considerably higher—two input and two

output ports per column of the array are provided.

• Finally, a graph-drawing approach is used to map DFGs in a top-down fashion,

where data is routed from the input towards the output ports, and to design an

efficient routing network with short connections and minimal number of edge

crossings. Employing a graph-drawing approach is the key for replicating the

regularity of computational patterns found in application DFGs onto the array

using the array operators and routing network resources.

The experimental evaluation shows that array generality is on average higher than

80% and sometimes reach even 95%. This means that the achieved probability to

successfully execute applications that belong to the same domain, but which are not

119

Chapter 8. Conclusions

known at the design time, is very high. Hence, resulting domain-specific CGRAs are

indeed significantly more flexible than ASIC accelerators.

The achieved generality comes at the cost of increased array area. Namely, the measured

maximum area utilization varies between 30% up to 78%, where it was low for a mix

of applications belonging to different domains and high for applications belonging

to a single domain. This indicates that the novel methodology is indeed optimized to

provide area-efficient domain-specific arrays.

The ratio of the area dedicated for routing resources to the total array area is in the

range 28–45%, which is significantly better than what is reported in programmable logic

devices—according to the paper by Feng and Kaptanogly from Actel Corporation [FK08]

up to 90% of a Programmable Logic Device chip is occupied by the programmable

interconnect, including wires, switches and configuration bits.

The majority of arrays have the area up to 15× larger than the ASIC area of a single

DFG in isolation, and are thus significantly more area efficient than FPGAs with DSP

blocks. This is due to the usage of specialized, area efficient, coarse grain operators.

Additionally, the ratio of the delay of a DFG mapped on the array compared to the delay

of the same DFG implemented as an ASIC circuit is on average smaller than 2×. This is

again superior to FPGAs with DSP blocks, due to the usage of an efficient word-based

communication network. Therefore, the novel methodology succeeds in populating

the area-delay design space that currently separates ASIC from FPGA implementations,

while providing a high generality.

Compared with the state-of-the-art datapath merging approach, the arrays were up to

3× larger than the merged datapath, while for the majority of the DFG groups under

test this ratio was up to 2.2× only. Additionally, the delay ratio was in the most of the

cases up to 2× only. This shows that the new method succeeds in creating arrays with

a significant level of generality at speeds comparable to those of datapaths created by

merging the DFGs. Merged DFGs, on the other side, have practically no generality.

120

There are several avenues for future work, such as specializing the bitwidth of the oper-

ators, and composing multiple limited-precision operators to form higher-precision

operators. Another possibility would be to introduce flexible arithmetic components,

e.g., multipliers that can be configured to perform addition/subtraction as well. Finally,

to improve array utilization the rectangular shape of the array could be customized to

better fit the domain, as some classes of DFGs, especially instruction set extensions,

often have the general shape of inverted cones [CFHZ04].

All in all, this thesis explores a new direction of significant importance in a world where

heterogeneous spatial systems are likely to emerge as a dominant form of computation,

especially for code acceleration in domain-specific embedded systems.

121

Bibliography

[ABP08] Giovanni Ansaloni, Paolo Bonzini, and Laura Pozzi. Design and architec-

tural exploration of expression-grained reconfigurable arrays. In Proceed-

ings of the 6th IEEE Symposium on Application Specific Processors, pages

26–33, Anaheim, Calif., June 2008.

[ABP11] Giovanni Ansaloni, Paolo Bonzini, and Laura Pozzi. Egra: A coarse grained

reconfigurable architectural template. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, VLSI-19(6):1062–1074, June 2011.

[AD04] H. Arslan and S. Dutt. Acm great lakes symposium on vlsi. In Proceedings

of the 14th ACM Great Lakes Symposium on VLSI, pages 208–213, Boston,

Massachusetts, April 2004.

[API03] Kubilay Atasu, Laura Pozzi, and Paolo Ienne. Automatic application-specific

instruction-set extensions under microarchitectural constraints. Interna-

tional Journal of Parallel Programming, 31(6):411–28, December 2003.

[AR96] Arthur Abnous and Jan Rabaey. Ultra-low-power domain-specific mul-

timedia processors. In Proceedings of the 9th Workshop on VLSI Signal

Processing, pages 461–70, San Francisco, Calif., October 1996.

[AYP+06] M. Ahn, J.W. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi. A spatial mapping

algorithm for heterogeneous coarse-grained reconfigurable architectures.

123

Bibliography

In Proceedings of the Design, Automation and Test in Europe Conference and

Exhibition, pages 363–68, Munich, March 2006.

[BBKG07] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Architectural

exploration of the ADRES coarse-grained reconfigurable array. In Reconfig-

urable Computing: Architectures, Tools and Applications, volume 4419 of

Lecture Notes in Computer Science, pages 1–13. Springer, Berlin, June 2007.

[BE06] Jason Brown and Marc Epalza. Automatically identifying and creating

accelerators directly from c code. Xcell Journal, pages 58–60, July 2006.

[Ber75] Alfs T. Berztiss. Data Structures: Theory and Practice. Academic Press, New

York, second edition, 1975.

[BFRV92] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic.

Field-Programmable Gate Arrays. Kluwer Academic Publishers, Boston,

Mass., 1992.

[BGV03] H. Bunke, G. Guidobaldi, and M. Vento. Weighted minimum common

supergraph for cluster representation. In International Conference on Image

Processing, pages II – 25–8, September 2003.

[BKKS02] Philip Brisk, Adam Kaplan, Ryan Kastner, and Majid Sarrafzadeh. Instruc-

tion generation and regularity extraction for reconfigurable processors. In

Proceedings of the International Conference on Compilers, Architectures, and

Synthesis for Embedded Systems, pages 262–69, Grenoble, France, October

2002.

[BKS04] Philip Brisk, Adam Kaplan, and Majis Sarrafzadeh. Area-efficient instruc-

tion set synthesis for reconfigurable system-on-chip designs. In Proceedings

of the 41st Design Automation Conference, pages 395–400, San Diego, Calif.,

June 2004.

124

Bibliography

[BMS98] Jürgen Branke, Martin Middendorf, and Frerk Schneider. Improved heuris-

tics and a genetic algorithm for finding short supersequences. OR Spectrum,

20(1):39–45, February 1998.

[BP07] Paolo Bonzini and Laura Pozzi. Polynomial-time subgraph enumeration

for automated instruction set extension. In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, Nice, April 2007.

[BPV00] Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu. A split &

push approach to 3d orthogonal drawing. Journal of Graph Algorithms and

Applications, 4(3):105–133, April 2000.

[BR96] V. Betz and J. Rose. Directional bias and non-uniformity in fpga global

routing architectures. In Proceedings of the International Conference on

Computer Aided Design, pages 625–659, San Jose, Calif., November 1996.

[BR97] O. Bringmann and W. Rosenstiel. Resource sharing in hierarchical synthesis.

In Proceedings of the International Conference on Computer Aided Design,

pages 318–325, San Jose, Calif., November 1997.

[BR00] Vaughn Betz and Jonathan Rose. Automatic generation of FPGA rout-

ing architectures from high-level descriptions. In Proceedings of the 8th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

pages 175–84, Monterey, Calif., February 2000.

[BS06] Philip Brisk and Majid Sarrafzadeh. Datapath synthesis. In Paolo Ienne

and Rainer Leupers, editors, Customizable Embedded Processors—Design

Technologies and Applications, Systems on Silicon Series, chapter 10, pages

233–55. Morgan Kaufmann, San Mateo, Calif., 2006.

[Car80] Marie-José Carpano. Automatic display of hierarchized graphs for com-

puter aided decision analysis. IEEE Transactions on Systems, Man, and

Cybernetics, 10(11):705–715, 1980.

125

Bibliography

[CFHZ04] Jason Cong, Yiping Fan, Guoling Han, and Zhiru Zhang. Application-

specific instruction generation for configurable processor architectures.

In Proceedings of the 12th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 183–89, Monterey, Calif., February 2004.

[CH01] Katherine Compton and Scott Hauck. Totem: custom reconfigurable

array generation. In Proceedings of the 9th IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa Valley, Calif., April 2001.

[CH08] Katherine Compton and Scott Hauck. Automatic design of reconfigurable

domain-specific flexible cores. IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, VLSI-16(5):493–503, May 2008.

[Che09] Wai-Kai Chen. Feedback, Nonlinear, and Distributed Circuits. CRC Press,

third edition, 2009.

[CHJ10] Jason Cong, Hui Huang, and Wei Jiang. A generalized control-flow-aware

pattern recognition algorithm for behavioral synthesis. In Proceedings of the

Design, Automation and Test in Europe Conference and Exhibition, pages

1255–1260, Dresden, Germany, March 2010.

[CHW00] Timothy J. Callahan, John R. Hauser, and John Wawrzynek. The Garp

architecture and C compiler. Computer, 33(4):62–69, April 2000.

[CJ08] Jason Cong and Wei Jiang. Pattern-based behavior synthesis for FPGA

resource reduction. In Proceedings of the 16th ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pages 107–16, Monterey,

Calif., February 2008.

[CKG+96] Miguel R. Corazao, Marwan A. Khalaf, Lisa M. Guerra, Miodrag Potkonjak,

and Jan M. Rabaey. Performance optimization using template mapping for

datapath-intensive high-level synthesis. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 15(8):877–888, August 1996.

126

Bibliography

[CKP+04] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and Krisz-

tian Flautner. Application-specific processing on a general-purpose core

via transparent instruction set customization. In Proceedings of the 37th An-

nual International Symposium on Microarchitecture, pages 30–40, Portland,

Oreg., December 2004.

[CKS+99] Amit Chowdhary, Sudhakar Kale, Phani K. Saripella, Naresh K. Sehgal, and

Rajesh K. Gupta. Extraction of functional regularity in datapath circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 18(9):1279–1296, September 1999.

[CM12] Liang Chen and Tulika Mitra. Graph minor approach for application map-

ping on cgras. In Proceedings of the IEEE International Conference on Field

Programmable Technology, pages 285–292, Seul, June 2012.

[CWW96] Yao-Wen Chang, D.F. Wong, and C. K. Wong. Universal switch modules for

fpga design. ACM Transactions on Design Automation of Electronic Systems,

1:80–101, 1996.

[CZ09] Kun-Mao Chao and Luoxin Zhang. Sequence Comparison: Theory and

Methods. Computational Biology. Springer, London, 2009.

[CZM03] Nathan Clark, Hongtao Zhong, and Scott Mahlke. Processor acceleration

through automated instruction set customisation. In Proceedings of the

36th Annual International Symposium on Microarchitecture, pages 129–40,

San Diego, Calif., December 2003.

[CZM05] Nathan T. Clark, Hongtao Zhong, and Scott A. Mahlke. Automated custom

instruction generation for domain-specific processor acceleration. IEEE

Transactions on Computers, C-54(10):1258–70, October 2005.

[ECF+97] Carl Ebeling, Darren C. Cronquist, Paul Franklin, Jason Secosky, and Ste-

fan G. Berg. Mapping applications to the RaPiD configurable architecture.

127

Bibliography

In Proceedings of the 5th IEEE Symposium on Field-Programmable Custom

Computing Machines, pages 106–15, Napa Valley, Calif., April 1997.

[EEM06] EEMBC Consortium. DENBench Version 1.0, Benchmark Name: MPEG-2

Decode, February 2006. http://www.eembc.org/.

[eLCD03] Jong eun Lee, Kiyoung Choi, and Nikil D. Dutt. Compilation approach

for coarse-grained reconfigurable architectures. IEEE Design and Test of

Computers, 20(1):26–33, February 2003.

[Exp] University of California, Santa Barbara, Calif. ExpressDFG—Instruction

Scheduling Benchmarks. http://express.ece.ucsb.edu/benchmark/.

[FK08] Wenyi Feng and Sinan Kaptanoglu. Designing efficient input interconnect

blocks for LUT clusters using counting and entropy. ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 1(1):6:1–6:28, March 2008.

[GEMA04] Lemieux G., Lee E., Tom M., and Yu A. Directional and single-driver wires

in fpga interconnect. In Proceedings of the IEEE International Conference

on Field Programmable Technology, pages 41–48, Brisbane, Australia, De-

cember 2004.

[GKN06] Emden Gansner, Eleftherios Koutsofios, and Stephen

North. Drawing graphs with dot, January 2006.

http://www.graphviz.org/Documentation/dotguide.pdf.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization

system and its applications to software engineering. Software—Practice

and Experience, 30(11):1203–1233, 2000.

[GSM+99] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,

and R. Laufer. PipeRench: a co-processor for streaming multimedia accel-

eration. In Proceedings of the 26th Annual International Symposium on

Computer Architecture, pages 28–39, Atlanta, Ga., May 1999.

128

Bibliography

[GV04] V. Gudise and G. Venayagamoorthy. Fpga placement and routing using

particle swarm optimization. In IEEE Computer Society Annual Symposium

on VLSI, pages 307–308, Tampa, Florida, February 2004.

[HA96] Scott Hauck and Anant Agarwal. Software technologies for reconfigurable

systems. IEEE Transactions on Computers, pages 1–40, 1996.

[HM01] Zhining Huang and Sharad Malik. Managing dynamic reconfiguration

overhead in systems-on-a-chip design using reconfigurable datapaths and

optimized interconnection networks. In Proceedings of the Design, Automa-

tion and Test in Europe Conference and Exhibition, pages 735–740, Munich,

Germany, March 2001.

[IL06] Paolo Ienne and Rainer Leupers, editors. Customizable Embedded

Processors—Design Technologies and Applications. Systems on Silicon Se-

ries. Morgan Kaufmann, San Mateo, Calif., 2006.

[JL95] Tao Jiang and Ming Li. On the approximation of shortest common superse-

quences and longest common subsequences. SIAM Journal on Computing,

24(5):1122–39, October 1995.

[Keu87] Kurt Keutzer. Dagon: Technology binding and local optimization by dag

matching. In Proceedings of the 24th Design Automation Conference, pages

341–347, Florida, USA, March 1987.

[KKP+05] Yoonjin Kim, Mary Kiemb, Chulsoo Park, Jinyong Jung, and Kiyoung Choi.

Resource sharing and pipelining in coarse-grained reconfigurable archi-

tecture for domain-specific optimization. In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, pages 12–17,

Munich, Germany, March 2005.

129

Bibliography

[KR07] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

CAD-26(2):203–15, February 2007.

[KR08a] Ian Kuon and Jonathan Rose. Area and delay trade-offs in the circuit and

architecture design of FPGAs. In Proceedings of the 16th ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays, pages 149–58,

Monterey, Calif., February 2008.

[KR08b] Ian Kuon and Jonathan Rose. Automated transistor sizing for fpga architec-

ture exploration. In Proceedings of the 45th Design Automation Conference,

pages 792–795, Anaheim, Calif., June 2008.

[KS00] Thomas Kutzschebauch and Leon Stok. Regularity driven logic synthesis.

In Proceedings of the International Conference on Computer Aided Design,

pages 439–446, San Jose, Calif., November 2000.

[KW05] Z. Kwok and S.J.E. Wilton. Register file architecture optimization in a coarse-

grained reconfigurable architecture. In Proceedings of the 13th IEEE Sympo-

sium on Field-Programmable Custom Computing Machines, pages 35–44,

Napa Valley, Calif., April 2005.

[LB93] Guy G. Lemieux and Stephen D. Brown. A detailed routing algorithm for

allocating wire segments in field-programmable gate arrays. In Proceedings

of the ACM/SIGDA Physical Design Workshop, pages 215–226, San Francisco,

Calif., April 1993.

[LB03] Tien-Lung Lee and Neil W. Bergmann. An interface methodology for re-

targetable FPGA peripherals. In Proceedings of the 3rd International Con-

ference on Engineering of Reconfigurable Systems and Algorithms (ERSA),

pages 167–173, Las Vegas, Nev., June 2003.

130

Bibliography

[LBF+98] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna,

Jonathan Babb, Vivek Sarkar, and Saman P. Amarasinghe. Space-time

scheduling of instruction-level parallelism on a Raw machine. In Pro-

ceedings of the 8th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 46–57, San Jose,

Calif., October 1998.

[LKJ+09] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark

Fang, and Jonathan Rose. Vpr 5.0: Fpga cad and architecture exploration

tools with single-driver routing, heterogeneity and process scaling. In

Proceedings of the 17th ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, pages 133–142, Monterey, Calif., February 2009.

[LKMM95] Tai Ly, David Knapp, Ron Miller, and Don MacMillen. Scheduling using

behavioral templates. In Proceedings of the 32nd Design Automation Con-

ference, pages 101–106, New York, NY, June 1995.

[LSL+00] Ming-Hau Lee, Hartej Singh, Guangming Lu, Nader Bagherzadeh, Fadi J.

Kurdahi, Eliseu M. C. Filho, and Vladimir Castro Alves. Design and imple-

mentation of the MorphoSys reconfigurable computing processor. Journal

of VLSI Signal Processing Systems, 24(2–3):147–64, March 2000.

[MAHM02] Nahri Moreano, Guido Araujo, Zhining Huang, and Sharad Malik. 15th

international symposium on system synthesis. In Proceedings of the 15th

International Symposium on System Synthesis, pages 38–43, Kyoto, Japan,

October 2002.

[MVV+02] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. DRESC: A

retargetable compiler for coarse-grained reconfigurable architectures. In

Proceedings of the IEEE International Conference on Field-Programmable

Technology, pages 166–73, December 2002.

131

Bibliography

[MVV+03] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy

Lauwereins. Exploiting loop-level parallelism on coarse-grained reconfig-

urable architectures using modulo scheduling. In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, pages 296–301,

Munich, Germany, March 2003.

[Nor04] Stephen C. North. Drawing graphs with neato, April 2004.

http://www.graphviz.org/pdf/neatoguide.pdf.

[PFKM06] Hyunchul Park, Kevin Fan, Manjunath Kudlur, and Scott Mahlke. Modulo

graph embedding: mapping applications onto coarse-grained reconfig-

urable architectures. In Proceedings of the International Conference on

Compilers, Architectures, and Synthesis for Embedded Systems, pages 136–

146, Seoul, Korea, October 2006.

[PFM+08] Hyunchul Park, Kevin Fan, Scott A. Mahlke, Taewook Oh, Heeseok Kim,

and Honh-seok Kim. Edge-centric modulo scheduling for coarse-grained

reconfigurable architectures. In Proceedings of the 17th International Con-

ference on Parallel Architecture and Compilation Techniques, pages 166–76,

Toronto, October 2008.

[PSH04] Shawn Phillips, Akshay Sharma, and Scott Hauck. Automating the layout of

reconfigurable systems via template reduction. In Proceedings of the 12th

IEEE Symposium on Field-Programmable Custom Computing Machines,

pages 340–341, Napa Valley, Calif., April 2004.

[Rau94] B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm for soft-

ware pipelining loops. In Proceedings of the 27th Annual International

Symposium on Microarchitecture, pages 63–74, November 1994.

[RK93] D. Sreenisava Rao and Fadi J. Kurdahi. On clustering for maximal regularity

extraction. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 12(8):1198–1208, August 1993.

132

Bibliography

[RS99] N. Robertson and P. D. Seymour. Graph minors. Journal of Combinatorial

Theory, 77(1):162–210, 1999.

[Smi97] Michael J. S. Smith. Application-Specific Integrated Circuits. Addison-

Wesley, Boston, Mass., 1997.

[STT81] Kozo Sigiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual

understanding of hierarchical system structures. IEEE Transactions on

Systems, Man, and Cybernetics, 11(2):109–125, February 1981.

[TI03a] Texas Instruments. TMS320C64x DSP Library Programmer’s Reference, Oc-

tober 2003. Lit. no. SPRU565B.

[TI03b] Texas Instruments. TMS320C64x Image/Video Processing Library Program-

mer’s Reference, October 2003. Lit. no. SPRU023B.

[TI10] Texas Instruments. TMS320C67x DSP Library Programmer’s Reference, Jan-

uary 2010. Lit. no. SPRU657C.

[VNK+01] Girish Venkataramani, Walid Najjar, Fadi Kurdahi, Nader Bagherzadeh,

and Wim Bohm. A compiler framework for mapping applications to a

coarse-grained reconfigurable computer architecture. In Proceedings of

the International Conference on Compilers, Architectures, and Synthesis for

Embedded Systems, pages 116–125, Atlanta, Ga., November 2001.

[War77] John Warfield. Crossing theory and hierarchy mapping. IEEE Transactions

on Systems, Man, and Cybernetics, 7(7):505–523, 1977.

[Wil97] Steven J. E. Wilton. Architecture and Algorithms for Field Programmable

Gate Arrays with Embedded Memory. Ph.D. thesis, University of Toronto,

1997.

[YGBT09] Sami Yehia, Sylvain Girbal, Hugues Berry, and Olivier Temam. Reconciling

specialization and flexibility through compound circuits. In Proceedings of

133

Bibliography

the 15th International Symposium on High-Performance Computer Archi-

tecture, pages 277–88, Raleigh, N.C., February 2009.

[YM04] Pan Yu and Tulika Mitra. Scalable custom instructions identification for

instruction set extensible processors. In Proceedings of the International

Conference on Compilers, Architectures, and Synthesis for Embedded Sys-

tems, pages 69–78, Washington, D.C., September 2004.

[YR06] Andy Ye and Jonathan Rose. Using bus-based connections to improve field-

programmable gate-array density for implementing datapath circuits. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 14(5):462–73,

May 2006.

[YSP+08] Jonghee W. Yoon, Aviral Shrivastava, Sanghyun Park, Minwook Ahn, Rei-

ley Jeyapaul, and Yunheung Paek. SPKM: A novel graph-drawing based

algorithm for application mapping onto coarse-grained reconfigurable ar-

chitectures. In Proceedings of the Asia and South Pacific Design Automation

Conference, pages 776–82, Seoul, Korea, January 2008.

[ZT09] Marcela Zuluaga and Nigel Topham. Design-space exploration of resource-

sharing solutions for custom instruction set extensions. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, CAD-

28(12):1788–1801, December 2009.

[ŽVSM97] Vojin Živojnovic, Juan Martínez Velarde, Christian Schläger, and Heinrich

Meyr. Dspstone: A dsp-oriented benchmarking methodology. In Proceed-

ings of the International Conference on Signal Processing Applications and

Technology (ICSPAT), 1997.

134

Biography

Mirjana Stojilović was born on 3rd January 1983 in

Zemun, Republic of Serbia. She finished the ele-

mentary school in Zemun as the best scholar in her

class. Then, she finished the Mathematical Gram-

mar School in Belgrade, specialized for students

talented in mathematics, physics, and computer

science, as a recipient of the “Vuk Karadžić” award.

In parallel, she finished a two-year Primary Mu-

sic School in solo singing, in the class of professor

Sonja Gligorić. During her elementary and high

education, she was very active in mathematics and physics contests. The most success

she had in the physics contests, winning top prizes at the national competition level. She

took part in solo singing, poetry writing, and recitation contests as well. Ms. Stojilović

entered the School of Electrical Engineering in Belgrade in the school year 2002/2003.

She graduated from the department of Electronics in 2006, one year in advance and with

the GPA 9.9/10. Professor Lazar Saranovac was the mentor of her diploma work entitled

"Transmission of video signals over low-voltage network". This work summarized the

results of her research performed at the "Elsys Eastern Europe" company in Belgrade.

Ms. Stojilović entered the PhD program of the School of Electrical Engineering in

Belgrade, at the department of Electronics, in the school year 2007/2008. During the

studies, she passed all the required exams with GPA 10/10. She published one paper in

135

Biography

the prestigious international journal IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, and presented 16 papers at conferences. One of the

conference papers related to the topic of her PhD thesis, she presented at one of the top

two conferences in the domain—Design Automation and Test in Europe (DATE). In 2012,

she was awarded the first prize at the “Western Balkan Countries’ ICT Idea Competition”,

organized by FP7-funded projects ICT-WEB-PROMS and WINS-ICT. In 2012, she was a

recipient of the Young Author Best Paper Award for the paper “Design of antenna system

for short range wireless sensor network”, presented at the 19th Telecommunications

forum TELFOR 2011 in Belgrade. Ms. Stojilović is an IEEE member and serves as a

Reviewer of ACM Transactions on Design Automation of Electronic Systems Journal and

Design Automation Conference (DAC).

From January 2007 until May 2013, she worked as an Embedded System Developer with

the Institute Mihailo Pupin in Belgrade. In the scope of the project “Advancing Embed-

ded System Research in Serbia” she was cooperating with the Processor Architecture

Laboratory of the Swiss Federal Institute of Technology in Lausanne (EPFL), visiting

periodically as a guest researcher. She now lives in Switzerland and works as a scientific

collaborator at the University of Applied Sciences and Arts Western Switzerland.

136

Biografija

Mirjana Ž. Stojilović je rod̄ena u Zemunu, Repub-

lika Srbija, 3. januara 1983. godine. Osnovnu školu

je završila u Zemunu, kao d̄ak generacije. Potom je

završila Matematičku gimnaziju u Beogradu, kao

nosilac diplome „Vuk Karadžić“. Tokom gimnaz-

ijskog školovanja osvajala je nagrade iz fizike na

svim nivoima takmičenja u zemlji. Pored toga, za-

vršila je i Nižu muzičku školu Kosta Manojlović u

Zemunu, odsek solo pevanja, u klasi prof. Gligorić.

Školske 2002/03. godine upisala je Elektrotehnički

fakultet Univerziteta u Beogradu. Diplomirala je na smeru za Elektroniku, pre roka,

decembra 2006. godine, sa prosečnom ocenom 9,90/10, i diplomskim radom na temu

„Prenos video signala preko niskonaponske mreže“. Mentor diplomskog rada je bio

dr Lazar Saranovac, docent. Diplomski rad je bio rezultat stručne prakse u kompaniji

„Elsys“ u Beogradu.

Doktorske studije na Elektrotehničkom fakultetu Univerziteta u Beogradu, smer Elek-

tronika, upisala je školske 2007/08. godine. Na studijama je položila sve ispite sa

prosečnom ocenom 10,00/10. Tokom studija objavila je jedan rad u med̄unarodnom

časopisu, prikazala je dvanaest radova na med̄unarodnim konferencijama i četiri rada

na domaćim konferencijama. Od tih radova, pet radova na konferenciji Telfor proiza-

šlo je iz istraživanja na predmetima koje je polagala na doktorskim studijama. Za rad

137

Biografija

„Design of antenna system for short-range wireless sensor network“, prikazan na kon-

ferenciji Telfor 2011, dobila je nagradu „Blažo Mirčevski“ za najbolji rad mladog autora.

U neposrednoj vezi sa doktorskom disertacijom su četiri rada iz oblasti projektovanja

namenskih programabilnih hardverskih akceleratora: jedan rad objavljen u med̄unaro-

dnom časopisu i tri rada prikazana na med̄unarodnim konferencijama, od čega je jedan

rad prikazan na jednoj od dve najznačajnije konferencije u ovoj oblasti u svetu.

Član je IEEE udruženja u statusu punopravnog člana. Recenzent je med̄unarodnog ča-

sopisa „ACM Transactions on Design Automation of Electronic Systems“, med̄unarodne

konferencije „Design Automation Conference“ iz iste oblasti kao i doktorska disertacija,

kao i konferencije Telfor. Od januara 2007. godine do aprila 2013. godine radila je u

Institutu Mihajlo Pupin, na poziciji istraživača i projektanta namenskih računarskih

sistema, gde je, izmed̄u ostalog, učestvovala na med̄unarodnom istraživačkom projektu

„Advancing embedded system research in Serbia“ zajedno sa EPFL u Lozani, Švajcarska.

Od maja 2013. godine zaposlena je na University of Applied Sciences and Arts Western

Switzerland, u Švajcarskoj, kao naučna saradnica na FP-7 projektu STRUCTURES.

138

Dragana
Text Box

Dragana
Text Box

Dragana
Text Box

	List of figures
	List of tables
	Introduction
	The Problem
	Structure

	Background and Related Work
	Resource Sharing in Datapaths
	Design Optimizations by Regularity Extraction
	Increasing Flexibility through DFG Generalizations
	Domain-Specific Arrays

	Design Framework Overview
	Design Flow
	Dataflow Graph Represenation
	The Mimosys Clarity tool
	Dataflow Graph File Format

	Array Column Generation
	Creating Shortest Common Supersequences
	Creating Minimum Area Supersequences
	Algorithm Complexity

	Array Generation
	Method for Determining the Array Size
	Related Work in Graph-Based Application-Mapping
	Spatial Mapping Algorithm for Heterogeneous CGRAs
	Split & Push Kernel Mapping Algorithm
	Edge-Centric Modulo Scheduling
	Graph-Minor Approach

	DFG Placement onto Domain-Specific Arrays
	Laying Out Graphs with dot
	Assigning Nodes to Rows
	Assigning Nodes to Columns

	Oversizing The Number of Columns

	Routing Network Design
	Island-Style FPGA Architecture
	Method for Determining the Channel Width
	DFG Placement Using VPR
	Circuit Netlist (.net) Format
	Reconfigurable Datapath Architecture (.xml) Format
	Circuit Placement (.p) Format

	DFG Routing Using VPR
	Oversizing The Routing Channels

	Experimental Evaluation
	Experimental Setup
	Comparison of Path Fusion Algorithms
	Array Generality Estimation
	Array Dimensions and Utilization
	Routing Network Characteristics
	Effects of Domain Grouping on Generality and Area
	Area/Delay Oversize Compared to ASIC
	Area/Delay Oversize Compared to Datapath Merging

	Conclusions
	Bibliography
	Biography
	Biografija

