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ABSTRACT 

THE ASSOCIATION OF GLUTATHIONE TRANSFERASE A1, M1, P1 AND T1 
GENE POLYMORPHISMS WITH THE RISK OF RENAL CELL CARCINOMA 

DEVELOPMENT AND PROGRESSION 
 

Vesna M. Ćorić 
 

Background: Cytosolic glutathione S-transferases (GSTs) might affect both the development 

and the progression of renal cell carcinoma (RCC) due to their dual functionality. The aim of 

this study was to evaluate specific role of GST gene variants (GSTA1, GSTM1, GSTT1 and 

GSTP1) as determinants of risk in patients with renal cell carcinoma, independently or 

simultaneously with recognized RCC risk factors, as well as to discern whether phenotype 

changes reflect genotype-associated risk. Furthermore, we evaluated the effect of GST gene 

variants on postoperative prognosis in RCC patients. Special attention was paid to the most 

frequent type of RCC, clear renal cell carcinoma (ccRCC). 

Methods: GST genotypes were determined in 305 RCC patients and 326 matched-controls in 

whom overall survival was evaluated as well. The levels of benzo(a)pyrene diolepoxide 

(BPDE)-DNA adducts and 8-hydroxy-2′-deoxyguanosine (8-OHdG) were determined by 

ELISA method. The expression of GSTM1 and GSTP1 protein level, as well as the level of 

regulatory (ASK1, JNK1/2) and executor (Caspase-3) apoptotic molecules in ccRCC tissue 

samples were analyzed by method of immuniblot. The presence of GSTM1:ASK1/ 

GSTP1:JNK1/2 protein:protein interactions was determined by means of 

immunoprecipitation. 

Results: Significant association between GST genotype and risk of overall RCC and ccRCC 

development was found for GSTM1-null and GSTP1-variant genotypes, independently 

(p<0.05). Furthermore, 22% of all recruited ccRCC patients were carriers of combined 

GSTM1-null/GSTT1-active/GSTA1-low activity/GSTP1-variant genotype, exhibiting 9.32-fold 

elevated ccRCC risk compared to the reference genotype combination (p=0.041). Significant 

association between GST genotype and ccRCC risk in smokers was found only for the GSTP1 

genotype, while GSTM1-null/GSTP1-variant/GSTA1 low-activity genotype combination was 

present in 94% of smokers with ccRCC, increasing the risk of ccRCC up to 7.57 (p=0.026). 

Furthermore, ccRCC smokers with GSTM1-null genotype had significantly higher 

concentration of BPDE-DNA adducts in comparison with GSTM1-active cRCC smokers (p= 
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0.050). No association was found between GST gene variants and the level of 8-OHdG. 

However, GSTM1-null genotype was the most frequent in grade II (G2) RCC and ccRCC 

tumors. Survival analysis indicated shorter overall survival for the whole group of RCC and 

ccRCC patients with GSTM1-active genotype (p<0.05). Furthermore, overall RCC and ccRCC 

patients with GSTM1-active genotype had a significantly higher hazard ratio (p<0.05), analyzed 

in all three regression models, compared to the carriers of GSTM1-null genotype. Finally, the 

presence of GSTM1:ASK1, as well as GSTP1:JNK1/2 protein:protein interactions was found 

in all ccRCC tissue samples studied. 

Conclusions: Certain GST polymorphisms might be associated with the risk of RCC, with 

special emphasis on GSTM1-null and GSTP1-variant genotypes. Combined GSTM1-

null/GSTT1-active/GSTA1 low activity/GSTP1-variant genotypes might be considered a “risk-

associated genotype combination” in ccRCC. On the other hand, GSTM1-null genotype is 

associated with favorable postoperative prognosis in RCC. The possible molecular mechanism 

underlying the role of GST proteins in RCC progression might be the presence of 

GSTM1:ASK1 and GSTP1:JNK1 protein:protein interactions. Hence, determination of 

GSTM1 genotype might serve as a valuable indicator in both RCC risk assessment and 

postoperative prognosis. 

Key words: GST, RCC, risk, prognosis, survival, BPDE, 8-OHdG, MAPK, protein 

expression; 

 

Scientific Field: Medicine 

Scientific Dicipline: Medical and clinical biochemistry 

UDC: 
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SAŽETAK 

POVEZANOST POLIMORFIZAMA GENA ZA GLUTATION TRANSFERAZE A1, 

M1, P1 I T1 SA RIZIKOM ZA NASTANAK I PROGRESIJOM KARCINOMA 

BUBREŽNOG PARENHIMA  

 

Vesna M. Ćorić 

 

Uvod: Zbog uloga koje poseduju, citosolne glutation S-transferaze (GST) mogu biti značajne 

kako u nastanku, tako i u progresiji karcinoma bubrežnog parenhima (KBP). U ovoj studiji je 

ispitivana uloga pojedinih GST genskih varijanti (GSTA1, GSTM1, GSTT1 i GSTP1) u 

nastanku KBP, nezavisno ili udruženo sa poznatim faktorima rizika za nastanak ovog 

karcinoma, kao i moguća povezanost fenotipskih karakteristika tumora sa odgovarajućim 

genotipom. Pored toga, ispitivan je i potencijalni prognostički značaj polimorfne ekspresije 

GST proteina kod bolesnika sa KBP. Posebna pažnja je posvećena najučestalijem podtipu 

KBP, svetloćelijskom karcinomu bubrežnog parenhima (sKBP).  

Materijal i Metode: Polimorfizam GSTa je određivan kod 305 pacijenata sa KBP i kod 326 

kontrola, uparenih po godinama i polu. Pored fenotipskih karakteristika tumora, u grupi 

pacijenata sa KPB je praćeno i preživljavanje. Nivoi benzo(a)piren diolepoksid (BPDE)-DNK-

konjugata, kao i nivoi 8-hidroksi-2-deoksiguanozina (8-OHdG) su određivani ELISA 

metodom. Ekspresija GSTM1 i GSTP1 proteina, kao i ekspresija regulatornih (ASK1, 

JNK1/2) i egzekutornih (Caspaza 3) apoptotskih molekula u uzorcima tumorskog tkiva je 

analizirana metodom imunoblota. Prisustvo GSTM1:ASK1, odnosno GSTP1:JNK1/2 

protein:proteinske interakcije je ispitivano metodom imunoprecipitacije.  

Rezultati: Uočen je značajan efekat GSTM1-nultog i GSTP1-varijantnog genotipa na rizik za 

nastanak KBP (p<0.05). Pored toga, 22% svih pacijenata sa sKBP su bili nosioci 

kombinovanog GSTM1-nultog/GSTT1-aktivnog/GSTA1-genotipa smanjene aktivnosti/GSTP1-

varijantnog genotipa i bili su u 9.32 - puta većem riziku za nastanak sKBP u poređenju sa 

nosiocima referentnog genotipa (GSTM1-aktivni/GSTT1-nulti/GSTA1-aktivni/GSTP1-referentni 

genotip) (p=0.041). Uočen je efekat GSTP1-varijantnog genotipa na rizik za nastanak KBP kod 

pušača, dok je kombinacija GSTM1-nulti/GSTP1-varijantni/GSTA1-genotip smanjene aktivnosti bila 

prisutna u 94% pušača sa sKBP, povećavajući rizik od nastanka sKBP na 7.57 puta (p=0.026). 
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Takođe, pušači sa sKBP, nosioci GSTM1-nultog genotipa su imali značajno više nivoe BPDE-

DNK-konjugata u poređenju sa nosiocima GSTM1-aktivnog genotipa (p=0.050). Ipak, nije 

nađena asocijacija između nosilaca različitih GST genskih varijanti po pitanju nivoa 8-OHdG. 

Kada je ispitivana povezanost fenotipskih karakteristika tumora sa GST genotipom, uočeno je 

da je GSTM1-nulti genotip bio najučestaliji kod pacijenata sa G2 gradusom tumora. Rezultati 

ispitivanja prognostičke uloge GST u KBP su pokazali da je kumulativna verovatnoća 

preživljavanja pacijenata sa KBP i sKBP, nosilaca GSTM1-aktivnog genotipa bila manja u 

odnosu na ispitanike sa GSTM1-nultim genotipom (p<0.05). Štaviše, pacijenti sa KBP i sKBP, 

nosioci GSTM1-aktivnog genotipa imali su statistički značajno veći rizik od smrtnog ishoda u 

sva tri ispitivana modela u odnosu na nosioce GSTM1-nultog genotipa (p<0.05). Konačno, 

prisustvo GSTM1:ASK1, kao i GSTP1:JNK1/2 protein:proteinske interakcije je potvrđeno u 

svim analiziranim uzorcima tumorskog tkiva sKBP. 

Zaključci: Određeni polimorfizmi GST mogu imati značajan efekat na rizik za nastanak KBP, 

sa posebnim naglaskom na GSTM1-nulti i GSTP1-varijantni genotip. Kombinovani GSTM1-

nulti/GSTT1-aktivni/GSTA1 genotip smanjene aktivnosti/GSTP1-varijantni genotip može se 

smatrati “rizičnim genotipom” za nastanak sKBP. Sa druge strane, GSTM1-nuti genotip je 

udružen sa boljom postoperativnom prognozom pacijenata sa KBP, a u osnovi prognostičke 

uloge GST u KBP bi bilo prisustvo GSTM1:ASK1 i GSTP1:JNK1 protein:proteinskih 

intrakcija. Stoga, određivanje GSTM1 genotipa može predstavljati koristan pokazatelj u proceni 

rizika za nastanak KBP i postoperativnu prognozu pacijenata sa ovim karcinomom. 

Ključne reči: GST, KBP, rizik, prognoza, preživljavanje, BPDE, 8-OHdG, MAPK, ekspresija 

proteina; 

 

Naučna oblast: Medicina 

Uža naučna oblast: Medicinska i klinička biohemija 

UDK: 
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INTRODUCTION 

 

1.1  Renal cancer 

Nowadays, renal masses are being increasingly detected as unexpected findings on 

diagnostic abdominal imaging, usually performed for non-kidney related clinical conditions, 

and may comprise a simple renal cyst that require no treatment or even follow-up (Ellimoottil 

et al., 2014). However, the majority of cases comprise benign renal lesions (angiolipomas or 

oncocytomas) or malignant renal lesions, that are usually subjected to further procedures and 

interventions (Shah et al., 2010). 

 

1.1.1 Incidence 

Representing 2-3% of all malignancies, kidney cancer and renal pelvis cancer are 

among top ten most common cancers in the world (Ferlay et al., 2015). Renal cell carcinoma 

(RCC) is the predominant form of kidney malignancy, comprising various morphological 

variants of RCC types with specific chromosomal alterations and molecular pathway 

abnormalities (B. Escudier et al., 2014; Ljungberg et al., 2015). On the other hand, urothelial 

carcinoma, arising in the renal pelvis, accounts for less than 10% of histologically confirmed 

kidney carcinomas. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Estimated age-standardized rates of kidney incidence cases in the World, for both 
sexes, cancer, worldwide; Adopted from Ferlay et al., 2015, available at 
http://globocan.iarc.fr/ 
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The incidence of RCC varies between nations. Over the course of the last few decades, 

the incidence has increased in many parts of the world, probably due to the improved tumor 

detection with diagnostic abdominal imaging (Mathew et al., 2002), being the highest in 

Europe, North America and Australia (Petejova and Martinek, 2016). The global incidence rate 

reported in 2012 was 6.0/100.000 for men and 3.0/100.000 for women (Figure 1) (Ferlay et al., 

2015). Similarly, the incidence in Serbia in 2013 was reported as 6.1 (men) and 3.0 (women) per 

100.000 people (Cancer Incidence and Mortality in Central Serbia 2013, 2015). Approximately, there 

is a 1.5:1 predominance in men over women, with peak incidence of RCC occurring between 

60 and 70 years of age (Ljungberg et al., 2015). 

 

1.1.2 Diagnostics 

Most RCCs are asymptomatic in early stages. It seems that the use of high-resolution 

cross-sectional imaging modalities over the last few decades has led to the increase in 

incidental detection of renal masses, often characterized as small and low-graded (Gill et al., 

2010). Nowadays, between 48-66% of such RCCs are detected incidentally (Krabbe et al., 

2014). Still, many renal masses remain asymptomatic until the late stages of the disease. The 

classic triad of flank pain, gross haematuria and palpable abdominal mass is now rare (6-10%) 

and correlates with advanced disease and subtypes associated with poor prognosis (Patard et 

al., 2005). Paraneoplastic syndromes (hypertension, anemia, weight loss as most common) are 

found in approximately 30% of patients with symptomatic RCC (Sacco et al., 2009). Symptoms 

caused by metastatic RCC, such as bone pain, deterioration of performance status, or 

persistent cough are now observed in few patients (Kim et al., 2003).  

Most renal masses can be detected accurately using imaging alone. The most traditional 

approach for both detecting and characterizing renal masses are ultrasonography, computed 

tomography and magnetic resonance imaging, which alone can classify renal masses as cystic or 

solid (Ljungberg et al., 2015). Renal biopsies are increasingly being used for the following 

purposes: (1) for histological diagnosis of radiologically indeterminate renal masses to avoid 

surgery in the event of benign lesions; (2) to select patients with small renal masses for 

surveillance approaches; (3) to obtain histology before ablative treatments; and (4) to select the 

most suitable medical and surgical treatment strategy in the setting of metastatic RCC, as 
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explained in details by several papers on RCC management (Abel et al., 2010; Leveridge et al., 

2011; Schmidbauer et al., 2008). 

 

1.1.3 Pathology assessment 

Adult kidney cancers that originate from renal parenchyma, in particular form the 

nephrons, are mainly adenocarcinomas, also known as renal cell carcinoma (RCC), whereas 

those that arise from the collecting system are mainly transitional cell carcinomas (TCC). 

2004 WHO classification, that was modified by the International Society of Urological 

Pathology (ISUP) Vancouver Classification in 2012, recognizes three major histological 

subtypes of RCC: (1) clear cell RCC (ccRCC), which arises from the proximal convolute tubule 

and is the most frequent subtype of sporadic RCC in adults (70-85%), followed by (2) papillary 

(pRCC), comprising type I and II (10-15%, of which 60–70% are type I) and (3) chromophobe 

RCC (chRCC, 4-5%) (Srigley et al., 2013). 

 Less common cancers include papillary adenoma, multilocular cystic clear-cell 

carcinoma, hybrid oncocytic chromophobe tumor, carcinoma of the collecting ducts of Bellini, 

renal medullary carcinoma, carcinoma associated with neuroblastoma and mucinous tubular 

and spindle-cell carcinoma. The ISUP Vancouver Consensus Statement added five new 

epithelial tumor subtypes of renal cell carcinoma: tubulocystic, acquired cystic disease 

associated clear-cell, tubulopapillary, microphthalmia family translocation, and hereditary 

leiomyomatosis– renal cell carcinoma syndrome-associated (Srigley et al., 2013). 

The particular information on the RCC subtype is of the utmost importance. Various 

subtypes exhibit different biological behavior, prognosis and treatment option, with ccRCC 

still being the most aggressive, with the highest rate of invasion, metastasis and mortality 

(Protzel et al., 2012). On the other hand, if sarcomatoid or rhabdoid differentiation occurs in 

any subtype, it is usually associated with highly aggressive behavior and poor prognosis (Eble 

et al., 2006). 

Besides RCC subtype and the presence of sarcomatoid features, histological diagnosis 

includes the evaluation of nuclear grade, vascular invasion, tumor necrosis and invasion of the 

collecting system and peri-renal fat. Until recently, Fuhrman nuclear grade has been the most 

widely accepted grading system (Fuhrman et al., 1982). However, at the 2012 ISUP conference, 

a simplified, nuclear grading system, based only on the size and the shape of nucleoli, was 
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proposed and will replace the Fuhrman grading system (Srigley et al., 2013). Moreover, new 

Union for International Cancer Control tumor–node–metastasis staging system should be used 

(Table 1.) (Edge and American Joint Committee on Cancer, 2010). 

 

1.1.4 Treatment 

Surgical resection appears to remain as the standard of care, in case of both radical and 

partial nephrectomy. Meanwhile, cryoablation and radiofrequency ablation, where tumor is 

destroyed by low or high temperatures, has gained vast attention. Concerning the management 

of small, incidentally detected renal masses, another emerging approach is “watchfull waiting”. 

However, given their unproven long-term efficacy, the renal ablation and “watchfull waiting” 

have not established themselves as standards of care, but are, for the timebeing, reserved for 

elderly and/or patients with comorbidities and small renal masses with limited life expectancy 

(Ljungberg et al., 2015).  

 

Table 1. Staging of RCC Union for International Cancer Control (UICC) tumor–node–
metastasis (TNM) classification of malignant tumors; Adopted from Edge and American Joinr 
Committee on Cancer, 2010 

 

T Primary tumor 

Tx Primary tumor cannot be assessed 

T0 No evidence of primary tumor 

T1 Tumor ≤7 cm in greatest dimension, limited to the kidney 

T1a Tumor ≤4.0 cm 

T1b Tumor >4.0 cm but ≤7.0 cm 

T2 Tumor >7.0 cm in greatest dimension, limited to the kidney 

T2a Tumor >7 cm but ≤10 cm 

T2b Tumor >10 cm, limited to the kidney 

T3 
Tumor extends to major veins or perinephric tissues but not into the ipsilateral 
adrenal gland and not beyond Gerota’s fascia 

T3a 
Tumor grossly extends into the renal vein or its segmental (muscle-containing) 
branches, or tumor invades peri-renal and/or renal sinus fat (peri-pelvic) but 
not beyond Gerota’s fascia 

T3b Tumor grossly extends into the vena cava below the diaphragm 

T3c 
Tumor grossly extends into the vena cava above the diaphragm or invades the 
wall of the vena cava 

T4 
Tumor invades beyond Gerota’s fascia (including contiguous extension into the 
ipsilateral adrenal gland) 
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Table 1, continued. Staging of RCC, Union for International Cancer Control (UICC) tumor–
node–metastasis (TNM) classification of malignant tumors; from Edge and American Joinr 
Committee on Cancer, 2010 

 

N Regional lymph nodes 

Nx Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in regional lymph node(s) 

M Distant metastases 

cM0 Clinically no distant metastasis 

cM1 Clinically distant metastasis 

pM1 Pathologically proven distant metastasis, e.g. needle biopsy 

Stage 
grouping 

 

Stage I T1 No M0 

Stage II T2 No M0 

 T3 Any M0 

Stage III T1-T3 N1 M0 

 T4 Any M0 

Stage IV Any Any M1 

 

1.1.5 Mortality 

Although most of the incidentally detected renal lesions have been characterized as 

small and low-grad tumors, about 20-30% of all patients are diagnosed with metastatic disease 

(mRCC) due to the early hematologic dissemination (Siegel et al., 2014). Moreover, about 20% 

of all patients undergoing nephrectomy will develop mRCC during follow-up (Ljungberg et al., 

2011; Petejova and Martinek, 2016). The most frequent sites of metastatic disease are lungs, 

bone and brain. However, adrenal glands, contralateral kidney and liver might be involved as 

well (Bianchi et al., 2012). 

According to the US National Cancer Institute data, the 5-yr overall survival for all 

RCC subtypes has increased since 1970’s and reached 73%, probably due to the increase in the 

number of incidentally detected RCC cases and the introduction of targeted therapies 

(Wahlgren et al., 2013). Still, patients with metastatic disease have a median survival of around 

13 months. The 5-year survival rate in such patients is below 10%, probably due to the 

chemotherapy and radiotherapy resistance, as well as low efficacy and toxicity of 
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immunotherapy (Klinghoffer et al., 2009; Ljungberg et al., 2015). Reported mortality rates 

worldwide are 2.5/100.000  in men and 1.2/100.000  in women (Figure 2) (Ferlay et al., 2015), 

whereas in Serbia the rates are higher with 6.1/100.000 in men and 3.0/100.000  in women, as 

reported in 2013 (Cancer Incidence and Mortality in Central Serbia 2013, 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.6 Etiology 

A number of predisposing conditions are known to increase the risk of RCC 

development. Recognized risk factors include cigarette smoking, obesity and hypertension 

(Capitanio and Montorsi, 2016; B Escudier et al., 2014; Ljungberg et al., 2015; Petejova and 

Martinek, 2016; Terris et al., 2016). RCC also appears to be more frequent in patients with 

renal failure, acquired cystic disease and tuberous sclerosis (B. Escudier et al., 2014). 

Several other suspected risk factors for RCC have been evaluated, such as high intake 

of dairy products and low consumption of fruits and vegetables, lack of physical activity, low 

socioeconomic status, treatment of hypertension with thiazide diuretics, family history of 

disease and multi-parity (Hunt et al., 2005).  

 

Figure 2. Estimated age-standardized kidney cancer mortality rates in the World for both 
sexes in 2012; Adopted from Ferlay et al, 2015, available at http://globocan.iarc.fr/ 
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1.1.6.1 Cigarette smoking 

The most well recognized risk factor for the development of RCC is cigarette smoking. 

In 2004, both the International Agency for Research on Cancer (IRAC) and the U.S. Surgeon 

General concluded that there are sufficient data to support causality between smoking and the 

development of RCC, due to the known carcinogenic effects of numerous tobacco 

components (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 

2004; Office of the Surgeon General (US) and Office on Smoking and Health (US), 2004).  

The association between RCC and cigarette smoking is well established, although 

reported risk for ever-smokers compared with never-smokers is moderate. Namely, a 

comprehensive meta-analysis of 19 case-control and 5 cohort studies has demonstrated that 

the cigarette smoking exerts a modest, but significant increase in risk for developing RCC 

(RR=1.38 (95%CI: 1.27-1.50)) for both sexes (Hunt et al., 2005). Additionally, two studies 

reported that the risk for RCC increased in a dose-dependent manner and was, to a certain 

degree, reversible with prolonged smoking cessation (>10 years) (Hunt et al., 2005; Parker et 

al., 2003). These findings corresponded with results of later study of Theis et al. who have yet 

again reported the associations between cigarette smoking and RCC, as well as the protective 

effects for smoking cessation (Theis et al., 2008). Moreover, it seems that there is even 

evidence to support the fact that never-smokers, exposed to environmental tobacco smoke at 

home or work, are also at increased risk of RCC (Hu et al., 2005; Theis et al., 2008).  

 A large body of epidemiological literature evaluated the risk factors for RCCs 

development, however, without respect to RCC subtype. The results of recent prospective 

study suggested that smoking, the greatest modifiable risk factor for RCC, increases the risk of 

certain common RCC subtypes (ccRCC and pRCC) but not the others (chRCC) (Patel et al., 

2015). What is more, RCC patients who are current smokers or have a history of tobacco 

exposure seem to exhibit more aggressive forms of RCC and with worst cancer-

specific/overall survival (Terris et al., 2016).  

 Mechanisms by which tobacco might contribute to RCC develompent are unclear and 

likely multifactorial. Cigarette smoke is a rich source of free radicals, which are believed to be 

responsible for initiation of many tumors by inducing DNA damage that accumulates in the 

cells. In addition to free radicals, more than 60 carcinogens have been found in cigarette 

smoke. Among these, sufficient evidence of carcinogenicity was found for polycyclic aromatic 
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hydrocarbons (PAHs) such as benzo(a)pyrene and aromatic amines (such as 4-amino biphenyl) 

(International Agency for Research on Cancer and International Agency for Research on 

Cancer, 1993). Particular interest has been given to the most abundant, benzo(a)pyrene (B(a)P) 

and its carcinogenic metabolites, stereoisomers of 7,8-dihydroxy-9,10-oxy-7,8,9,10-

tetrahydrobenzo(a)pyrene (BPDE) (Alexandrov et al., 2002). The (+)-antiisomer [(+)-anti-

BPDE] seems to be the most potent carcinogen of all PAH diol epoxides (Slaga et al., 1979). 

Namely, BPDE is known as ‘the bullet of the smoking gun’, leaving its fingerprints in the 

blood of smokers, in the form of adducts with either serum albumin or DNA (Alexandrov et 

al., 2002; Ketterer, 1996). PAH BPDE-DNA adduct are shown to induce mutation(s), 

predominantly in the form of G to T transversions (Figure 3). For instance, the levels and the 

distribution of BPDE-DNA adducts in lung tumor tissue, obtained from smokers, are found 

to closely correlate with the gene sites containing the highest rate of p53 mutations, which was 

not the case for the population of non-smokers (Hollstein et al., 1991). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3. Oxidation of benzo(a)pyrene and covalent binding to DNA. Adapted from 

Lieberman et al., 2013; 
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Another major component of tobacco, nicotine, might also contribute to RCC 

tumorigenesis by stimulating pathological angiogenesis. Nicotine is known to increase 

endothelial cell number, capillary network formation and angiogenic response in neoplasia, 

mediated in part by the vascular endothelial growth factor protein, commonly up-regulated in 

ccRCC (Heeschen et al., 2001). However, in pRCC angiogenesis appears not to have a major 

role in tumorigenesis and, therefore, is not likely to be linked with smoking (Ooi et al., 2011).  

 

1.1.6.2 Obesity 

 Excess bodyweight, whether in people who are overweight (defined as a body-mass 

index, BMI of 25 to 29·9 kg/m²) or obese (BMI of 30 kg/m² or greater), is increasingly being 

recognized as an important risk factor for some common cancers (Renehan et al., 2008). In 

case of RCC, excess body weight has been recognized as a risk factor in several case control 

and cohort studies (Beebe-Dimmer et al., 2012; Bergström et al., 2001; Chow et al., 2000; Leiba 

et al., 2013; Pischon et al., 2006), following a dose dependent response pattern (Adams et al., 

2008; Pischon et al., 2006). Namely, it has been suggested that overweight and obese patients 

had an increased risk of RCC, by 24% for men and 34% for women, for every 5 kg/m2 

increase in BMI (Renehan et al., 2008).  Moreover, a quantitative summary analysis of 14 

studies reported a relative risk for both sexes of 1.07 (95% CI: 1.05-1.09) per unit of increase in 

BMI (corresponding to 3 kg body weight increase for a subject of average height) (Bergström 

et al., 2001). In a large cohort of Norwegian man and woman, Bjørge et al have established 

remarkably similar results with calculated relative risk of 1.05 per unit increase in BMI (Bjørge 

et al., 2004). Several studies indicated that excess bodyweight in late adolescence is associated 

with an increased risk of RCC (Beebe-Dimmer et al., 2012; Leiba et al., 2013). Nevertheless, it 

seems that obesity is a favorable factor in terms of prognosis of RCC, despite its contribution 

to increased RCC risk (Haferkamp et al., 2008; Kamat et al., 2004). 

Several mechanisms, explaining the increased risk of RCC development in obese 

patients have been proposed, however, direct evidence in humans is limited. These include 

chronic renal tissue hypoxia, insulin resistance and a compensatory hyperinsulinemia, altered 

endocrine milieu and production of adipokines, obesity-induced inflammatory response, as 

well as lipid peroxidation and oxidative stress, as shown in Figure 4 (Klinghoffer et al., 2009). 
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1.1.6.3 Hypertension 

 The effect of hypertension, or its treatment, on the risk of RCC has been evaluated in a 

number of studies, which provided several lines of evidence supporting the fact that history of 

long-term hypertension is associated with the increased risk of RCC (Brennan et al., 2008; 

Chow et al., 2000; Corrao et al., 2007; Vatten et al., 2007; Weikert et al., 2008). Namely, one of 

the largest European prospective studies demonstrated two- to three-fold increased risk for 

RCC development in patients with both elevated systolic and diastolic blood pressure, that was 

independent of gender, BMI, smoking and the use of antihypertensive therapy (Weikert et al., 

2008). Multiple studies, comprising patients from both Europe and the USA, reported the 

same results, emphasizing the dose-response association of increasing RCC risk with rising 

blood pressure (Chow et al., 2000; Vatten et al., 2007; Weikert et al., 2008). 

Furthermore, data from two cohort studies highlighted the hypothesis that underlying 

disorder of hypertension, rather than its treatment, increases the risk of RCC, while effective  

Figure 4. Potential obesity-related mechanisms responsible for RCC development; Adopted 
from Klinghoffer et al, 2009. Abbreviations: IGF-1- insulin growth factor; IL-6- interleukin 6; 
CRP- c reactive protein; RCC- renal cell carcinoma. 
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blood pressure control may modify the risk (Chow et al., 2000; Weikert et al., 2008). 

 Uncontrolled hypertension can lead to a number of diseases, many of which are 

recognized as predisposing conditions for the RCC development, such as end-stage renal 

disease. Although several theories have been proposed to explain the association between 

hypertension and RCC, neither experimental studies, nor epidemiologic investigations have 

elucidated the biological mechanism underlying the observed association. It is presumed that 

renal carcinogenesis in part may be promoted by the increased formation of reactive oxygen 

species, as well as dysregulated lipid peroxidation in the proximal renal tubules of both 

hypertensive and obese individuals (Gago-Dominguez et al., 2002). Moreover, there is 

evidence suggesting that the mechanism behind hypertension and other recognized risk factors 

of kidney cancer, such as smoking and obesity, may include tissue hypoxia (Sharifi and Farrar, 

2006). Many other mechanism have been proposed, such as abnormality in the apoptotic 

process, mitogenic effect of angiotensin II, catecholamines and vasopressin,  potential 

carcinogenetic mechanisms of diuretics, etc. (Corrao et al., 2007). However, more detailed 

experimental approaches are necessary to elucidate the potential mechanism behind 

hypertension associated RCC risk.  

 

1.1.6.4 Genetic factors 

A number of familial syndromes with well-identified causative genetic mutations (such 

as Von Hipper-Lindau disease, etc), strongly predispose affected individuals to the development 

of RCC. Still, these hereditary syndromes comprise only a small portion of RCC cases, with 

majority of cases developing sporadically (Pfaffenroth and Linehan, 2008). 

Although recognized risk factors for RCC development (smoking, obesity and 

hypertension) are rather common in general population, only a small group of exposed people 

will eventually develop RCC. This suggests that the development of RCC can be partially 

explained by genetic variations among the populations (Yang et al., 2013). Namely, it is well 

established that health maintenance, as well as disease development is highly influenced by 

gene-environment interaction (Figure 5). In particular, the exposure to the same environmental 

factors does not warrant the same effect on different individuals, due to the presence of a 

number of genetic variations, significantly contributing to inter-individual differences in 

susceptibility to disease development (Hollman et al., 2016; Yadav et al., 2014).  
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1.2 GUTATHIONE S- TRANSFERASES (GSTs) 

A growing number of genes encoding enzymes involved in biotransformation and 

cellular defense (such as cytochrome P450, UDP-glucuronosyltransferase, sulfotransferase, 

etc.) has been identified, leading to increased knowledge of the allelic variants in genes that 

may result in a differential susceptibility to environmental and oxidative stress (Board and 

Menon, 2013; Hollman et al., 2016). In humans, cellular detoxification system is divided into 

three phases: Phase I (comprising reactions of oxidation, reduction and hydrolysis), Phase II 

(conjugation) and Phase III (exeretrion). Glutathione transferases (EC 2.5.1.18), also referred 

to as glutathione S-transferases or GSTs, are multifunctional enzymes involved in number of 

catalytic and non-catalytic processes, however, traditionally recognized as principal Phase II 

enzymes. Namely, GSTs are known for their ability to catalyze the nucleophilic addition of the 

glutathione (GSH) to a wide variety of nonpolar compounds of exogenous and endogenous 

origin, with electrophilic functional groups, rendering the products more water-soluble and 

Figure 5. Genetic variants and environmental factors determine the risk of a disease; 
Adopted from Di Pietro et al, 2010. 
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facilitating their elimination from the cell by Phase III enzymes (Figure 6) (Di Pietro et al., 

2010; Hayes et al., 2005; Tew and Townsend, 2012; Wu and Dong, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three major families of GST proteins: (1) cytosolic GSTs - constituting the 

largest family, (2) mitochondrial and (3) microsomal, also known as Membrane Associated 

Protein in Eicosanoid and Glutathione metabolism, (MAPEG) (Hayes et al., 2005). Cytosolic 

GST enzymes are further categorized in 7 classes, designated by the names of the Greek letters 

and abbreviated in Roman capitals: alpha, A (five members), mu, M (five members), pi, P (one 

member), theta, T (two members), zeta, Z (one member), omega, O (two members), and 

sigma, S (one member) subfamilies (Figure 7), based on their amino acid sequence identity 

(Mannervik et al., 2005). Namely, members of the same class possess more than 40% amino 

acid sequence identity (sometimes more than 90%) and less than 25% sequence identity 

between classes (Hayes et al., 2005). 

 

 

 

Figure 6. Conjugation of xenobiotic to GSH-conjugates, catalyzed by GSTs; Adopted from 
Di Pietro et al., 2010  
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1.2.1 Structure and substrate specificity 

Soluble GSTs function as approximately 50 kDA dimers, constituted as homodimers 

or heterodimers being formed from subunits within a given GST isoenzyme class (Hayes and 

Pulford, 1995) Although it is still unclear whether the dimeric structure is relevant for all 

biologicals function of the GSTs, evidence suggests that the dimeric structure increases the 

stability and provides a proper structure of the active site, at least for the efficient catalysis 

(Abdalla et al., 2002; Armstrong, 2010). On the other hand, there are in vivo evidence of 

monomer-dimer equilibrium of GSTs that are involved in protein:protein interactions, having 

the capacity to dissociate into monomers in order to form heterodimers with other monomeric 

proteins, such as mitogen activated protein kinases (Adler et al., 1999; Cho et al., 2001).  

A single GST unit consists of an N-terminal α/β-domain (or G-domain) and an all-α-

helical domain (or H-domain) (Wu and Dong, 2012). The G-domain is conserved throughout all 

classes as it represents the binding site for tripeptide cofactor - glutathione (GSH, γ-glutamyl-

cysteinyl-glycine). Cytosolic GSTs seem to be subdivided on the basis of different mode of 

GSH activation (Atkinson and Babbitt, 2009). Namely, the sulfur atom of GSH is located at 

the N-terminal end and is invariably hydrogen bonded to a catalytic residue in the protein. This 

hydrogen bond interaction plays a crucial role in GST catalysis by stabilizing the activated 

Figure 7. Classification of human glutathione transferases (GSTs) based on amino acid 
sequence identity. Adopted from Wu and Dong, 2012. 
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GSH (thiolate anion, GS–). Moreover, different subgroups of GST contain various catalytic 

residues interacting and subsequently activating the GSH: (1) tyrosine in the alpha-, mu-, pi-, and 

sigma class of GSTs, (2) serine in the theta- and zeta-class of GSTs, and (3) cysteine in the 

omega-class of GSTs (Armstrong, 2010).  

 

The H-domain is not conserved by nature and varies greatly in shape, size and chemical 

character (hydrophobicity) across classes, enabling numerous electrophilic compounds to bind 

to it in a non-specific binding mode (Oakley, 2011). For instance, GSTA1-1 is known for its 

‘promiscuous substrate selectivity’, being able to catalyze various, structurally unrelated 

compounds such as steroids, benzo(a)pyrene diol epoxides, as well as products of lipid 

degradation (Wu and Dong, 2012). Contrary to alpha GSTs, mu-class members have larger 

active site and are able to bind many bulkier electrophilic agents such as aflatoxin B1-epoxides 

and benzpyrene diols (Wu and Dong, 2012). Among their substrates, GSTs conjugate even the 

signaling molecules such as 15-deoxy-Δ12,14-prostaglandin J2 and 4-hydroxynonenal and 

therefore might modulate a number of signaling pathways (Hayes et al., 2005). The list of some 

of the recognized GST substrates is presented in Table 2, available in numerous studies on 

xenobiotics substrate specificity of GSTs (Armstrong, 2010; Hayes et al., 2005). It is 

noteworthy to mention that humans express a large number of different GSTs with 

overlapping substrate specificities, resulting in difficulty to identify isoenzymes solely on their 

catalytic properties (Habig et al., 1974; Hayes et al., 2005). 

 

For example, polyaromatic hydrocarbons (PAH) represent an important class of 

environmental pollutants and are shown to be substrates for multiple classes of GST (Table 

2.). As indicated in Table 2, the diol epoxides of PAHs are catalyzed predominantly by GSTs, 

with the Mu class showing the highest activity towards most PAH epoxides, especially (+)-anti-

BPDE (Hayes and Strange, 2000; Sundberg et al., 2002, 1998), followed by GSTP1-1 and 

GSTA1-1 (Figure 8) (Sundberg et al., 2002). 
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Table 2. Recognized substrates of cytosolic GST; Adopted from Armstrong, 2010; Hayes et al., 
2005  

Abbreviations: 5-ADD,  5-androstene-3,17-dione; BCDE, benzo[g]chrysene diol epoxide; BCNU, 1,3-bis(2-
chloroethyl)-1-nitrosourea; BPDE, benzo(a)pyrene diol epoxide; BPhDE, benzo[c]phenanthrene diol epoxide; 
CDE, chrysene-1,2-diol 3,4-epoxide; COMC-6, crotonyloxymethyl-2-cyclohexenone; DBADE, 
dibenz[a,h]anthracene diol epoxide; DBPDE, dibenzo[a,l]pyrene diol epoxide; EA, ethacrynic acid; EPNP, 1,2-
epoxy-3-(p-nitrophenoxy)propane; N-a-PhIP, N-acetoxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GST enzyme GST preferred substrate  

GSTA1 
‘5-ADD, BCDE, BPDE, Busulfan, Chlorambucil, DBADE, DBPDE, 
BPhDE, N-a-PhIP 

GSTM1 
trans-4-phenyl-3-buten-2-one, BPDE, CDE, DBADE, trans-stilbene oxide, 
styrene-7,8-oxide 

GSTT1 BCNU, butadiene epoxide, CH2Cl2, EPNP, ethylene oxide 

GSTP1 
acrolein, base propenals, BPDE, CDE, Chlorambucil, COMC-6, EA, 
Thiotepa 

Figure 8. The metabolism of B(a)P; Adopted from Lodovicici et al., 2004; Abbreviations: 
B(a)P: benzo(a)pyrene; mEH: microsomal epoxide hydrolase 
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1.2.2  Functions of GSTs 

GSTs comprise a set of cellular proteins (GSTome) with various catalytic and non-

catalytic functions (Grek et al., 2013; Wu and Dong, 2012).  

 

1.2.2.1 Metabolism of xenobiotics by GSTs 

Namely, GST have been described as one of the most important enzymes involved in 

cell detoxification processes as they are crucial for their role in metabolizing both exogenous 

(chemical carcinogens, environmental pollutants and even antitumor agents) and endogenous 

electrophilic compounds (Hayes et al., 2005). Strong electrophiles arise from both xenobiotic 

and endobiotic compounds, being a result of mixed-function oxidation activity of cytochrome 

P-450 in Phase I reactions (Dourado et al., 2008). 

The primary metabolic role of GST is to detoxify such reactive electrophiles, by 

catalyzing reaction of conjugation with GSH (Figure 7). The reaction catalyzed by GST 

consists of the nucleophilic addition of the sulfur thiolate of GSH to a wide range of 

compounds, containing electrophilic atoms of carbon, sulfur, nitrogen and phosphorous 

(Dourado et al., 2008). Namely, upon GSH activation, the nucleophilic sulfur atom attacks the 

electrophilic toxic compound present in the H-site, usually producing a less toxic compound, a 

glutathione S-conjugate (GSH conjugate). The formation, processing and transport of GSH 

conjugates takes place in a number of organs (liver, biliary tract, gastrointestinal tract, and 

kidney) and involves considerable inter- and intra-organ cooperativity (Commandeur et al., 

1995; Hinchman and Ballatori, 1994). Namely, upon formation, GSH conjugates are 

recognized and exported from the cell by ATP-dependent transmembrane pumps, such as P-

glycoproteins and multidrug resistance-related proteins (MRP1, MRP2) (Haimeur et al., 2004; 

Paumi et al., 2001) and consequently subjected to metabolism of mercapturic acid via 

formation of the S-cysteine conjugates (Figure 9). The kidney is shown to play a very 

important role in the metabolism of both GSH conjugates and S-cysteine conjugates to their 

corresponding mercapturic acids (Commandeur et al., 1995), followed by the excretion in the 

urine (Egner et al., 2008) or bile (Teichert et al., 2009) in Phase III. Of note, GST effectiveness 

depends on the combined actions of glutamate cysteine ligase and GSH synthase to supply 

GSH and, on the other hand, the actions of transporters to remove GSH conjugates from the 

cell (Di Pietro et al., 2010). 
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However, not all reactions catalyzed by GST enzymes result in detoxification of a 

foreign compound, rendering it less reactive and more soluble. Namely, in certain instances 

some GSTs are involved in reactions of xenobiotic bio-activation, resulting in a GSH 

conjugate that is even more reactive than the parent compound. A growing number of 

evidence supports the aforementioned phenomenon, where mutagens, carcinogens and even 

some prodrugs are metabolically activated by conjugation with GSH  (Guengerich, 2005; 

Kurtovic et al., 2008). Mono- and dihaloalkanes (Guengerich et al., 2003; Wheeler et al., 2001) 

as well as polyhalogenated alkenes (Armstrong, 2010) are some of the examples of compounds 

in which GSH conjugates still contain a potent electrophilic center and are capable of 

modifying important cell macromolecules, such as DNA (Hayes et al., 2005). There is evidence 

that this is particularly true for the kidney. Namely, in the compelling example of GSH 

addition to methylenechloride, catalyzed by the theta class of GST enzymes, highly electrophilic 

compound is yield and rapidly hydrolyzed to even more toxic formalaldehyde (Ahmed and 

Figure 9. The metabolism of xenobiotics and the formation of GSH conjugates and their 
subsequent metabolism towards mercapturic acid; Adopted from Simic et al., 2009, available at 
http://www.nature.com/nrurol/journal/v6/n5/fig_tab/nrurol.2009.49_F2.html; 
Abbreviations: Cys- Cysteine, Glu- glutamate, Gly- glycine 

http://www.nature.com/nrurol/journal/v6/n5/fig_tab/nrurol.2009.49_F2.html
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Anders, 1976; Meyer et al., 1991) that might contribute to the process of the target-organ 

toxicity and possible renal tumorigenicity (Anders and Dekant, 1998). 

 

1.2.2.2 Metabolism of endogenous compounds by GSTs 

Being a multifunctional group of enzymes, GSTs are involved in intracellular binding 

and transport of hydrophobic compounds (Hayes and Pulford, 1995), catalysis of key steps in 

the synthesis of leukotrienes, prostaglandins (Inoue et al., 2003) and steroid hormones (Tars et 

al., 2010), as well as the degradation of tyrosine (Hayes et al., 2005). 

Moreover, GSTs are involved in the inactivation and reduction of endogenous reactive 

by-products generated during oxidative stress. Namely, an increase in the intracellular levels of 

reactive oxygen/nitrogen species (ROS/RNOS), including oxygen and nitrogen-free radicals, 

leads to membrane dysfunction, DNA damage and inactivation of proteins. It is presumed that 

chronic oxidative stress has numerous pathological consequences, including the development 

of complex diseases, such as cancer. ROS/RNOS are shown to damage cellular constituents, 

not only in a direct way, but also indirectly through the production of reactive secondary 

metabolites. Polyunsaturated fatty acids in cell membranes are particularly sensitive to the 

process of lipid peroxidation, resulting in the production of short-living lipid hydroperoxides 

that tend to break down to yield more reactive secondary electrophiles, some of which are 

genotoxic (Marnett et al., 2003). Phospholipid, fatty acid and cholesterol hydroperoxides are 

substrates for several GSTs, especially for the members of class alpha class enzymes (Seeley et 

al., 2006). Among the substrates for GSTA4-4 are products of lipid peroxide oxidation, 

acrolein and 4-hydorxynonenal (4-HNE) (Hubatsch et al., 1998). Furthermore, the oxidation 

of nucleotides yields base propenals and hydroperoxides that are detoxified by GSTs.  

Overall, it seems that some GST isoenzymes exhibit selenium independent glutathione 

peroxidase activity and along with other antioxidant enzymes provide a certain shield against a 

range of harmful electrophiles, produced during redox imbalance (Hayes and McLellan, 1999).  

Another interesting implication of GSTs in the protection against oxidative damage and the 

control of redox signaling pathway function is their capability of S-glutathionylation. Namely, 

S-glutathionylation is a posttranslational protein modification, characterized by the conjugation 

of GSH to low PKa cysteine sulfydryl or sulfonic-acid moieties in target proteins, in response 

to endogenous oxidative or nitrosative stress-mediated signaling events or from exposure to 
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external environmental drug treatment (Tew et al., 2011). Moreover, there is a growing body 

evidence delineating the importance of S-glutathionylation in the regulation of protein 

structure and function (Tew et al., 2011). 

 

1.2.2.3 The role of GSTs in the regulation of cell signaling 

 In addition to their role in the biotransformation reactions, there is some evidence 

which clearly indicates the involvement of GST in the cellular survival, proliferation and 

apoptosis as well, by the means of protein:protein interactions with the signaling molecules. 

(Board and Menon, 2013; Laborde, 2010; McIlwain et al., 2006; Tew and Townsend, 2012). 

Namely, GSTs are shown to negatively regulate protein kinases such c-Jun NH2-terminal 

kinase (JNK1) and apoptosis signal-regulating kinase 1 (ASK1).  

 The first example of GST-mediated kinase regulation was the discovery of the 

GSTP1:JNK1 complexes (Adler et al., 1999). Namely, it seems that under physiological 

conditions, a portion of GSTP1 is bound to kinase JNK1, regulating the level of JNK1 activity. 

However, in case of increased ROS content, the GSTP1:JNK1 complex dissociates which in 

turn leads to the association of GSTP1 into oligomers (Figure 10, A). Now activated, JNK1 

induces a chain of events, starting from the phosphorylation of its substrate, the transcription 

factor c-Jun, and resulting in apoptosis (Adler et al., 1999; Board and Menon, 2013). A similar 

pattern was observed in the case of GSTP1 interaction with Factor 2 bound to the TNFα 

receptor (TRAF2). On one hand, the dissociation of this particular complex results in the 

oligomerization of the GSTP1 and on the other, in differentiation/proliferation or apoptosis, 

depending on the severity of oxidative stress. It is noteworthy to mention that the catalytic 

activity of GSTP1 is not affected by the involvement in protein:protein interactions, suggesting 

that the active site of GSTP1 is not engaged in this process (Tew and Townsend, 2012). 

 Another example of protein:protein interaction, similar to the one of GSTP1, is a 

complex between mitogen activated kinase (MAPK) ASK1 and GSTM1-1, found to be 

important for the maintenance of the normal level of p38 phosphorylation (Figure 10, B) (Cho 

et al., 2001). Namely, ASK1 is MAPK kinase kinase (MAPK3) that activates JNK1 and p38 

pathways, leading to cytokine and stressed-induced apoptosis (Ichijo et al., 1997). 

Environmental stress causes the disruption of the complex of GSTM1:ASK1, which 

accumulates GSTM1 into oligomers, while ASK1 is being activated (Dorion et al., 2002). This 
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dissociation results in a subsequent activation of JNK1 and p38-dependent signal pathways, 

ultimately leading to stress-induced apoptosis. Similarly to GSTP1, this role of GSTM1 seems 

to be independent of the GST enzyme activity (Cho et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, even GSTA1 possesses the capacity of forming protein:protein complexes with 

JNK1. Namely, the homology between GSTA and GSTP family members may explain why 

GSTA1 by a similar mechanism can also suppress JNK1 signaling, caused by inflammatory 

cytokines or oxidative stress. It seems that enhanced GSTA1-1 expression significantly 

decreases the number of cells subjected to the apoptosis due to inhibition of JNK1-dependent 

phosphorylation of c-jun and the activation of Caspase-3 (Romero et al., 2006).  

 

1.2.3 Genetic variations in human GSTs 

 GSTs are members of a multi-gene family. The most studied GSTs are encoded by 

clusters of paralogous genes on a given chromosome (Hollman et al., 2016). Apart from 

variations found between GST classes, a substantial genetic heterogeneity was found within 

Figure 10. Various interactions between GSTs and protein kinases, implicated in stress-
signaling pathway: (A) protein:protein interaction of GSTP1:JNK1, (B) protein:protein 
interaction of GSTM1:ASK1; Adopted from Board and Menon, 2013; Abbreviations: ROS- 
reactive oxygen species; JNK1: c-Jun NH2-terminal kinase; ASK1- apoptosis signal-
regulating kinase 1; TRAF2- factor 2 bound to the TNFα receptor;  
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classes, because of gene duplications, deletions and single nucleotide polymorphisms in both 

coding and non-coding gene regions. Many of the variations found within genes encoding for 

human cytosolic GSTs make a direct impact on the protein structure, function and expression, 

reshaping their substrate specificity and diversity as well (Board and Menon, 2013). Some of 

the most frequently studied GST polymorphisms are present in Table 3. 

 

Table 3. Polymorphism in human cytosolic GST; Adapted from Hayes et al., 2005  

Class Allele 
Nucleotides in gene at 

variable position 
Protein affected 

Alpha GSTA1*A −631T, −567T, −69C, −52G “Reference” protein levels 
 GSTA1*B −631G, −567G, −69T, −52A Low protein levels 

Mu GSTM1*A 519G Lys173 

 GSTM1*B 519C Asn173 

 GSTM1*0 Gene deletion No protein 

 GSTM1*1x2 Gene duplication 
Overexpression of GSTM1 

protein 

Theta GSTT1*A 310A Thr104 
 GSTT1*B 310C Pro104 
 GSTT1*0 Gene deletion No protein 

Pi GSTP1*A 313A, 341C, 555C Ile105, Ala114, Ser185 
 GSTP1*B 313G, 341C, 555T Val105, Ala114, Ser185105 
 GSTP1*C 313G, 341T, 555T Val105, Val114, Ser185 
 GSTP1*D 313A, 341T Ile105, Val114 

Abbreviations: Lys- lysine; Asn- asparagine; Thr- threonine; Pro- proline; Ile- isoleucine; Ala- alanine; Ser- serine; 
Val- valine; 

 

Vast majority of polymorphisms identified within genes encoding for cytosolic GSTs 

comprise single nucleotide substitution or variation (SNP). Generally, SNPs are divided into 

synonymous and non-synonymous. Synonymous polymorphisms (sSNP) occur due to the 

nucleotide change resulting in the amino acid substitution, however, without affecting protein 

function. On the other hand, missense, nonsense and frameshift changes represent non-

synonymous mutations (nsSNP) that generate a significant change in terms of structure and 

consequently function of translated protein. Several lines of evidence indicate that out of 237 

coding nsSNP found in GSTs genes (Table 4) (Yadav et al., 2014), certain nsSNPs seem to 

exert deleterious effects, leading to carcinogenesis and the development of other non-

malignant diseases (Hayes and Strange, 2000; McIlwain et al., 2006). Moreover, due to the 

functional significance of GST polymorphisms, Hollman et al. have recently suggested a 



GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in RCC 

23 

 

classification of diseases that are highly related to SNPs found in GSTs. The five proposed 

categories are: (1) cancers (2) inflammatory or immune-mediated disorders (3) neurological 

disorders (4) aging-related or metabolic disorders and (5) reproductive disorders. 

Environmental toxins are the most important affecting factors for all five categories of diseases 

and are the causing factors for all cancers, inflammatory or immune-mediated disorders, as well 

as reproductive disorders (Hollman et al., 2016). 

 

Table 4. Genes encoding for major cytosolic GSTs and their SNP distribution; Adapted from 
Yadav et al., 2014  

Gene 
Family 

Genome 
Location 

Total 
SNP 

nsSNP sSNP 3′UTR 5′UTR iSNP 

GSTM Chr1 1072 92 53 55 8 864 

GSTA Chr6 1702 98 43 34 21 1506 

GSTP Chr11 180 17 6 3 6 148 

GSTT Chr22 239 30 11 3 5 192 

Total 
 

3193 237 113 95 40 2710 

Abbreviations: nsSNP:-non-synonymous SNP; sSNP- synonymous SNP; 3′UTR- 3′ untranslated region; 5′UTR- 5′ 
untranslated region; iSNP -intronic SNP. 

 

 Deletional polymorphisms of genes encoding for human cytosolic GSTM1 and GSTT1 

are rather common in human population. They result in a null genotype, characterized by a 

general lack in enzymatic activity. In last two decades, the impact of GSTM1 and GSTT1 

deficiency was the subject of a vast number of molecular epidemiological studies that tried to 

elucidate if the association between some diseases known to be caused by environmental 

agents and GST gene polymorphisms does exist.  

 

1.2.3.1 Glutathione S-transferase M1 

GSTM1 protein is composed of 218 amino acids, organized as either homo or 

heterodimers with calculated molecular mass of 25.712 Da for each subunit. Isoelectric point 

for this protein is around: at pH 6.6 (Mannervik, 1985).  
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 In humans, GSTM1 gene is located on chromosome 1p13.3  within 100-kb gene 

cluster (5’-GSTM4-GSTM2-GSTM1-GSTM5-GSTM3-3’) (Pearson et al., 1993). Moreover, 

within GST mu cluster, two-tandem GSTM1 genes, situated between the GSTM2 and GSTM5 

genes, were discovered (McLellan et al., 1997). Precisely, the GSTM1 gene is composed of 8 

exons, spanning a region of 21,244 bases. It comprises four different alleles, resulting in several 

M1 class polymorphisms, marked as GSTM1*0, GSTM1*A, GSTM1*B and GSTM1*1x2 

(Table 3) (Board, 1981; Wu et al., 2012). 

 GSTM1*0 (GSTM1-null) allele is the result of a 20-kb segment deletion (Xu et al., 

1998), hence homozygotes for GSTM1-null allele produce no GSTM1 protein. This deletion 

results in a novel 7.4-kb HindIII fragment with the loss of 10.3- and 11.4-kb HindIII 

fragments. The end-points of the polymorphic GSTM1 deletion are: the left repeated region 5 

kb downstream from the 3’-end of the GSTM2 gene and 5 kb upstream from the beginning of 

the GSTM1 gene; the right repeated region 5 kb downstream from the 3’-end of the GSTM1 

and 10 kb upstream from the 5’-end of the GSTM5 gene (Pejovic-Milovancevic et al., 2016; Xu 

et al., 1998) (Figure 11). The prevalence of GSTM1 deletion polymorphisms seems to vary 

across ethnic groups, from 18% to 66% (median, 50%) in Caucasians and 38%-58% in Asians 

(Wu et al., 2012). 

 GSTM1*A and GSTM1*B differ by a single base in exon 7 (Seidegård and Pero, 1988). 

GSTM1*A and GSTM1*B arise from a C/G substitution at base position 534, resulting in an 

interchange of Lys/Asn at amino acid 173 (Widersten et al., 1991), which does not appear to 

affect enzyme function (Table 3). However, the substitution causes the formation of 

homodimers (GSTM1A*1A, GSTM1B*1B) or heterodimers (GSTM1A*1B).  

Figure 11. The location of GSTM1 gene on chromosome 1; Adopted from Pejovic-Milovancevic 
et al., 2010 
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 Finally, in Saudi Arabian population, a unique GSTM1 variant GSTM1*1x2, containing 

a duplicated GSTM1 gene has been identified (Evans et al., 1996) presumably leading to ultra-

rapid enzyme activity of GSTM1 protein (McLellan et al., 1997). 

Among all GSTM1 polymorphisms, the highest attention was given to GSTM1 

deltional polymorphism. The GSTM1 deficiency appears to be associated with a modest but 

significant risk of several types of cancers, such as lung (Ye et al., 2006), colon 

(Economopoulos and Sergentanis, 2010) and bladder (Matic et al., 2013), as well as various 

response rates to some chemotherapeutics (Ambrosone et al., 2001). The underlying 

mechanism conferring an increased risk of cancer in GSTM1-null carriers would be that such 

individuals are more susceptible to chemical-induced carcinogenesis due to the diminished 

activity of xenobiotic-metabolizing defense system (Di Pietro et al., 2010). Moreover, 

monomeric form of GSTM1 is shown to negatively regulate kinase-dependent proliferation 

pathways by forming protein:protein complexes with MAPK kinase kinase ASK1 (Cho et al., 

2001; Dorion et al., 2002). Slower tumor progression, as well as impaired clinical response to 

therapy in a variety of tumor types has been associated with altered GSTM1 expression. 

Namely, it has been speculated that carriers of GSTM1-null genotype exhibit better survival, 

possibly due to the decreased level of apoptotic activity in tumor tissue (De Martino et al., 

2010; McIlwain et al., 2006). 

 

1.2.3.2 Glutathione S-transferase T1 

The gene for GSTT1 is situated at chromosome 22 (22q11.23), and composed of 5 

exons, spanning a region of 8,179 bases (Figure 12). In the case of GSTT1, gene homozygous 

deletion, termed “GSTT1-null” genotype is present in ∼20% of Caucasians, leading to the lack 

of GSTT1 enzyme activity (Wiencke et al., 1995). Namely, a 54251bp fragment comprising the 

gene for GSTT1, is found to be deleted from chromosome 22, most likely by a homologous 

recombination event between two highly homologous sequence stretches that flank GSTT1 

(Pejovic-Milovancevic et al., 2016; Sprenger et al., 2000).  

 Another GSTT1 polymorphism was found in exon 3 of GSTT1 gene, resulting in two 

different variants: GSTT1*A and GSTT1*B. The substitution of threonine at residue 104 to a 

proline causes a decrease in catalytic activity due to the conformational change located in the 

middle of alpha-helix 4 (Alexandrie et al., 2002).  
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GSTT1-1 has been highly conserved during evolution and played a major role in 

phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, 

hydrocarbons and halogenated hydrocarbons. However, it seems that when it comes to gene-

environment interactions, GSTT1 deficiency may be either deleterious or beneficial depending 

upon circumstances. Apparently, GSTT1 may play a role as a risk modifier only in the case of 

subjects exposed to relevant substrates (Buzio et al., 2003). Namely, as mentioned earlier, 

members of the GST theta class are involved in GSH conjugation of certain halo- and 

dihaloalkanes, producing even more toxic reactive intermediates (Guengerich et al., 2003). On 

the other hand, GSTT1 is capable of detoxifying compounds such as methyl bromide (Pemble 

et al., 1994), ethylene dibromide (Ploemen et al., 1995) and ethylene oxide (Yong et al., 2001).  

  

1.2.3.3 Glutathione S-transferase A1 

Gene cluster for members of GST alpha is localized on chromosome 6p12.1-6p12.2, 

covering more than 400 kb of genes GSTA1-GSTA5  (Morel et al., 2002) (Figure 13). GSTA1 

is dominantly expressed in the liver. However, GST alpha expression seems to be modified by 

genetic polymorphism. GSTA1 polymorphism is represented by three apparently linked single 

nucleotide polymorphisms in an SP1-responsive element within the proximal promoter (G-

52A, C-69T and T-567G), plus at least four SNPs further upstream and a silent SNP A-375G 

(Figure 13).  

 

Figure 12. The location of GSTT1 gene on chromosome 22; adopted from Pejovic-
Milovancevic et al., 2016  
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Two variants, GSTA1*A (-567T, -69C,-52G) and GSTA1*B (-67G, -69T, -52A), have 

been named according to the linked functional SNPs. The frequency of the GSTA1*A 

haplotype ranges between 0.6 and 0.85 in African, Asian and European populations. It seems 

that aforementioned substitutions result in differential expression with lower transcriptional 

activation of variant GSTA1*B than common GSTA1*A allele (Coles and Kadlubar, 2005). 

Namely, it has been shown that the mean expression of GSTA1 in liver samples of GSTA1*A 

homozygotes was approximately 4-fold higher than that of GSTA1*B homozygotes (Coles et 

al., 2001). On the other hand, no difference in expression was found in pancreatic tissue, 

suggesting that the effect of this polymorphism might be tissue specific (Coles and Kadlubar, 

2003). Moreover, Chuang et al. have clearly demonstrated that GSTA1 is a biomarker for clear 

cell RCCs by means of several molecular techniques, whereas the same marker was absent in 

other renal tumors (Chuang et al., 2005). 

 GSTA1, along with GSTA2, catalyzes the glutathione conjugation of a wide range of 

electrophiles, possess glutathione dependent steroid isomerase activity and GSH‐dependent 

selenium independent peroxidase activity (Coles and Kadlubar, 2005). It has been suggested 

that this genetic variation of GSTA1 can change an individual's susceptibility to carcinogens 

and toxins, as well as affect the efficacy of some drugs (Coles and Kadlubar, 2003). However, 

the results of these studies have been rather conflicting. 

 

1.2.3.4 Glutathione S-transferase P1 

GSTP1 gene is located on the chromosome 11q13 (Figure 14). Two common 

functional variants have been found within these gene, resulting in a interchange in amino 

acids 105 (Isoleucine, Ile to Valine,Val) and 114 (Alanine, Ala to Valine) (Ali-Osman et al., 

Figure 13. The location of GSTA1 gene on chromosome 6; adopted from Savic-Radojevic 
and Radic, 2014 
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1997). Four haplotypes have been identified: GSTP1*A (*Ile105+*Ala114), GSTP1*B 

(*Val105+*Ala114), GSTP1*C (*Val105+*Val114) and GSTP1*D (*Ile105+*Val 114) (Watson 

et al., 1998). The allele frequencies for GSTP1*A, *B, and *C in Caucasian populations are 

found to be 0.685, 0.262, and 0.0687, respectively (Garte et al., 2001). 

 

 

 

 

 

 

 

 

 

 

Far more studied substitution is the *Ile105Val, occurring due to the nucleotide 

substitution A1404G at exon 5, base pair 313, contributing to the architecture of the 

hydrophobic substrate binding H-site and different substrate specificity (Reinemer et al., 1992). 

For instance, GSTP1 variants exhibit significantly different rates of conjugating activity 

towards (+)-anti-BPDE, with higher turnover for isoform GSTP1*Val105 than for isoform 

GSTP1*Ile105, due to the more favorable substrate-binding setting in the H-site (Hu et al., 

1997). This finding was further supported by the results of Sundberg et al., who additionally 

suggested that higher risk for tumor formation by PAH in homozygous carriers of 

GSTP1*Val105 is not caused by a lower catalytic efficacy of the corresponding enzyme, but 

proposed a display of other reasons (Sundberg et al., 1998). 

 Throughout the literature, GSTP1 genotype has been associated with differences in 

cancer susceptibility, chemotherapeutic response and overexpression in variety of tumors. 

However, several lines of evidence indicate that the underlying mechanism might not be solely 

based on the polymorphic expression of GSTP1. Namely, the fact that GSTP is shown to be a 

potent inhibitor of signaling molecules, such as JNK1, via formation of protein:protein 

interactions (Adler et al., 1999; Tew et al., 2011), seems to affect survival and/or apoptotic 

pathways, related to the observed drug resistance (Adler et al., 1999; McIlwain et al., 2006; 

Figure 14. The location of GSTP1 gene on chromosome 11; adopted from Simic, 2016 
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Townsend et al., 2005). It has been suggested that the upregulation of GSTP found in many 

drug-resistant tumors such as ovarian, lung, breast colon and hematological cancers (Laborde, 

2010), might cause negative regulation of JNK1 through aforementioned protein:protein 

interactions and subsequently suppress apoptotic pathways, conferring resistance to drug-

induced death (Board and Menon, 2013). 

 

1.3 GENETIC POLYMORPHISM OF GLUTATHIONE TRANSFERASES IN 

PATIENTS WITH RENAL CELL CARCINOMA 

 Mounting evidence suggests that members of the subfamily of cytosolic GSTs possess 

roles far beyond the classical GSH-dependent enzymatic conjugation of electrophilic 

metabolites and xenobiotics. Namely, a well-known homo- and hetero-dimeric forms of GSTs 

seem to exist in a redox-sensitive dynamic equilibrium with its monomeric forms, that are 

capable of forming protein:protein interactions with other cellular proteins (Tew et al., 2011). 

The latest interpretation of such protein:protein interactions emphasizes that multiple signaling 

and regulatory functions of GSTs coexist with the classical enzymatic and small molecule 

binding role of these proteins (Bartolini and Galli, 2016). Such vast capabilities of GSTs 

become very important when it comes to tumorigenesis and even therapy resistance. 

 The impact of GST functional human polymorphisms on cancer susceptibility as well 

as therapeutic outcomes has been extensively studied in the context of its Phase II 

detoxification properties. However, the role of these polymorphisms as mediators of protein: 

protein interactions in better understanding of the cancer progression is yet to be determined. 

In case of RCC, some studies suggest that cytosolic GSTs might be implicated not 

solely in the development, but also in the progression of RCC (Ahmad et al., 2012; De Martino 

et al., 2010; Salinas-Sánchez et al., 2012; Sweeney et al., 2000). GSTs are involved in the 

biotransformation of several compounds recognized as risk factors for RCC (Hayes and 

Strange, 2000). The main site for the initial glutathione conjugation of toxic compounds is 

generally assumed to be the liver, followed by a mandatory transfer of conjugates to the kidney 

(Simic et al., 2009). However, the initial bio-activation step of some nephrocarcinogens can 

take place in the kidney itself (Green et al., 1997). The potential genotoxicity of carcinogens 

depends on the biotransformation capacity of renal tissue. Prominent genetic heterogeneity, 

resulting from the gene deletions, as well as from SNPs in the coding and non-coding regions 
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of GST genes, might affect GST isoenzyme profiles in renal parenchyma and therefore serve as 

a valuable indicator for predicting the risk of cancer development (Di Pietro et al., 2010).  

 There is a growing body of evidence suggesting that during the tumor development, 

important changes appear in the cellular redox homeostasis as well. This can be particularly 

true for the kidney due to its high metabolic activity and oxygen demands (Simic et al., 2009). 

Moreover, it is believed that renal cell carcinoma also belongs to tumors in which significant 

changes occur in cellular redox balance. This can be partially explained by the fact that all three 

recognized risk factors for RCC development (obesity, hypertension and smoking) have been 

linked with increased endogenous formation of reactive oxidants. Thus, in RCC, marked 

oxidative alterations of lipids, proteins and DNA have been found (Pljesa-Ercegovac et al., 

2008). Although a broad range of DNA products are produced during oxidative damage to 

DNA (Valavanidis et al., 2009), 8-hydroxy-2′-deoxyguanosine (8-OHdG) is the most widely 

used fingerprint of radical attack towards DNA (Figure 15). Results obtained from several 

studies indicated the significant role of 8-OHdG as a potential biomarker in risk assessment 

and prognosis of various diseases associated with oxidative stress mechanisms, such as cancers, 

aging and degenerative diseases (Valavanidis et al., 2009). However, despite the fact that some 

GST isoenzymes might be involved in regulation of cellular redox homeostasis by their 

nonselenium-dependent GPX activity, their role in the DNA antioxidant protection and 

corresponding level of 8-OHdG has not been assesed in such context in RCC.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. The structure of 8-hydorxyguanine (8-OHdG) 
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Furthermore, DNA adducts associated with tobacco smoking have been suggested as a 

marker of biologically effective dose of tobacco carcinogens that might improve individual 

cancer risk prediction (Wiencke, 2002). As previously mentioned, cigarette smoke is a rich 

source of both free radicals, shown to induce DNA damage that accumulates in cells, but also 

more than 60 carcinogens, such as PAHs. Both free radicals and reactive PAH metabolites are 

detoxified by GSTs (Filiadis and Hrouda, 2000; Jung and Messing, 2000). So far, the 

relationship between GST genotype and BPDE-DNA adduct formation in determining the 

risk for RCC has not been evaluated in patients with RCC. 

 Although the associations between the certain GST genotypes and RCC risk has been 

debated in a certain number of published literature (Abid et al., 2016; Cheng et al., 2012; 

Huang et al., 2015; Jia et al., 2014; Liu et al., 2012; Yang et al., 2013), the data on the 

prognostic value of GST polymorphism in patients with RCC are scarce (De Martino et al., 

2010), probably due to the fact that the molecular mechanism supporting the role of GSTs in 

RCC progression has not been clarified as yet. Since GSTP1 was shown to be an endogenous 

inhibitor of JNK1, whereas GSTM1 negatively regulates ASK1, both might contribute to the 

lower tissue apoptotic activity. In the setting of the tumor tissue, the aforementioned 

interactions might correlate with high-graded tumors. So far, there are no data which would 

indicate the significance of this protein:protein interactions in human RCC in terms of tumor 

progression. What is more, it is still unclear whether the polymorphic expression of GSTs may 

influence the activity of apoptotic signal pathways in RCC progression. 
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2 THE OBJECTIVES 

Due to the potential functional significance of common polymorphisms in genes 

encoding for cytosolic glutathione transferase A1, M1, T1 and P1 in both onset and prognosis 

of RCC, the aim of our investigation was: 

1. To evaluate the role of GSTA1 (rs3957357), GSTM1, GSTP1 (rs1695) and GSTT1 gene 

polymorphisms in susceptibility to development of renal cell carcinoma, as well as, to 

investigate if there is a combined effect of genotype and the recognized renal cell carcinoma 

risk factors (smoking, obesity, hypertension)  

2. To evaluate whether the presence of GSTA1, GSTM1, GSTP1 and GSTT1 gene 

variants is associated with higher levels of byproducts of oxidative DNA damage (8-OHdG) 

and increased formation of BPDE-DNA adducts, as well as, clinical characteristics of the 

tumor (tumor stage, pT and grade, G) 

3. To evaluate whether polymorphic expression of GST protein might have a prognostic 

role in patients with renal cell carcinoma 

4. To evaluate the association between GSTM1 and GSTP1 expression and expression of 

regulatory (ASK1, JNK1/2) and executor (Caspase-3) apoptotic molecules in human ccRCC 

tissue samples, as well as, the presence of GSTM1:ASK1 and GSTP1:JNK1/2 protein:protein 

interactions  
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3 MATERIALS AND METHODS 

 

3.1 Design 

Case-control study 

3.2 Study population 

Incident RCC cases, treated and followed at the Clinic of Urology, Clinical Center of Serbia, 

Belgrade, between 2011 and 2014, were enrolled into this study. The case group comprised a 

total of 305 subjects (201 men, 104 women; average age 59.25±11.47 years) with histologically 

confirmed diagnosis of RCC according to the 2004 WHO classification of Tumors (Eble et al., 

2006), modified by ISUP Vancouver Classification (Srigley et al., 2013) and 2009 TNM 

classification system (Sobin et al., 2010). Inclusion criteria for the RCC patients were: 

 The presence of malignantly enhanced lesion confirmed by imaging 

(ultrasound/computed tomography/magnetic resonance imaging), 

  Confirmed histological diagnosis (RCC type, nuclear grade, sarcomatoid features, 

vascular invasion, tumor necrosis and invasion of the collecting system and peri-renal 

fat) 

 Patients with nephrectomy (partial or total) 

 Male or female, age ≥ 18 years old 

 Subject's willingness to provide written informed consent 

Cases were excluded if they had a previous positive history of cancer. 

 The control group initially comprised 454 individuals (233 men, 221 women, average 

age 60.40±12.31 years) who had undergone surgery for benign conditions, unrelated to both 

non-malignant and malignant urological condition at the same clinical center. The initial 

control group was further matched to RCC patients according to gender and age, and finally 

included 326 individuals (209 men, 117 women; average age 60.75±11.52 years) with no 

previous personal history of cancer. Inclusion criteria for the controls were: 

 The verified absence of malignantly enhanced lesions  

 Male or female, age ≥ 18 years old 

 Subject's willingness to provide written informed consent 

Controls were excluded if they had a previous personal history of cancer. 
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  Responce rate was 93% and the most common reason for no participation was personal. 

 The basic demographic data and recognized risk factors for RCC (smoking history, 

obesity and hypertension) were obtained from the study subjects using the structured 

questionnaire (Djukic et al., 2013) composed at the Institute of Epidemiology, Faculty of 

Medicine University in Belgrade, during the time of blood collection. In our study, obese 

patients were defined as individuals with BMI above 25kg/m2 and smokers as individuals who 

reported every day smoking during a minimum of 60-day period prior to their enrollment in 

the study. Further on, participants were asked about the number of cigarettes smoked per day 

and duration of smoking. All collected data referred to a time period prior to the diagnosis of 

RCC for the cases, and a corresponding period for the controls.  

 

3.3 Ethics 

 The study was approved by the Institutional Ethical board (October 13th, 2011, 

approval number 29/X-3, Faculty of Medicine, University of Belgrade, Serbia) and was 

performed in accordance with principles of Helsinki declaration from 2013. Informed written 

consent was obtained from all recruited subjects. 

 

3.4 Materials 

 

3.4.1 Blood and plasma samples 

 EDTA blood was collected from each patient treated at the Clinic of Urology, Clinical 

Center of Serbia, Belgrade. 400µl of the whole blood was taken for the purpose of the DNA 

isolation and the rest was centrifuged for 10 min at 3600 rpm/4°C for plasma separation. In 

order to prevent the auto-oxidation of the plasma sample, 10µl of butilated hydroxytoluen (10 

mmol/L) was added per ml of plasma. 

 EDTA blood samples were stored at -20°C whereas plasma samples were kept at -80 

°C at the Institute of Medical and Clinical biochemistry, Faculty of Medicine, University of 

Belgrade, Serbia. 
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3.4.2 Tissue samples 

 Tumor and respective non-tumor samples (n=20) were taken during partial or total 

nephrectomy from patient treated at the Clinic of Urology, Clinical Center of Serbia, Belgrade. 

All tissue samples had their RCC type, nuclear grade, sarcomatoid features, vascular invasion, 

tumor necrosis and invasion of the collecting system and peri-renal fat confirmed. The samples 

were stored in RNAlater RNA Stabilization reagent (Qiagen, Chatsworth, California, USA) at -20⁰C 

and kept at the Institute of Medical and Clinical biochemistry, Faculty of Medicine, University 

of Belgrade, Serbia. 

 

3.5 Methods 

3.5.1 DNA isolation  

 Total DNA was isolated from 200µl of the whole peripheral blood and up to 25mg of 

non-tumor kidney tissue samples, using QIAamp DNA Blood Mini Kit (Qiagen, Chatsworth CA, 

USA) according to the manufacture’s protocol. Namely, the QIAamp DNA purification 

procedure comprised 5 steps and was carried out using QIAamp Mini spin columns with a small 

chance of sample-to-sample cross-contamination. In the first step, optimized detergent buffers 

and enzyme Proteinase K (600 mAU/ml, 40 mAU/mg protein) were used to lyse samples and 

stabilize DNA. In the case of non-tumor kidney tissue samples, no mechanical 

homogenization was necessary, as the tissue samples were lysed enzymatically during 

prolonged incubation with Proteinase K. In the second step, DNA was adsorbed onto the 

QIAamp silica membrane during a brief centrifugation. The lysate buffering conditions are 

adjusted to allow optimal binding of the DNA to the QIAamp silica membrane. In the 

following two steps, the DNA bound to the QIAamp membrane was washed with Buffer AW1 

and Buffer AW2 in 2 centrifugation without affecting DNA binding. The washing steps can be 

repeated as the residual contaminants can inhibit genotyping and other downstream enzymatic 

reactions. Purified DNA was eluted from the QIAamp Mini spin column in a concentrated form 

in AE Buffer. Isolated DNA, free of protein, nucleases and other contaminants or inhibitors, 

was stored at -20⁰C for later use. DNA concentration and purity were determined 

spectrophotometrically at 230, 260, 280 i 320 nm using GeneQuantpro (Biochrom, Cambridge, 

England). 
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3.5.2 Genotyping 

 Genotyping was performed blinded to the case-control status and blinded quality 

control samples were inserted to validate genotyping identification procedures. Concordance 

for blinded samples was 100%. All assays performed contained positive and negative controls. 

All primers used are synthesized and bought from Metabion International AG (Planegg, Germany) 

(Table 5). 

 

Table 5. The PCR genotyping conditions  

 

 

3.5.2.1 Genotyping of GSTM1 and GSTT1 

The DNA sequences of GSTM1 and GSTT1 were analyzed by multiplex polymerase 

chain reaction (PCR) in Mastercycler gradient thermal cycler (Eppendorf, Hamburg, Germany) according 

to the method by Abdel-Rahman et al. (Abdel-Rahman et al., 1996) (Table 5).  

 The multiplex PCR technique used to detect homozygous deletions 

of GSTM1 and GSTT1 included primers for GSTM1, GSTT1 and CYP1A1 housekeeping 

Gene Primer sequences PCR protocol 
Gel electrophoresis 

results 

 
GSTA1 
C69T 

(rs3957357) 

 
F, 5′- GCATCAGCTTGCCCTTCA -3′, 

R, 5′- AAACGCTGTCACCGTCCTG -3′ 

 
Denature: 94˚C 

for 4mins 
Followed by 94˚C 

for 20s 
Annealing: 58˚C 

for 20s 
Extension: 72˚C 

for 40s 
#cycles: 33 

Final extension: 
72˚C for 5 mins 

 
Eam1104I incubation at 

37˚C overnight 
GSTA1*CC- 400bp 
GSTA1*CT- 400bp, 

308bp and 92bp 
GSTA1*TT- 308bp and 

92bp 

GSTM1 
F, 5′-GAACTCCCTGAAAAGCTAAAGC-3′, 
R, 5′-GTTGGGCTCAAATATACGGTGG-3′ 

Multiplex PCR: 
Denature: 94˚C 

for 4mins 
Followed by 94˚C 

for 30s 
Annealing: 59˚C 

for 30s 
Extension: 72˚C 

for 45s 
#cycles: 30 

Final extension: 
72˚C for 5mins 

GSTM1-active: 215bp 
band 

GSTM1-null: no band 

GSTT1 
F, 5′-TTCCTTACTGGTCCTCACATCTC-3′, 

R, 5′-TCACCGGATCATGGCCAGCA-3′ 

GSTT1-active: 481bp 
band 

GSTT1-null-: no band 

CYP1A1 
 

F, 5’-GAACTGCCACTT CAGCTGTCT-3’ 
R, 5’-CAGCTGCATTTG GAAGTGCTC-3’ 

312bp band 
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gene, used as an internal control for amplifiable DNA (Table 5). Isolated DNA (~50ng) was 

amplified in a total volume of 25 μl reaction mixture containing 7.5 pmol of each primer, 

12.5µl of MasterMix (0,05U/μL Taq DNK polymerase, 4 mmol MgCl2 i 0,4 mmol of dNTP) 

and water (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Amplified PCR products 

(GSTM1: 215 bp, GSTT1: 481 bp, CYP1A1: 312 bp) were electrophoresed (125V constant, 

0.27A, 50W) on 2% agarose gel, stained with SYBR® Safe DNA Gel Stain (Invitrogen Corporation, 

Carlsbad, CA, USA) and visualized on GL200 Camera (Gel Logic Imaging System, Kodak) or on 

Chemidoc (Biorad, Hercules, CA, USA) (Figure 16). 

 Since the assay does not distinguish heterozygous or homozygous wild-type genotypes 

and therefore detects the presence (at least one allele present, homozygote or heterozygote) or 

the absence (complete deletion of both alleles, homozygote) of the genotype, the active 

genotype were detected according to presence of the particular band (GSTM1-active: 215 bp, 

GSTT1-active: 481 bp) and the absence of these bands was indicative of the null genotypes.  

 

 
 
 
 
 
 
 
 
 
Figure 16. 2% agarose gel electrophoretogram: PCR products of the GSTM1 and GSTT1 
genes. Lanes 8 and 10 comprise PCR products of  patients with the GSTT1-active/GSTM1-active 
genotype (481 bp and 215 bp bands, respectively); lanes 1, 2, 3, 6 and 9 comprise PCR 
products of patients with the GSTT1-active/GSTM1-null genotype (481 bp bands); Lane 7 
comprises PCR products of patients with GSTT1-null/GSTM1-active genotype (215bp bands); 
Lines 4, 5 and 11 indicate patients with GSTT1-null/GSTM1-null genotype; 312bp band 
represents the CYP1A1 housekeeping gene, used as internal control for amplifiable DNA; M, 
DNA marker 
 

3.5.2.2 The genotyping of GSTA1*C69T (rs3957357) 

 The analysis of the SNP GSTA1*C69T (rs3957357) was performed using PCR-

restriction fragment length polymorphism (RFLP) according to the method by Ping et al  (Table 

5) (Ping et al., 2006). A 400 bp fragment was amplified in a total volume of 20μl reaction 

mixture containing 12.5pmol of each primer, 10µl of MasterMix and water (Thermo Fisher 
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Scientific, Waltham, Massachusetts, USA) and subjected to the PCR protocol indicated in the 

Table 5. For RFLP analysis, 5µl of PCR product was digested overnight at 37°C with 2U of 

restriction enzyme EarI and 1xTango Buffer (Thermo Fisher Scientific, Waltham, Massachusetts, USA) 

in total volume of 15µl. DNAse free water was used as the negative control. Digested products 

(GSTA1*CC: 400bp, GSTA1*CT: 400bp + 308 pb + 92bp and GSTA1*TT: 308bp+92 bp) 

were separated on 3% agarose gel (125V constant, 0.27A, 50W) and stained with SYBR® Safe 

DNA Gel Stain (Invitrogen Corporation, Carlsbad, CA, USA) and visualized on GL200 Camera (Gel 

Logic Imaging System, Kodak) or on Chemidoc (Biorad, Hercules, CA, USA) (Figure 17). 

 

 

 

 

 

 

 

 

Figure 17. 3% agarose gel electrophoretogram: PCR-RFLP restriction products of the GSTA1 
gene. Lanes 1 and 2 comprise PCR products of patients with the GSTA1*CC genotype (400 
bp bands); lanes 3, 5, 6 and 7 comprise PCR-RFLP restriction products of patients with the 
GSTA1*CT genotype (400bp, 308bp, 92bp bands); Lane 4 comprises RFLP-PCR restriction 
products of patients with GSTA1*TT genotype (308bp, 92bp bands); M, DNA marker; N, 
negative control without a DNA content. 
 

 

3.5.2.3 The genotyping of GSTP1*Ile105Val (rs1695) 

 For analyses of SNP polymorphism GSTP1*Ile105Val (transition substitution: A/G; 

context sequence [VIC/FAM]: CGTGGAGG ACCTCCGCTGCAA ATAC [A/G] 

TCTCCCTC ATCTACACCAACTATGT), a 5´ nuclease TaqMan® SNP Genotyping Assays 

(Life Technologies, Applied Biosystems, Carlsbad, CA, USA, assay ID: C__3237198_20 ) was used for 

amplifying and detecting respective SNP alleles in purified genomic DNA samples according 

to the manufactures’ instructions. 

Reaction mixture, containing MasterMix, water (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) and fluorescence probes were pipetted by EppMotion automated liquid 
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handling system (Eppendorf, Hamburg, Germany). PCR amplification and the plotted fluorescence 

signal endpoint reading was performed on Mastercycler ep realplex (Eppendorf, Hamburg, Germany). 

 

3.5.3 Determination of BPDE-DNA adducts and 8-OHdG levels by enzyme linked 

immunosorbent assays (ELISA) method 

 The level of benzo(a)pyrene diol epoxide DNA adducts (BPDE-DNA) was determined 

using the standard method OxiSelect BPDE-DNA Adduct ELISA Kit (Cell Biolabs, Inc., San Diego, 

California, USA) according to the manufactures’ instructions. Namely, isolated DNA samples 

were diluted to a concentration of 2 𝜇g/mL. BPDE-DNA standards and DNA samples were 

adsorbed onto a 96-well DNA high-binding plate. The BPDE-DNA adducts present in the 

sample or standard were probed with an anti-BPDE-I antibody, followed by the incubation with 

a horse radish peroxidase (HRP) conjugated secondary antibody. Sample/standard absorbance 

was read at 450/620nm wavelength on LKB 5060-006 Micro Plate Reader (Vienna, Austria). The 

BPDE-DNA adduct content in samples was determined by comparing with a standard curve 

that was prepared from predetermined BPDE-DNA standards (Figure 18). The results were 

expressed as ng/ml of BPDE-DNA adducts. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. BPDE-DNA ELISA Standard Curve. Equation: y = a + b*x; y- Abs450/620 (nm); 
a-slope; b-intercept; x- BPDE-DNA adduct level in ng/ml; Adj. R Square: 0.9892 
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 The quantitative measurement of 8-hydroxy-2′-deoxyguanosine (8-OHdG) was 

determined using the standard method OxiSelect Oxidative DNA Damage ELISA kit (Cell Biolabs, 

Inc., San Diego, California, USA), according to the manufacture’s protocol. Namely, 50µl of 

plasma samples or 8-OHdG standards were added to an 8-OHdG/BSA conjugate pre-

absorbed microplate. After a brief incubation, an anti-8-OHdG monoclonal antibody was 

added, followed by an horse radish peroxidase (HRP) conjugated secondary antibody. 

Sample/standard absorbance was read at 450/620nm wavelength on LKB 5060-006 Micro Plate 

Reader (Vienna, Austria). The 8-OHdG content in plasma samples was determined by 

comparison with predetermined 8-OHdG standard curve (Figure 19). The results were 

expressed as ng/ml of 8-OHdG. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. 8-OHdG ELISA Standard Curve. Equation: y = 0.7118 + (0.06325 - 0.7118) * 
x^1.5955 / (0.5166^1.5955 + x^1.5955), y- absorbance at 450/620, x-concentration of 8-
OHdG; Adj. R-Square: 0.9936 
 

3.5.4 Identification of GSTM1, GSTP1, ASK1, JNK1/2 and Cleaved Caspase-3 by the 

method of immunoblot 

 

3.5.4.1 Tissue sample preparation  

ccRCC tumor and respective non-tumor kidney tissue samples (n=20) were 

homogenized in ice cold tissue lysis buffer (50mM Tris, 200mM NaCl, 1mM dithiothreitol, pH 
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7,8) containing protease and phosphatase inhibitors (Sigma-Aldrich, St. Louis, Missouri, USA). 

After homogenization, samples were centrifuged at 3000rpm/4°C for 10 min. Obtained 

supernatants were separated and centrifuged at 36100rpm/4°C for 60 min.  

3.5.4.2 Pooling of non-tumor kidney tissue samples for Western blot analysis  

 In order to reduce biological variance, two separate pools of non-tumor kidney tissue 

samples were prepared according to the GSTM1 genotype: (1) GSTM1-active pool, containing 

non-tumor kidney tissue samples of RCC patients carrying the GSTM1-active genotype and (2) 

GSTM1-null pool containing non-tumor kidney tissue sample of ccRCC patients carrying 

GSTM1-null genotype. The pools were prepared by mixing the equal parts of 6 different 

samples. 

3.5.4.3 Protein quantification 

Protein quantification was performed in obtained cytosols and pools using Bicinchoninic 

Acid Protein Assay kit (BCA-1, Sigma-Aldrich, St. Louis, Missouri, USA) on a 96-well plate. The 

assay is based on the formation of a Cu+2-protein complex under alkaline conditions, followed 

by reduction of the Cu+2 to Cu+1. The amount of reduction is proportional to content of the 

protein present. Protein concentrations were calculated from a BSA protein standard curve 

(Figure 20) and expressed as µg/µl. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Standard curve of net absorbance versus protein sample concentration; Equation: y 
= a + b*x; y- net absorbance at 562nm; a-slope; b-intercept; x- protein sample concentration in 
µg/µl; Adj. R Square: 0.9879 
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3.5.4.4 Western blot analysis  

 Obtained ccRCC cytosols and pools of non-tumor kidney tissue samples were 

subjected to Sodium Dodecyl Sulfate-Polyacrilamide Gel Electrophoresis (SDS-PAGE) and 

immunoblot analysis for the identification of ASK1, JNK1/2, GSTM1, GSTP1 and Cleaved 

Caspase-3 according to the method of Laemmli et al. (Laemmli, 1970) and Towbin et al (Towbin 

et al., 1979).  

 Polyacrilamide gels were designed as percent solutions (Table 6) and made according to 

the given formulation from dH20, 30% acrylamide mix (Biorad, Hercules, CA, USA), Tris 

Buffer, 10% Sodium Dodecyl Sulfate (SDS, Merck Millipore, Darmstadt, Germany), 10% amonium 

per-sulphate (APS, Thermo Fisher Scientific, Waltham, Massachusetts, USA) and 

tetramethylethylenediamine (TEMED, Biorad, Hercules, CA, USA), depending on the 

investigated protein molecular weight. In order to reduce and denaturate the proteins, the one 

part of a loading buffer, containing 2 x Laemmeli buffer (Biorad, Hercules, CA, USA) and 

dithiothreitol (DTT, SERVA Electrophoresis GmbH, Heidelberg, Germany) in a final concentration 

of 50mM, was mixed with the one part of the sample. The mixture was boiled at 95⁰C for 5 

minutes. Finally, 50µg of total protein was loaded per SDS-PAGE gel. In order to determine 

the protein size and to monitor the progress of an electrophoresis run, the appropriate 

molecular weight marker was used (PageRuler™ Prestained Protein Ladder, 10 to 180 kDa, Thermo 

Fisher Scientific, Waltham, Massachusetts, USA)  

 Electrophoresis (200V constant, at 4°C) was performed using Biorad Mini-PORTEAN 

Tetra Cell (Biorad, Hercules, CA, USA) followed by transfer onto nitrocellulose membranes 

(100V constant, at 4°C) using Biorad Criterion™ blotter system (Biorad, Hercules, CA, USA). Protein 

transfer was confirmed by Ponceau S staining (Sigma-Aldrich, St. Louis, Missouri, USA). 

Membranes were blocked overnight with constant shaking at 4°C in 3% milk/1% BSA 

in Tris-buffered saline with 0.1% Tween20 (TTBS, Sigma-Aldrich, St. Louis, Missouri, USA). 

Primary antibodies against ASK1 ( Santa Cruz, Dallas, Texas, USA), JNK1/2 (Sigma-Aldrich, St. 

Louis, Missouri, USA), GSTM1 ( Santa Cruz, Dallas, Texas, USA), GSTP1 (Abcam, Cambridge, 

UK), Cleaved Caspase-3 (Cell Signaling, Danvers, Massachusetts, USA) and β-actin (Sigma-Aldrich, 

St. Louis, Missouri, USA) were diluted in 1% BSA in phosphate-buffered saline, added to the 

membranes and incubated for 3h at room temperature on orbital shaker. Afterwards, 



GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in RCC 

43 

 

membranes were washed and incubated with appropriate HRP conjugated secondary 

antibodies (1:2000, Sigma-Aldrich, St. Louis, Missouri, USA) for 1hr at room temperature. Finally, 

the membranes were treated with chemiluminescence detection substrate (Invitrogen Corporation, 

Carlsbad, CA, USA) for 1min and exposed to X-ray films (Amesham Hyperfilm ECL, GE 

Healthcare, Buckinghamshire, England).  

Densitometry analysis of the scanned X-ray was performed using open source image 

processing program Image J (National Institutes of Health, Bethesda, USA). 

 
Table 6. Electorphoresis and blot conditions according to the protein size and primary 
antibody type 

 

 

3.5.5 Immunoprecipitation and identification of GSTM1-1:ASK1 and GSTP1-1:JNK 

protein:protein interactions by the method of immunoblot 

 Immunoprecipitation experiments were performed using Catch and Release® v2.0 High 

Throughput (HT) Immunoprecipitation Assay Kit-96 well (Upstate Biotech Inc. for Merck Millipore, 

Darmstadt, Germany) according to the manufactures’ instructions. Namely, 96-well filter plate 

was pre-coated with 20% w/v slurry resign and Affinity Ligand. Cytosols containing 1µg/µl of 

total cell proteins were incubated either with 2µg of the primary antibody against GSTM1 

(rabbit, Santa Cruz, Dallas, Texas, USA) or GSTP1 (rabbit, Abcam, Cambridge, UK ), followed by 

Protein 

Size of 
the 

protein 
(kDa) 

Gel 
percentage 

(%) 

Type of primary 
antibody 

Dilution 
of the 

primary 
antibody 

(R) 

Type of the 
secondary 
antibody 

ASK1 165 8% 
monoclonal anti-

mouse 
1:500 

anti-mouse  
developed in goat 

JNK1/2 46/55 10% 
monoclonal anti-

rabbit 
1:1000 

anti-rabbit 
developed in goat 

GSTM1 26 12% 
polyclonal anti-

rabbit 
1:500 

anti-rabbit 
developed in goat 

GSTP1 23 12% 
polyclonal anti-

rabbit 
1:500 

anti-rabbit 
developed in goat 

Cleaved 
Caspase-3 

17/19 14% 
monoclonal anti-

rabbit 
1:1000 

anti-rabbit 
developed in goat 

Β-globin 42 8-14% 
monoclonal anti-

mouse 
1:2000 

anti-mouse  
developed in goat 
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repeating washing steps. Finally, samples were re-suspended in 30µl of 2xLamelly buffer (Biorad, 

Hercules, CA, USA), heated at 90°C for five minutes and collected by centrifugation at 

1500rpm for one minute. Supernatant fraction was further subjected to SDS-PAGE and 

Western blot analysis in oreder to investigate the existence of GSTM1:ASK1 or GSTP1:JNK1 

protein:protein interactions, respectively, according to the previously described protocols 

(Laemmli, 1970; Towbin et al., 1979). 

 
3.5.6 Statistical analysis 

 In this study, the data of continuous variables were expressed as mean ± standard 

deviation (SD) or median (minimum-maximum) whereas categorical variables were presented 

using frequency (n, %) counts. Distribution was tested by using Kolmogorov–Smirnov. Differences 

in investigated parameters were assessed by using ANOVA test for continuous data with 

normal distribution and Mann–Whitney rank-sum test for continuous data with non-normal 

distribution. Finally, χ2 test was used for categorical variables. Hardy-Weinberg equilibrium was 

tested for each polymorphism calculating χ2 test for the patients and the controls separately.  

The genetic variants and their risk for disease were computed by odds ratios (OR) and 

95% confidence intervals (CI) by logistic regression analysis. OR was adjusted by variables 

indicating recognized risk factors for RCC, as potential confounders, as well as by age and 

gender.  

The effect of four GST genotypes on overall survival, defined as time from 

nephrectomy to the date of death or last follow-up (November 1st 2015.) was evaluated in 

overall group of RCC patients, as well as ccRCC patients. The follow-up data were available in 

285 patients with RCC and 219 patients with ccRCC. The loss of 20 ccRCC patients’ occurred 

due to the loss of their contact information. Median follow-up was 43 (1-125) months. 

Survival analysis was performed using the Kaplan-Meier method to estimate the 

cumulative survival probability. The long-rank test was performed for the assessment of 

differences in survival according to the different categories of variables.  

The predictive value of different GST genotypes in overall mortality were assessed by 

the Cox proportional hazard regression models, adjusted by covariates in three different 

models: Model 1 was adjusted to age and gender, Model 2 to the covariates from Model 1 and 

recognized risk factors for RCC development (pack-years for smoking, obesity, hypertension) 
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and Model 3 to the covariates from Model 2 and clinical characteristics of tumor (tumor type, 

grade G, pT stage). Calculations were performed using the SPSS software version 17.0 (Chicago, 

IL, USA). P value of ≤0.05 will considered to be statistically significant. 

The association between GSTM1-1 and ASK1 with Cleaved Caspase-3 expression was 

analyzed using Pearson’s or Spearman’s coefficient of linear correlation. 
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4 RESULTS 

 

4.1 GST polymorphism in patients with renal cell carcinoma (RCC) 

Selected baseline characteristics of 305 patients with RCC and 326 respective controls 

are shown in Table 7. As indicated, no statistical difference was found regarding age, gender 

and obesity (p>0.05) between RCC patients and controls. However, hypertensive subjects 

exhibited almost 3-fold increased risk for RCC in comparison with normotensive subjects 

(OR=2.86, 95%CI: 1.65-4.93, p<0.001). Moreover, our results have shown that smoking alone 

was associated with an increased risk of RCC (OR=1.50, 95%CI: 1.02-2.20, p=0.037).  

 
Table 7. Baseline characteristic of 305 RCC patients and 326 age and gender matched controls 
 

 RCC patients Controls OR (95%CI) 
p-

value 

Age (years)a 59.25 ± 11.47 60.75±11.52 / 0.104 

Gender, n (%)     

Male 201 (66) 209 (64) 1.00i  

Female 104 (34) 117(36) 0.90 (0.49-1.64)b 0.736 

Hypertension, n 
(%)h 

    

No 113 (44) 216 (71) 1.00 i  

Yes 142 (56) 86 (29) 2.86 (1.65-4.93)c <0.001 

Obesity, n (%)h     

BMI < 25 87 (35) 109 (37) 1.00i  

BMI > 25 163 (65) 188 (63) 0.88 (0.52-1.48)d 0.633 

BMI (kg/m2)a 26.75±4.29 26.45±3.78 / 0.391 

Smoking, n (%) h     

Never 107 (41) 156 (49) 1.00i  

Evere 153 (59) 162 (51) 1.50 (1.02-2.20)f 0.037 

Pack-yearsg 32 (1.35-145.0) 30 (1.00-120.00) / 0.125 
aMean ±SD; b OR, odds ratio adjusted to age, pack-years, BMI (body mass index), hypertension; cOR, odds ratio 

adjusted to age, gender, pack-years, BMI (body mass index); dOR, odds ratio adjusted to age,gender, pack-years, 
hypertension; eminimum of 60-day period any time prior to the study onset; fOR, odds ratio adjusted to age, gender, 
BMI, hypertension; gMedian (Min-Max); hBased on the data available; iReference group. CI, confidence interval; 

 

As presented in Table 8, the high majority of cases suffered from clear cell RCC (78%) 

and the tumor grade II (G2, 53%), while stages pT1 and pT3 (42% and 44%, respectively) 

were shown to be the most frequent. 
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Table 8. Clinical characteristics of patients’ tumor 
 

Tumor type RCC patients, n (%) 

Clear cell RCC 239 (78) 

Papillary RCC 39 (13) 

Chromophobe RCC 19 (6) 

Collecting Duct RCC 5 (2) 

Other 3 (1) 

Tumor grade, n (%)a  

Grade I, G1 33 (13) 

Grade II, G2 139 (53) 

Grade III, G3 77 (30) 

Grade IV, G4 11  (4) 

pT stage, n (%)b  

pT1 120 (42) 

pT2 35 (12) 

pT3 127 (44) 

pT4 7 (3) 
a,b Data available data on patients’ tumor grade and pT stage, depending on the type of surgery and pathohistology 
diagnostics;  

 
 
 
4.1.1 The association of GST genotypes with RCC risk  

As shown in Table 9, higher frequency of GSTM1-null carriers was observed in RCC 

patients (55%) with an adjusted OR of 1.85 (95%CI: 1.10-3.09, p=0.020), indicating a 

significant association of the GSTM1-null genotype with RCC risk. However, GSTT1-active and 

GSTA1-CC (active) genotypes did not seem to enhance the risk for RCC (OR=0.99, 95%CI: 

0.55-1.77, p=0.977 and OR=1.05, 95%CI: 0.61-1.79, p=0.865, respectively). By contrast, 

GSTP1 IleVal+ValVal (variant) genotype was notably over-represented among cases (75%) 

compared to controls (57%). Moreover, the risk of RCC was elevated (OR=3.86, 95%CI: 2.11-

7.05, p<0.001) among carriers of the GSTP1 IleVal+ValVal (variant) genotype compared to the 

carriers of the GSTP IleIle (wild-type) genoype. 
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Table 9. GST genotypes in relation to the risk of RCC 

aActive, if at least one active allele present; bNull if no active alleles present; cLow activity, if at least one T allele 
present. dVariant, if at least one Val allele present; eOR, odds ratio adjusted to age, gender, pack years, BMI, 
hypertension; CI, confidence interval; fReference group; Deletion GSTM1 and GSTT1 genotypes were investigated 
in 305 cases and all recruited controls. SNP polymorphism GSTA1*C69T and GSTP1*Ile105Val were analyzed in 
305 and 301 RCC cases, respectively, and all recruited controls.  

 

In order to test the effect of gene-gene interaction for all four GST genotypes, both 

crude and adjusted odds ratio was calculated (Table 10). Interestingly, a significant association, 

in terms of RCC risk, was found when the combined effect of GSTM1 and GSTP1 genotypes 

was assessed alone (GSTM1-active/GSTP1 wild-type vs. GSTM1-null/GST-variant: adjusted 

OR=9.41, 95%CI: 3.40-26.04, p<0.001) or  together with other GST genotypes (GSTM1-

active/GSTA1-active/GSTP1 wild-type vs. GSTM1-null/GSTA1-low activity/GSTP1-variant, 

adjusted OR=14.28, 95%CI: 2.82-72.54, p=0.001 or GSTM1-active/GSTT1-null/GSTP1 wild-

type vs. GSTM1-null/GSTT1-active/GSTP1-variant, adjusted OR=18.10, 95%CI: 1.75-186.66, 

p=0.015). Ultimately, when all four GST genotypes were analyzed, the number of RCC 

patients, carrying presumably “the risk-associated genotype” combination GSTM1-

null/GSTT1-active/GSTA1-low activity/GSTP1-variant (62 out of 305), prevailed over the number 

of RCC patients with GSTM1-active/GSTT1-null/GSTA1-active/GSTP1wild type genotypes (1 

out of 305). According to our results, patients with “the risk-associated genotype” combination 

were at 15-fold higher risk for RCC development (crude OR=15.12, 95%CI: 1.86-122.64, 

p=0.011; OR adjusted to age and gender 15.70, 95%CI: 1.91-128.58, p=0.010) compared to 

the reference genotype. 

GST genotype 
RCC patients n, 

% 
Controls n, % OR (95%CI)e p- value 

GSTM1     

activea 136  (45) 163 (50) 1.00f  

nullb 169 (55) 163 (50) 1.85 (1.10-3.09) 0.020 

GSTT1     

nullb 79  (26) 89 (27) 1.00f  

activea 226 (74) 237 (73) 0.99 (0.55-1.77) 0.977 

GSTA1 (rs 3957357)     

CC (active) 94  (31) 134 (41) 1.00f  

CT+TT (low activity)c 211 (69) 192(59) 1.05 (0.61-1.79) 0.865 

GSTP1 (rs1695)     

IleIle (wild-type) 74 (25) 141 (43) 1.00f  

IleVal+ValVal (variant)d 227 (75) 185 (57) 3.86 (2.11-7.05) <0.001 
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Table 10. Combined effect of GST genotypes on risk of RCC 

aActive, if at least one active allele present; bNull, if no active alleles present; cVariant, if at least one Val allele present; dLow activity, if at least one T allele present; 
eReference group; fOR odds ratio adjusted to age, gender, pack years,  BMI, hypertension;  gOR odds ratio adjusted to age and gender; CI, confidence interval;  

Combined Genotype 
RCC patients, 

n % 
Controls, 

n% 
Crude OR 
(95%CI) 

p-
value 

Adjusted OR 
(95%CI) 

p-
value 

GSTM1/GSTP1 genotype     `  

GSTM1-activea/GSTP1-wild type 29 (19) 70 (43) 1.00 e  1.00 e  

GSTM-nullb/GSTP1-variantc 122 (81) 92 (57) 3.20 (1.92-5.33) <0.001 9.41 (3.40-26.04) f <0.001 

GSTM1/GSTA1/GSTP1 genotype       

GSTM1-activea/GSTA1-active/GSTP1-wild 
type 

11 (11) 36 (38) 1.00 e  1.00 e  

GSTM-nullb/GSTA1-low activityd/GSTP1-
variantc 

87 (89) 59 (62) 4.82 (2.27-10.23) <0.001 14.28 (2.81-72.54) 0.001 

GSTM1/GSTT1/GSTP1 genotype       

GSTM1-activea/GSTT1-nullb/GSTP1-wild 
type 

3 (3) 16 (19) 1.00 e  1.00 e  

GSTM-nullb/GSTT1-active/GSTP1-variantc 90 (97) 67 (81) 7.16 (2.00-25.38) 0.002 18.10 (1.75-186.6) 0.015 

GSTM1/GSTT1/GSTA1/GSTP1 
genotype 

      

GSTM1-activea/GSTT1-nullb/GSTA1-
active/ 

GSTP1-wild type 
1 (2) 10 (19) 1.00 e  1.00g  

GSTM-nullb/GSTT1-activea/GSTA1-low 
activityd/ GSTP1-variantc 

62 (98) 41 (81) 15.12 (1.86-122.6) 0.011 15.70 (1.91-128.5)g 0.010 
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 Finally, we decided to test the cumulative effect of GST risk-associated genotypes (GSTM1-

null, GSTT1-active, GSTA1-low activity and GSTP1-variant) on the risk of RCC development. As 

indicated in the Table 11, a trend in OR was observed (OR=4.52, 95%CI: 0.54-37.63, p=0.162 in 

patients with one risk-associated genotype, OR=8.64, 95%CI: 1.08-68.92, p=0.042 in RCC patients 

with 2 risk-associated genotypes, OR=10.70, 95%CI: 1.91-128.58, p=0.025 in patients with 3 risk-

associated genotypes), with the highest OR present in RCC patients with “the risk-associated 

genotype” combination: GSTM1-null/GSTT1-active/GSTA1-low activity/GSTP1-variant (OR=15.70, 

95%CI: 1.91-128.58, p=0.010). 

 

Table 11. Cumulative effect of GST risk-associated genotypes on the risk of RCC development 

0: Reference genotype combination (GSTM1-active/GSTT1-null/GSTA1 active/GSTP1-wild type); 1, 2, 3, 4: 1, 2, 3, 4: The 
number of the present risk-carrying genotypes: either one of each risk-carrying, or two of each risk-carrying, or three of 
each risk-carrying or all four risk-carrying GST genotypes (GSTM1-null or GSTT1-active or GSTA1 low-activity or GSTP1-
variant);   aOR odds ratio adjusted to age, gender; CI, confidence interval; bReference group; 

 
 

4.1.2 The association between GST genotypes and the levels of 8-OHdG in RCC patients 

Since oxidative stress might be implicated in the development of RCC, we determined the 

levels of 8-OHdG (ng/ml) in RCC patients, stratified by the presence or absence of the recognized 

risk factors for RCC development and analyzed them with respect to various GST genotypes (Tables 

12-14). Although the obtained values were slightly higher in RCC patients with „risk-associated 

genotypes“ compared to the values observed in RCC patients carrying genotypes not associated to 

RCC risk, the results did not reach the statistical significance (p>0.05).  

 

 

 

 

Number of risk-
associated GST 

genotypes 

RCC patients 
n, % 

Controls n, % OR (95%CI)a p- value 

0 1 (1) 10 (3) 1.00b  

1 22 (7) 50 (15) 4.52 (0.54-37.63) 0.162 

2 94 (31) 112 (34) 8.64 (1.08-68.92) 0.042 

3 122 (41) 113 (35) 10.70 (1.34-85.18) 0.025 

4 62 (21) 41 (13) 15.70 (1.91-128.58) 0.010 
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Table 12. The association between GST genotypes and the levels of 8-OHdG (ng/ml) in RCC 
patients stratified according to the smoking status 

 
 

aActive, if at least one active allele present; bNull if no active alleles present; cLow activity, if at least one T allele present. 
dVariant, if at least one Val allele present; eMean (Min-Max) values; fminimum of 60-day of smoking period any time 
prior to the study onset 

 
 
Table 13. The association between GST genotypes and the levels of 8-OHdG (ng/ml) in RCC 
patients stratified according to the BMI category 
 

aActive, if at least one active allele present; bNull if no active alleles present; cLow activity, if at least one T allele present. 
dVariant, if at least one Val allele present; eMean (Min-Max) values; fBody mass index above 25kg/m2  

 

 

Genotype Smoking 8-OHdG (ng/ml) e 

GSTM1 
GSTM1-activea No 1.21 (0.49-3.72) 

GSTM1-nullb Yesf 1.32 (0.52-4.92) 

                           p-value 0.811 

GSTT1 
GSTT1-nullb No 1.36 (0.77-3.72) 

GSTT1-activea Yesf 1.32 (0.52-3.14) 

 p-value 0.983 

GSTA1  
(rs 3957357) 

GSTA1-active No 1.35 (0.39-4.92) 

GSTA1-low activityc Yesf 1.36 (0.49-6.52) 

                                                   p-value 0.892 

GSTP1 (rs1695) 
GSTP1-wild type No 1.21 (0.69-2.24) 

GSTP1-variantd Yesf 1.24 (0.39-3.98) 

                                                        p-value 0.794 

Genotype Obesity 8-OHdG (ng/ml) e 

GSTM1 
GSTM1-activea No 1.21 (0.49-2.51) 

GSTM1-nullb Yesf 1.28 (0.52-2.81) 

                               p-value 0.962 

GSTT1 
GSTT1-nullb No 1.14 (0.91-4.92) 

GSTT1-activea Yesf 1.24 (0.52-3.14) 

                                                           p-value 0.984 

GSTA1  
(rs 3957357) 

GSTA1-active No 1.14 (0.49-6.51) 

GSTA1-low activityc Yesf 1.28 (0.39-7.29) 

                                                           p-value 0.345 

GSTP1 
 (rs1695) 

GSTP1-wild type No 1.21 (0.62-4.92) 

GSTP1-variantd Yesf 1.24 (0.39-7.29) 

                                             p-value 0.982 
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Table 14. The association between GST genotypes and the levels of 8-OHdG (ng/ml) in RCC 
patients stratified according to the level of blood pressure 

aActive, if at least one active allele present; bNull if no active alleles present; cLow activity, if at least one T allele 
present. dVariant, if at least one Val allele present; eMean (Min-Max) values  

 

 

4.1.3 The association between GST genotypes and grade and stages of RCC 

In order to discern whether the GST polymorphisms might affect the RCC tumor 

progression, we assessed the association between GST polymorphisms and grade and stages of RCC 

included in the study (Figures 21-24). The results concerning the GSTM1-null genotype showed 

significant difference with respect to tumor grade (p=0.016). Namely, GSTM1-null genotype was the 

most frequent in grade II tumors (G2, Figure 21A). Unfortunately, there was no statistical difference 

found for GSTT1, GSTA1 and GSTP1 genotypes (Figure 21B and Figure 22). 

Regarding the tumor stage, no association was observed between any of the analysed GST 

genotypes and RCC stage (Figure 23 and Figure 24, p>0.05).  

 

 

 

 

 

Genotype Hypertension 8-OHdG (ng/ml)e 

GSTM1 
GSTM1-activea No 1.21 (0.49-3.98) 

GSTM1-nullb Yes 1.36 (0.52-2.81) 

 p-value 0.999 

GSTT1 
GSTT1-nullb No 1.43 (0.79-4.92) 

GSTT1-activea Yes 1.44 (0.52-3.14) 

 p-value 0.498 

GSTA1  
(rs 3957357) 

GSTA1-active No 1.08 (0.49-1.69) 

GSTA1-low activityc Yes 1.24 (0.39-7.29) 

 p-value 0.342 

GSTP1 
 (rs1695) 

GSTP1-wild type No 0.94 (0.62-4.92) 

GSTP1-variantd Yes 1.14 (0.39-7.29) 

 p-value 0.425 
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Figure 21. The frequency of GST deletional risk-associated genotypes in RCC patients stratified 
according to tumor grade: (A) GSTM1-null genotype; (B) GSTT1-active genotype   

(A) 

(B) 
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Figure 22. The frequency of GST SNP risk-associated genotypes in RCC patients stratified 
according to tumor grade: (A) GSTA1-low activity genotype; (B) GSTP1-variant genotype 

 

(A) 

(B) 
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Figure 23. The frequency of GST deletional risk-associated genotypes in RCC patients stratified 
according to tumor stage: (A) GSTM1-null genotype; (B) GSTT1-active genotype   

(A) 

(B) 
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Figure 24. The frequency of GST SNP risk-associated genotypes in RCC patients stratified 
according to tumor stage: (A) GSTA1-low activity genotype; (B) GSTP1-variant genotype 

 

(A) 

(B) 
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4.1.4 The effect of GST genotypes on overall survival in RCC patients 

In the group of 285 patients with RCC included in the follow-up, there were 85 (30%) 

deaths during the mean follow-up of 46.64±28.13 months (ranging from 1-125) months.  

 

In Table 15, the frequencies of GST genotypes in living and deceased RCC patients are 

shown. Significantly higher frequency was observed only for the GSTM1-null genotype in living RCC 

patients (60%) in comparison with the frequency of GSTM1-null genotype in deceased RCC patients 

(45%, p=0.024). However, the obtain frequencies of other analyzed GST genotypes were not 

statistically significant (p>0.05).  

 

Kaplan-Meier survival analysis indicated shorter overall survival (Log Rank: p=0.021) only for 

the patients with GSTM1-active genotype, compared to carriers of GSTM1-null genotype (Figure 25). 

On the other hand, Kaplan-Meier analysis did not demonstrate a significantly shorter time towards the 

death in patients carrying any other analyzed GST genotype (p>0.05, Figure 26-28). 

 

 

Table 15. The frequency of the GST genotypes stratified according to the follow-up status 

GST genotype 
Living patients 

n, % 
Deceased 

patients, n % 
p-value 

GSTM1    

activea 80 (40) 45 (55)  

nullb 119 (60) 37 (45) 0.024 

GSTT1    

nullb 53 (27) 20 (25)  

activea 146 (73) 62 (75) 0.697 

GSTA1 (rs 3957357)    

CC (active) 67 (33) 25 (30)  

CT+TT (low activity)c 132 (67) 57 (70) 0.606 

GSTP1 (rs1695)    

IleIle (wild-type) 53 (27) 17 (21)  

IleVal+ValVal (variant)d 143 (73) 65 (79) 0.269 
aActive, if at least one active allele present; bNull if no active alleles present; cLow activity, if at least one T allele present. 
dVariant, if at least one Val allele present; Number of diseased patients n=85 
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Figure 25.  Kaplan-Meier Survival Curves for overall mortality according to GSTM1 polymorphism; 
Active, if at least one active allele present; Null if no active alleles present  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Kaplan-Meier Survival Curves for overall mortality according to GSTT1 polymorphism; 
Active, if at least one active allele present; Null if no active alleles present 
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Figure 27. Kaplan-Meier Survival Curves for overall mortality according to GSTA1 polymorphism; 
Low activity, if at least one T allele present; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Kaplan-Meier Survival Curves for overall mortality according to GSTP1 polymorphism; 

Variant, if at least one Val allele present 
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Tables 16-18 summarize the associations between different GST genotypes and overall 

mortality, adjusted by covariates in three different models. According to our results of multivariate 

Cox analysis, the GSTM1-active genotype was confirmed to be an independent predictor of higher 

risk of overall mortality in RCC patients. Namely, this genotype had a significant multivariable 

adjusted HR in all three models: in Model 1 HR=1.60 (95%CI: 1.00-2.56, p=0.047, Table 16), in 

Model 2 HR=3.45 (95%CI: 1.61-7.42, p=0.001, Table 17) and in Model 3 HR=3.09 (95%CI: 1.19-

8.02, p=0.020, Table 18). A similar approach was used for analyzing the predictive value of other 

GST genotypes, yet only GSTP1-variant demonstrated HR of 1.68 in Model 2 (95%CI: 0.55-5.14, 

p=0.359, Table 17) and 1.70 in Model 3 (95%CI: 0.38-7.41; p=0.488, Table 18), without reaching 

statistical significance. 

 
 
Table 16. GST polymorphisms as predictors for overall mortality in RCC patients, Model 1 

Model 1 adjusted to age and gender; aActive, if at least one active allele present;bNull, if no active alleles present; cLow 
activity, if at least one T allele present; dVariant, if at least one Val allele present; HR, hazard ratio; CI, confidence interval 

 

Model 1 

HR (95% CI) p-value 

Risk for overall mortality comparing GSTM1-activea genotype to GSTM1-nullb genotype 
carriers 

1.60 (1.00-2.56) 0.047 

Risk for overall mortality comparing GSTT1-activea genotype to GSTT1-nullb genotype 
carriers 

1.10 (0.62-1.97) 0.741 

Risk for overall mortality comparing GSTA1-low activityc genotype to GSTA1-active 
genotype carriers 

1.18 (0.72-1.95) 0.504 

Risk for overall mortality comparing GSTP1-variantd genotype to GSTP1-wild type genotype 
carriers 

1.23 (0.71-2.13) 0.447 
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Table 17. GST polymorphisms as predictors for overall mortality in RCC patients, Model 2  
 

Model 2 

HR (95% CI) p-value 

Risk for overall mortality comparing GSTM1-activea genotype to GSTM1-nullb genotype 
carriers 

3.45 (1.61-7.42) 0.001 

Risk for overall mortality comparing GSTT1-activea genotype to GSTT1-nullb genotype 
carriers 

0.75 (0.33-1.73) 0.511 

Risk for overall mortality comparing GSTA1-low activityc genotype to GSTA1-active 
genotype carriers 

1.03 (0.47-2.22) 0.940 

Risk for overall mortality comparing GSTP1-variantd genotype to GSTP1-wild type 
genotype carriers 

1.68 (0.55-5.14) 0.359 
Model 2 adjusted to the covariates from Model 1 and recognized risk factors for RCC development (packyears, BMI, 
hypertension); aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if at least one T 
allele present; dVariant, if at least one Val allele present; HR, hazard ratio; CI, confidence interval 

 

 

Table 18. GST polymorphisms as predictors for overall mortality in RCC patients, Model 3  
 

Model 3 adjusted to the covariates from Model 2 and clinical characteristics of tumor (tumor type, grade, pT stage); 
aActive, if at least one active allele present;bNull, if no active alleles present; cLow activity, if at least one T allele present; 
dVariant, if at least one Val allele present; HR, hazard ratio; CI, confidence interval 

 

Model 3 

HR (95% CI) p-value 

Risk for overall mortality comparing GSTM1-activea genotype to GSTM1-nullb genotype 
carriers 

3.09 (1.19-8.02) 0.020 

Risk for overall mortality comparing GSTT1-activea genotype to GSTT1-nullb genotype 
carriers 

0.97 (0.39-2.43) 0.961 

Risk for overall mortality comparing GSTA1-low activityc genotype to GSTA1-active 
genotype carriers 

0.91 (0.38-2.16) 0.839 

Risk for overall mortality comparing GSTP1-variantd genotype to GSTP1-wild type genotype 
carriers 

1.70 (0.37-7.38) 0.488 
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4.2 GST polymorphism in patients with clear cell renal cell carcinoma (ccRCC) 

Since clear renal cell carcinoma (ccRCC) represents approximately 80% of all RCC and 

seems to be the most aggressive RCC subtype, we further focused on the group of ccRCC patients 

that were included in this study.  

Baseline characteristics of patients with ccRCC and respective controls are shown in Table 

19. As shown, ccRCC patients and controls did not differ in terms of age, gender, obesity and 

smoking (p>0.05). However, more than half of the cases (52%) suffered from hypertension 

compared to controls (26%).  

 
Table 19. Baseline characteristic of 199 patients with ccRCC and 274 age and gender matched 
controls 

Variable ccRCC patients Controls OR (95%CI) 
p-

value 

Age (years)a 58.09 ± 11.51 59.77±10.96 / 0.113 

Gender, n (%)     

Male 133 (67) 184 (67) 1.00 (reference group)  

Female 66 (33) 90 (33) 1.01 (0.68-1.49) 0.942 

Hypertension, n (%)     

No 75 (48) 191 (74) 1.00 (reference group)  

Yes 82 (52) 67  (26) 3.07 (1.61-5.84)b 0.001 

Obesity, n (%)     

BMI below 25 63 (40) 92  (38) 1.00 (reference group)  

BMI above 25 96 (60) 153 (62) 0.80 (0.43-1.46)c 0.478 

BMI (kg/m2)a 26.41±4.49 26.36±3.49 / 0.893 

Smoking, n (%)     

Never 67 (41) 126 (48) 1.00 (reference group)  

Everd 97 (59) 138 (52) 1.44 (0.90-2.29)e 0.125 

Pack-yearsf 30 (1.35-141.00) 30 (0.10-88.00) / 0.242 

Fuhrmangrade, n (%)     

Grade I, G1 21 (13) / /  

Grade II, G2 89 (55) / /  

Grade III, G3 48 (29) / /  

Grade IV, G4 5   (3) / /  

pTstage, n (%)     

pT1 78 (42) / /  

pT2 23 (13) / /  

pT3 78 (42) / /  

pT4 5  (3) / /  
aMean ±SD; bOR, odds ratio adjusted to age, gender, pack-years, BMI (body mass index); cOR, odds ratio adjusted to age, 
gender, pack-years, hypertension; d Every day smoking during a minimum of 60-day period prior to the study onset; eOR, 
odds ratio adjusted to age, gender, BMI, hypertension; CI, confidence interval; fMedian (Min-Max). 
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4.2.1 The association of GST genotypes with ccRCC risk  

The frequency of GSTM1-null genotype was higher (56%) in ccRCC patients than in controls 

(50%) and individuals with GSTM1-null genotype were at 2.07-fold higher risk of ccRCC 

development (95%CI: 1.11-3.84, p=0.021) (Table 20). On the other hand, no significant association 

with ccRCC risk was found for GSTT1-active genotype (OR=1.08, 95%CI: 0.52-2.27, p=0.822). 

Regarding SNP polymorphisms, the obtained results showed the lack of the GSTA1*C69T 

polymorphism effect on ccRCC risk, since the carriers of GSTA1*CT+TT (low activity) genotype 

were not at increased risk of ccRCC in comparison with individuals with GSTA1*CC (active) 

genotype (OR=1.19, 95%CI: 0.63-2.25, p=0.580). Interestingly, carriers of GSTP1*IleVal+ValVal 

(variant) genotype (77% of ccRCC patients compared to 58% of controls) were at 3.14-fold increased 

risk of ccRCC (95%CI: 1.54-6.43, p<0.001) (Table 20).  

 

Table 20. GST genotypes in relation to the risk of ccRCC 

GST genotype 
ccRCC 

patients n, 
% 

Controls 
n, % 

OR (95%CI)e p- value 

GSTM1     

Activea 87  (44) 137 (50) 1.00 (reference group)  

Nullb 109 (56) 137 (50) 2.07 (1.11-3.84) 0.021 

GSTT1     

Nullb 44  (22) 71 (26) 1.00 (reference  group)  

Activea 152 (78) 203 (74) 1.08 (0.52-2.27) 0.822 

GSTA1 (rs 3957357)     

CC 65  (33) 112 (41) 1.00 (reference  group)  

CT+TT (low activity)c 132 (67) 162 (59) 1.19 (0.63-2.25) 0.580 

GSTP1 (rs1695)     

IleIle (wild-type) 44 (23) 115 (42) 1.00 (reference  group)  

IleVal+ValVal (variant)d 150 (77) 159 (58) 3.14 (1.54-6.43) <0.001 
aActive, if at least one active allele present; bNull if no active alleles present; cLow activity, if at least one T allele present. 
dVariant, if at least one Val allele present;  eOR, odds ratio adjusted to age, gender, pack-years, BMI, hypertension; CI, 
confidence interval 

 

Combined effect on ccRCC risk was tested for all genotypes (Table 21). No significant 

association, in terms of ccRCC risk, was established when the combined effect of any two of 

GSTM1, GSTA1 and GSTT1 genotypes were assessed (p>0.05).  
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Table 21. Combined effect of GST genotypes on risk of ccRCC 

aActive, if at least one active allele present. bNull, if no active alleles present. cLow activity, if at least one T allele present. dVariant, if at least one Val allele present; eOR, 
odds ratio adjusted to age, gender, pack-years, BMI, hypertension; CI, confidence interval; Ca, number of ccRCC patients; Co, controls; fReference group 

GST genotypes 
GSTM1 GSTA1 GSTP1 

Activea Nullb Activea Low-activityc Wild-type Variantd 

GSTA1  (rs3957357)       

Activea       

Ca (%)/Co(%) 29(15)/54(20) 35(18)/58(21) - - - - 

OR (95%CI)e 1.00f 2.14 (0.67-6.86) -  -  

p-value - 0.192 - - - - 

Low-activityc       

Ca/Co 58(30)/83(30) 73(37)/79(29) - - -  

OR (95%CI)e 1.03 (0.41-2.61) 2.00 (0.79-5.07) - - - - 

p-value 0.941 0.145 - - - - 

GSTP1 (rs1695)       

Wild-type       

Ca (%)/Co(%) 17(9)/55(20) 27(14)/60(22) 17(9)/54(20) 26(13)/61(22) -  

OR (95%CI)e 1.00f 5.63 (1.11-28.53) 1.00f 3.40 (0.72-16.00) - - 

p-value - 0.032 - 0.127 - - 

Variantd       

Ca (%)/Co(%) 67(35)/82(30) 81(42)/77(28) 46(24)/58(21) 103 (54)/101(36) - - 

OR (95%CI)e 4.40 (1.17-16.46) 11.23 (2.62-48.08) 5.39 (1.42-20.39) 4.93 (1.48-16.43) - - 

p-value 0.026 <0.001 0.015 0.009 - - 

GSTT1       

Activea       

Ca (%)/Co(%) 67(34)/102(37) 85(44)/101(36) 53(27)/82(30) 99(51)/121(44) 37(19)/85(31) 113(59)/118(43) 

OR (95%CI)e 1.57 (0.49-5.01) 2.78 (0.80-9.64) 3.32 (0.72-15.22) 2.62(0.65-10.58) 2.47 (0.37-10.37) 4.10 (0.95-17.35) 

p-value 0.435 0.103 0.128 0.175 0.348 0.052 

Nullb       

Ca (%)/Co(%) 20(10)/35(13) 24(12)/36(14) 11(6)/30(11) 32(16)/41(15) 7(4)/30(11) 35(18)/41(15) 

OR (95%CI)e 1.00f 3.36 (0.77-14.66) 1.00f 3.57 (0.72-17.72) 1.00f 4.47 (0.72-27.43) 

p-value - 0.101 - 0.113 - 0.105 
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On the other hand, a statistically significant association between GST polymorphism and 

susceptibility to ccRCC was found when the effect of GSTP1-variant genotype was analyzed in 

combination with the other three genotypes (GSTP1-variant and GSTM1-null OR=11.23, 95%CI: 

2.62-48.08, p<0.001; GSTP1-variant and GSTA1low-activity OR=4.93, 95%CI: 1.48-16.43, p=0.009; 

GSTP1-variant and GSTT1-active OR=4.10, 95%CI: 0.95-17.35, p=0.052). 

 
The cumulative effect of the suggested “risk-associated” GST genotypes in RCC was 

analyzed in patients with ccRCC, in comparison with the reference genotype combination (Table 

22). Indeed, the obtained results were similar to results in the RCC group and showed a trend in OR 

that was statistically significant only in the case of the previously termed “risk-associated genotype 

combination” of all four GST genotypes. Namely, we found striking evidence in favor of increased 

susceptibility to ccRCC in carriers of combined GSTM1-null, GSTT1-active, GSTA1 low-activity and 

GSTP1-variant genotype. It is important to note that such individuals comprised 22% of all recruited 

ccRCC patients, in comparison with 12% of control subjects, and exhibited 9.32-fold elevated risk 

compared to carriers of combined GSTM1-active, GSTT1-null, GSTA1-active and GSTP1 wild-type 

genotypes (95%CI: 1.08-80.18, p=0.041, Table 22). 

 

Table 22. Cumulative effect of GST risk-associated genotypes on the risk of ccRCC development 

0:Reference genotype combination (GSTM1-active/GSTT1-null/GSTA1 active/GSTP1-wild type); 1, 2, 3, 4: The number 
of “risk-associated genotypes”: either GSTM1-null,GSTT1-actie,GSTA1low-activity or GSTP1-variant; aOR odds ratio 
adjusted to age, gender; bReference group; CI, confidence interval; 

 

4.2.2 Modifying effect on risk of ccRCC conferred by recognized risk factors for ccRCC 

development  

Results on the modifying effect on risk of ccRCC conferred by recognized risk factors for 

ccRCC development are shown in Tables 23-25. As presented, significant modifying effect on risk 

of ccRCC conferred by hypertension had individuals with either GSTM1-null, GSTT1-active, GSTA1 

low-activity or GSTP1-variant genotype. Namely, they were at increased risk of ccRCC when compared 

Number of 
“risk-associated 
GST genotypes” 

RCC patients n, 
% 

Controls n, % OR (95%CI)a p- value 

0 1 (1) 7 (3) 1.00b  

1 11 (6) 42 (15) 1.79 (0.19-16.18) 0.605 

2 57 (30) 90 (33) 4.47 (0.53-37.51) 0.167 

3 79 (41) 101 (37) 5.21 (0.62-43.48) 0.127 

4 43 (22) 34 (12) 9.32 (1.08-80.18) 0.041 
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to the normotensive GSTM1-active, GSTT1-null, GSTA1-active or GSTP1 wild-type individuals 

(OR=6.01, 95%CI: 2.48–14.52, p<0.001; OR=3.27, 95%CI: 1.20–8.91, p=0.020; OR=3.85, 95%CI: 

1.54–9.58, p=0.004 and OR=8.29, 95%CI: 3.12–22.04, p<0.001 respectively, Table 23). Another 

factor that contributed significantly to risk of ccRCC, only in carriers of GSTP1-variant genotype, 

was smoking (OR=3.70, 95%CI: 1.75-7.83, p=0.001, Table 25).  

 

Table 23. Modifying effect on risk of ccRCC development conferred by hypertension 

aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if at least one T allele present; 
dVariant, if at least one Val allele present; eOR, odds ratio adjusted to age, gender, pack-years, BMI; CI, confidence 
interval; fReference group 

 
         Table 24. Modifying effect on risk of ccRCC development conferred by obesity 

aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if at least one T allele present; 
dVariant, if at least one Val allele present;  eOR, odds ratio adjusted to age, gender, pack-years, hypertension; CI, 
confidence interval;  fReference group 

          

Genotype vs Hypertension 
ccRCC 
patients 

n, % 

Controls 
n, % 

OR (95%CI)e p-value 

GSTM1 
Activea/Normotensive 37 (44) 98 (72) 1.00f  

Nullb/ Hypertensive 47 (56) 37 (28) 6.01 (2.48-14.52) <0.001 

GSTT1 
Nullb/Normotensive 57 (75) 141 (90) 1.00f  

Activea/ Hypertensive  14 (10) 3.27 (1.20-8.91) 0.020 

GSTA1 
(rs3957357) 

Activea/Normotensive 27 (33) 72 (66) 1.00f  

Low activityc/ Hypertensive 56 (67) 36 (34) 3.85 (1.54-9.58) 0.004 

GSTP1  
(rs1695) 

Wild-type/Normotensive 19 (22) 79 (68) 1.00f  

Variantd/ Hypertensive 69 (78) 36 (32) 8.29 (3.12-22.04) <0.001 

Genotype vs Obesity 
ccRCC 
patients 

n, % 

Controls 
n, % 

OR (95%CI)e p-value 

GSTM1 
Activea/Non-obese 25 (35) 50 (37) 1.00f  

Nullb/ Obese 47 (65) 84 (63) 1.78 (0.71-4.5) 0.212 

GSTT1 
Nullb/Non- obese 45 (38) 69 (38) 1.00f  

Activea/ Obese 74 (62) 115 (62) 0.83 (0.26-2.26) 0.759 

GSTA1 
(rs3957357) 

Activea/Non-obese 19 (23) 48 (32) 1.00f  

Low activityc/Obese 62 (77) 103 (68) 1.39 (0.54-3.78) 0.518 

GSTP1 
(rs1695) 

Wild-type/Non-obese 10 (12) 35 (28) 1.00f  

Variantd/Obese 74 (88) 89 (72) 2.21 (0.79-6.13) 0.125 
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Table 25. Modifying effect on risk of ccRCC development conferred by smoking 

aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if at least one T allele present; 
dVariant, if at least one Val allele present; eOR, odds ratio adjusted to age, gender, BMI, hypertension; CI, confidence 
interval; fReference group 

 

4.2.3 GST genotypes and ccRCC risk in smokers 

 Further on, we focused on the population of smokers with ccRCC (Table 26 and Table 27). 

Significant association between GST genotype and the risk of ccRCC in smokers was found only for 

the GSTP1 genotype. Namely, smokers with GSTP1-variant genotype were at 2.87-fold higher risk of 

developing ccRCC (OR=2.87, 95%CI: 1.45-5.69, p=0.002, Table 26) than smokers carrying GSTP1-

wild type genotype. Although GSTM1-null genotype did not, at least independently, significantly affect 

the risk of ccRCC in smokers (OR=1.71, 95%CI: 0.95-3.06, p=0.072, Table 27), when present in 

combination with GSTP1-variant genotype, it contributed in a way that smokers with GSTM1-

null/GSTP1-variant genotype exhibited 5.4–fold increased risk of ccRCC (95%CI: 1.74-16.98, 

p=0.004, Table 27) in comparison with carriers of GSTM1-active/GSTP1-wild type genotype. In this 

manner, we confirmed the results obtained on the whole study population. The observed effect of 

combined GSTM1-null/GSTP1-variant genotype on ccRCC risk was even more pronounced when 

GSTA1 low-activity genotype was included. Namely, GSTM1-null/GSTP1-variant/GSTA1-low activity 

combination of genotypes, which was present in 94% of smokers with ccRCC, as opposed to 70% 

in controls, increased the risk of ccRCC up to 7.57 (95%CI: 1.26-45.30, p=0.026, Table 27).  

 

Genotype vs Smoking status 
ccRCC 

patients n, 
% 

Controls n, 
% 

OR (95%CI)e p-value 

GSTM1 

Activea/Non-
smoker 

37 (29) 50 (47) 1.00f  

Nullb/Smoker 57 (71) 58 (53) 1.39 (0.63-2.34) 0.553 

GSTT1 
Nullb/Non-smoker 15 (17) 36 (25) 1.00f  

Activea/Smoker 71 (83) 108 (75) 1.75 (0.82-3.75) 0.144 

GSTA1 
(rs3957357) 

Activea/Non-
smoker 

25 (27) 61 (40) 1.00f  

Low-
activityc/Smoker 

67 (73) 92 (60) 1.65 (0.87-3.13) 0.122 

GSTP1 
(rs1695) 

Wild-type/Non-
smoker 

16 (17) 57 (42) 1.00f  

Variantd/Smoker 77 (83) 85 (58) 3.70 (1.75-7.83) 0.001 
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Table 26. The association between individual GST genotypes and the levels of BPDE-DNA 
adducts in ccRCC smokers 

 
aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if at least one T allele present; 
dVariant, if at least one Val allele present; eOR odds ratio adjusted to age, gender, BMI, hypertension; CI, confidence 
interval; fReference group; gMedian (min-max);  
 
 

The levels of BPDE-DNA adducts were initially compared between non-smokers (2.19 

ng/ml (1.39-8.67)) and smokers (2.50 ng/ml (1.39-17.93)) with ccRCC, however, no statistical 

significance was reached (p=0.402). In an attempt to discern whether phenotype changes reflect 

genotype-associated risk of ccRCC, comparative analysis of  BPDE-DNA adduct levels in ccRCC 

smokers who were carriers of  active/wild-type versus null/low-activity/variant genotype, individually or 

in combination, was performed (Table 26 and Table 27). These results have shown that smokers 

with GSTM1-null genotype had significantly higher concentration of BPDE-DNA adducts (2.74 

ng/ml (1.64-17.93)) in comparison with GSTM1-active smokers (2.13ng/ml (1,39 – 5.22), p=0.050, 

Table 26).  

 

GST genotypes 
in smokers 

ccRCC 
smoker
s n,% 

Controls 
smokers 

n,% 
OR (95%CI)e 

p-
value 

BPDE-DNA 
adducts in 

ccRCC 
smokers 
(ng/ml)g 

p-
valu

e 

GSTM1 

Activea 37 (39) 80 (58) 1.00f  2.13 (1.39-5.22)  

Nullb 57 (61) 58 (42) 1.71 (0.95-3.06) 0.072 2.74 (1.64-17.93) 0.050 

GSTT1 

Nulla 23 (24) 30 (22) 1.00f  2.81 (1.51-8.55)  

Activeb 71 (76) 108 (78) 1.07 (0.53-2.15) 0.849 2.37 (1.39-17.93) 0.324 

GSTA1 (rs3957357) 

Active 23 (25) 46 (33) 1.00f  2.50 (1.39-8.55)  

Low-activityc 67 (75) 92 (67) 1.21 (0.65-2.25) 0.537 2.50 (1.39-17.93) 0.612 

GSTP1 (rs1695) 

Wild-type 16 (17) 53 (38) 1.00f  2.50 (1.76-6.95)  

Variantd 77 (83) 85 (62) 2.87 (1.45-5.69) 0.002 2.44 (1.39-17.39) 0.655 
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Table 27. The association between combined GST genotypes and the levels of BPDE-DNA 
adducts in ccRCC smokers 

aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if at least one T allele present; 
dVariant, if at least one Val allele present; eOR odds ratio adjusted to age, gender, BMI, hypertension; CI, confidence 
interval; fReference group; gMedian (Min-Max)  

 

 
4.2.4 The association between GST genotypes and tumor grade and stages of ccRCC 

The analysis of GST polymorphisms as potential prognostic marker of ccRCC was 

performed as presented in Figures 29-32. Once again, the results concerning the GSTM1-null 

genotype showed significant difference with respect the tumors grade (Figure 29A, p=0.045). 

Namely, GSTM1-null genotype was again found to be the most frequent in grade II tumors (G2). 

Similarly to the results of obtained on the whole group of RCC patients, there were no statistical 

difference found for other analyzed GST genotypes (Figures 30-32). 

Regarding the tumor stage, no association between GST polymorphisms and ccRCC stage 

was observed. 

GST genotypes 
in smokers 

ccRCC 
smokers 

n,% 

Controls
smokers 

n,% 
OR (95%CI)e 

p-
value 

BPDE-DNA 
adducts in 

ccRCC 
smokers 
(ng/ml)g 

p-
value 

GSTM1/ GSTP1 

GSTM1-activea/ 
GSTP1 wild-type 5 (10) 27 (46) 1.00f  2.00 (1.76-2.75)  

GSTM1-nullb/ 
GSTP1-variantd 45 (90) 32 (54) 5.44 (1.74-16.98) 0.004 2.50 (1.64-17.93) 0.347 

GSTM1/GSTA1/GSTP1 

GSTM1-activea/ 
GSTA1-active/ 

GSTP1 wild-typed 
2 (6) 10 (30) 1.00f  2.37 (2.01-2.75)  

GSTM1 nullb / 
GSTA1-low activityc/ 

GSTP1-variantd 
32 (94) 23 (70) 7.57 (1.26-45.30) 0.026 2.44 (1.64-17.93) 0.813 
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Figure 29. The frequency of GST deletional risk-associated genotypes in ccRCC patients stratified 
according to tumor grade: (A) GSTM1-null genotype; (B) GSTT1-active genotype   
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Figure 30. The frequency of GST SNP risk-associated genotypes in ccRCC patients stratified 
according to tumor grade: (A) GSTA1-low activity genotype; (B) GSTP1-variant genotype 
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Figure 31. The frequency of GST deletional risk-associated genotypes in ccRCC patients stratified 
according to tumor stage: (A) GSTM1-null genotype; (B) GSTT1-active genotype   
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Figure 32. The frequency of GST SNP risk-associated genotypes in ccRCC patients stratified 
according to tumor stage: (A) GSTA1-low activity genotype; (B) GSTP1-variant genotype;  

(A) 

 

(B) 
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4.2.5 The effect of GST genotypes on overall survival in ccRCC patients 

In the group of 219 patients with ccRCC that were included in the follow-up, there were 60 

(27%) deaths during the mean follow-up of 48.09±0.9 (ranging from 1-125) months.  

In Table 28, the frequencies of GST genotypes in living and deceased in patients with ccRCC 

are shown. Significantly higher frequency was observed only for the GSTM1-null genotype in living 

ccRCC patients (60%) in comparison with the frequency of GSTM1-null genotype in deceased 

ccRCC patients (42%, p=0.016). However, the obtain frequencies of other analyzed GST genotypes 

were not statistically significant (p>0.05, Table 28).  

 

Table 28. The frequency of the GST genotypes stratified according to the follow-up status  

aActive, if at least one active allele present; bNull if no active alleles present; cLow activity, if at least one T allele present. 
dVariant, if at least one Val allele present; Number of diseased patients n=60 

 

In a similar way to the whole group included in the study, Kaplan-Meier survival analysis indicated 

shorter overall survival (Log Rank: p=0.026) only for the patients with GSTM1-active genotype, 

compared to ccRCC carriers of GSTM1-null genotype (Figure 33). On the other hand, Kaplan-Meier 

analysis did not demonstrate a significantly shorter time towards the death in ccRCC patients 

carrying any other analyzed GST genotype (p>0.05, Figures 34-36). 

 

GST genotype 
Living patients 

n, % 
Diseased 

patients, n % 
p-value 

GSTM1 

activea 64 (40) 35 (58)  

nullb 95 (60) 25 (42) 0.016 

GSTT1 

nullb 41 (25) 13 (22)  

activea 118 (75) 47 (78) 0.528 

GSTA1 (rs 3957357) 

CC (active) 57 (36) 19 (32)  

CT+TT (low activity)c 102 (64) 41 (68) 0.562 

GSTP1 (rs1695) 

IleIle (wild-type) 43 (27) 12 (20)  

IleVal+ValVal (variant)d 114 (73) 48 (80) 0.263 
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Figure 33.  Kaplan-Meier Survival Curves for overall mortality in ccRCC patients according to 
GSTM1 polymorphism; Active, if at least one active allele present; Null if no active alleles present  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 34. Kaplan-Meier Survival Curves for overall mortality ccRCC patients according to GSTT1 
polymorphism; Active, if at least one active allele present; Null if no active alleles present  
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Figure 35. Kaplan-Meier Survival Curves for overall mortality ccRCC patients according to GSTA1 
polymorphism; Low activity, if at least one T allele present 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 36. Kaplan-Meier Survival Curves for overall mortality ccRCC patients according to GSTP1 
polymorphism; Variant, if at least one Val allele present. 
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Tables 29-31 summarize the associations between different GST genotypes and overall 

mortality for ccRCC, adjusted by covariates in three different models, analogously to the RCC 

group.  
 

Table 29. GST polymorphisms as predictors for overall mortality in ccRCC patients, Model 1 

Model 1 adjusted to age and gender; aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if 
at least one T allele present; dVariant, if at least one Val allele present; HR, hazard ratio; CI, confidence interval 

 

 

Table 30. GST polymorphisms as predictors for overall mortality in ccRCC patients, Model 2 

 

Model 2 adjusted to the covariates from Model 1 and recognized risk factors for RCC development (packyears, BMI, 
hypertension); aActive, if at least one active allele present; bNull, if no active alleles present; cLow activity, if at least one T allele 
present; dVariant, if at least one Val allele present; HR, hazard ratio; CI, confidence interval 

 

Model 1 

HR (95% CI) p-value 

Risk for overall mortality comparing GSTM1-activea genotype to GSTM1-nullbgenotype 
carriers 

1.68 (0.96-2.94) 0.065 

Risk for overall mortality comparing GSTT1-activeagenotype to GSTT1-nullb genotype carriers 

1.22 (0.58-2.56) 0.588 

Risk for overall mortality comparing GSTA1-low activitce genotype to GSTA1-active genotype 
carriers 

1.12 (0.63-2.00) 0.681 

Risk for overall mortality comparing GSTP1-variantd genotype to GSTP1-wild type genotype 
carriers 

1.28 (0.67-2.46) 0.444 

Model 2 

HR (95% CI) p-value 

Risk for overall mortality comparing GSTM1-activea genotype to GSTM1-nullb genotype 
carriers 

4.28 (1.72-10.63) 0.002 

Risk for overall mortality comparing GSTT1-activea genotype to GSTT1-nullb genotype carriers 

1.04 (0.37-2.91) 0.937 

Risk for overall mortality comparing GSTA1-low activityc genotype to GSTA1-active genotype 
carriers 

0.81 (0.32-2.05) 0.669 

Risk for overall mortality comparing GSTP1-variantd genotype to GSTP1-wild type genotype 
carriers 

1.95 (0.51-7.39) 0.327 
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Table 31. GST polymorphisms as predictors for overall mortality in ccRCC patients, Model 3 
 

Model 3 adjusted to the covariates from Model 2 and clinical characteristics of tumor (grade, pT stage); aActive, if at least one 
active allele present; bNull, if no active alleles present; cLow activity, if at least one T allele present; dVariant, if at least one Val 
allele present; HR, hazard ratio; CI, confidence interval 

 

 

We managed to confirm the results obtained on the whole group included in the study, as 

the GSTM1-active genotype was proved to be an independent predictor of higher risk of overall 

mortality in ccRCC patients as well. Namely, this genotype had a significant multivariable adjusted 

HR in Model 2 HR=4.2 (95%CI: 1.72-10.63, p=0.002, Table 30) and in Model 3 HR=5.93 (95%CI: 

1.64-21.50, p=0.007, Table 31). A similar approach was used for analyzing the predictive value of 

other GST genotypes, however, the results did not reach statistical significance although 2-fold 

higher HR was observed for GSTP1-varinat genotype in Model 2 (HR=1.95, 95%CI: 0.51-7.39, 

p=0.327, Table 30) and Model 3 (HR=1.85, 95%CI: 0.32-10.61, p=0.487, Table 31). 

 
 

 

Model 3 

HR (95% CI) p-value 

Risk for overall mortality comparing GSTM1-activea genotype to GSTM1-nullb genotype 
carriers 

5.93 (1.64-21.50) 0.007 

Risk for overall mortality comparing GSTT1-activeagenotype to GSTT1-nullb genotype carriers 

1.30 (0.41-4.07) 0.644 

Risk for overall mortality comparing GSTA1-low activityc genotype to GSTA1-active genotype 
carriers 

0.67 (0.24-4.81) 0.432 

Risk for overall mortality comparing GSTP1-variantd genotype to GSTP1-wild type genotype 
carriers 

1.85 (0.32-10.61) 0.487 
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4.3 GSTM1 and GSTP1 protein expression in pools of non-tumor kidney tissue samples 

and ccRCC tissue samples 

After the fact that the GSTM1 and GSTP1 variants have conferred a significant risk towards 

RCC development, GSTM1 and GSTP1 protein expression was determined in pools of non-tumor 

kidney tissue samples and ccRCC tissue samples, with respect to tumor grade. 

 GSTM1 protein has been shown to carry out regulatory functions in terms of cell survival 

and/or ASK1-dependent apoptotic cell death, depending on the strength and duration of the cell 

stress. Owning to the fact that GSTM1 deletion polymorphisms is found in 50% of White 

population,  cytosols - obtained from pools of non-tumor kidney tissue samples and RCC tissue 

samples, were subdivided according to the GSTM1 genotype, for the purpose of the determination 

of the ASK1 and Cleaved Caspase-3 protein expression. The following immnoblot analysis has 

confirmed the absence of GSTM1 protein in samples of GSTM1-null individuals and, vicevrsa, the 

presence of GSTM1 protein in GSTM1-active individuals (Figure 37). Furthermore, the densitometry 

analysis has shown the change in GSTM1 expression with ccRCC grade advancement. Namely, a 

significantly lower expression of the GSTM1 protein was found across ccRCC tumor grades in 

comparison with non-tumor kidney tissue pools (p<0.001, Figure 37B).  

  

   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ** 

 ** 

 ** 

 
Figure 37. Expression of GSTM1 protein (26kDa) in pool of non-tumor kidney tissue samples, as 
well as in ccRCC tissue samples (G1-G3) according to GSTM1 genotype; N- GSTM1-null genotype; 
A-GSTM1-active genotype; G1- tumor grade I; G2- tumor grade II; G3- tumor grade III 
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Sevelral studies have demonstrated that GSTP differential expression in tumor tissue seems 

to correlate with the tumor grade and heightened drug resistance. Since RCC is known for its 

chemotherapy and radiotherapy resistance, we determined the GSTP1 protein expression in pools of 

non-tumor kidney tissue samples, as well as in ccRCC tissue samples, irrespective of the GSTP1 

genotype (Figure 38). In this case, no statistical difference was found for GSTP1 protein levels in 

ccRCC tissue samples (p>0.05). However, a trend was observed indicating the gradual increase of 

GSTP1 protein expression across tumor grade (Figure 38B). No statistical significance in terms of 

GSTP1 protein level has been found between the pools of non-tumor kidney tissue samples and 

ccRCC tissue samples (Figure 38B, p>0.05). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Expression of regulatory apoptotic moleculs (ASK1 and JNK1/2) in pools of non-

tumor kidney tissue samples and ccRCC tissue samples 

Several lines of evidence suggest that monomeric forms of GSTM1 and GSTP1 proteins 

seem to negatively regulate aforementioned kinase-dependent proliferation pathways, by forming 

protein:protein complexes with regulatory MAP kinases, such as ASK1 and JNK1, respectively. 

Therefore, we further investigated the exspresion of ASK1 and JNK1/2 in obtained pools of non-

tumor kidney tissue samples and ccRCC tissue samples.  

Figure 38. Expression of GSTP1 (23kDa) protein in pool of non-tumor kidney tissue samples, as 
well as in ccRCC tissue samples (G1-G3); G1- tumor grade I; G2- tumor grade II; G3- tumor 
grade III 
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Our resuts indicated a significantly lower protein level of ASK1 in G2 and G3 tumor tissue 

samples compared to the ASK1 protein levels found in pools of non-tumor kidney tissue samples, 

as well as G1 grade ccRCC tissue samples (Figure 39B, p<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further on, we determined the impact of GSTM1 genotype on ASK1 protein levels. No 

statistical significance in ASK1 expression was found when the GSTM1-null tumor samples were 

compared to GSTM1-active tumor samples within different tumor grades (Figure 39C, p>0.05). 

  

Figure 39. Expression of ASK1 (165kDa) protein in pool of non-tumor kidney tissue samples, as 
well as in ccRCC tissue samples (G1-G3), independently or according to the GSTM1 genotype; N- 
GSTM1-null genotype; A-GSTM1-active genotype; G1- tumor grade I; G2- tumor grade II; G3- 
tumor grade III 
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             On the other hand, the JNK1/2 expressed was evidently higher in non-tumor and G1 

tumor tissue, compared to G2 and G3 tumor tissue samples, yet the obtain results were not 

statistically significant (Figure 40B, p>0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Expression of executor apoptotic molecul (Cleaved Caspase-3) in pools of non-tumor 

kidney tissue samples and ccRCC tissue samples 

Caspase-3, an executor caspase, represents the most downstream enzyme in the apoptosis-

inducing protease pathway and is shown to correlate with the level of apoptosis in the best manner. 

As ASK1-dependent apoptotic pathway is mainly medicated by cytochrome c release from 

mitochondria and activation of Caspase-3 activity, we determined the expression of Cleaved 

Caspase, the Caspaase-3 activated form, in both ccRCC tumor and adjacent non-tumor tissue 

samples, with respect to tumor grade and GSTM1 genotype. 

In our study, the expression of Cleaved Caspase-3 gradually decreased across tumor grade, 

reaching the statistical significance only in G3, when compared to the pool of non-tumor kidney 

tissue samples (Figure 41B, p<0.05). Although a trend of decrease in Cleaved Caspase-3 expression 

 
Figure 40. Expression of JNK1/2 (44/56kDa) protein in pool of non-tumor kidney tissue 
samples, as well as in ccRCC tissue samples (G1-G3); G1- tumor grade I; G2- tumor grade II; 
G3- tumor grade III 
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was evident across tumor grades and the protein level was obviously lower in GSTM1-active 

individuals, the results were not statistically significant (Figure 41C, p>0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Correlation between GSTM1/GSTP1 and regulatory (ASK1) and executor (Cleaved 

Caspase-3) apoptotic molecules 

A strong positive correlation (correlation coefficient, r>0.5) was found GSTM1 and Cleaved 

Caspase-3 expression (r=0.81, p=0.014), as well as ASK1 and Cleaved Caspase-3 expression (r=0.93, 

p=0.001). On the other hand, weak positive correlation (correlation coefficient, r<0.3) was found 

between GSTP1 and Cleaved Caspase-3 expression (r=0.024, p=0.999) (Table 32). 

 

      **    ** 

 p>0.05 

 
Figure 41. Expression of Cleaved Caspase-3 (19/17kDa) protein in pool of non-tumor kidney 
tissue samples, as well as in ccRCC tissue samples (G1-G3) independently or according to the 
GSTM1 genotype; N- GSTM1-null genotype; A-GSTM1-active genotype  
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Table 32. Correlation between GSTM1/GSTP1 and regulatory (ASK1) and executor (Caspase-3) 
apoptotic molecules 

 

 

 
4.7 The analysis of GSTM1:ASK1 and GSTP1:JNK1/2 protein:protein interactions in 

ccRCC tissue samples 

 In order to clarify the potential molecular mechanism underlying the role of GSTM1 

in RCC progression, the presence of GSTM1:ASK1 protein:protein interaction was analyzed in 

specimens of tumor tissue obtained from 20 patients with ccRCC. Tumor tissue samples were 

divided in three groups, according to the tumor’s grade (n=6 of grade I, G1, n=7 of grade II, G2, 

n=7 of grade III, G3). Protein immunoprecipitation was performed and followed by Western blot 

analysis. Indeed, the presence of GSTM1:ASK1 protein:protein interaction was confirmed in all 

ccRCC samples studied (Figure 42). 

 

 

 

 

 

 

 

 
Figure 42. Cytosols obtained from ccRCC tissue homogenates were immunoprecipitated with anti-
GSTM1 antibody. The samples were subjected to SDS-PAGE electrophoresis on 10% gel, followed 
by incubation with the primary antibodies against GSTM1 and ASK1; G1- tumor grade I; G2- 
tumor grade II; G3- tumor grade III. IP- immunoprecipitation; WB- Western blot 
 

 Since it is already known that GSTP1 may act as an inhibitor of apoptosis by means of 

controlling JNK catalytic activity, we analyzed if the potential presence of GSTP1:JNK1/2 

Correlation Correlation coefficient (r) p-value 
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0.81 0.014 
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complexes in specimens of tumor tissue obtained from 20 patients with ccRCC. As described 

previously, tumor tissue samples were divided in three groups, according to the tumor’s grade (n=6 

of grade I, G1, n=7 of grade II, G2, n=7 of grade III, G3). Protein immunoprecipitation, followed 

by Western blot analysis, showed the presence of JNK1/2/GSTP1 complexes in all ccRCC samples 

studied (Figure 43).  

 

 

 

 
 
 
 
 
 
 
 
Figure 43. Cytosols obtained from ccRCC tissue homogenates were immunoprecipitated with anti-
GST3/GST pi antibody. The samples were subjected to SDS-PAGE electrophoresis on 10% gel, 
followed by incubation with the primary antibodies against GST3/GST pi and JNK1/2; G1- tumor 
grade I; G2- tumor grade II; G3- tumor grade III. IP- immunoprecipitation; WB- Western blot 

 

In this manner, we confrmed that GSTM1 and GSTP1 proteins do form protein:protein 

complexes with regulatory MAP kinases, ASK1 and JNK1, respectively and in that way seem to 

negatively regulate kinase-dependent proliferation pathways. 
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5 DISCUSSION 

Prominent genetic heterogeneity, resulting from either gene deletions or SNPs in the coding 

and non-coding regions of GST genes, might serve as a valuable indicator of cancer risk assessment 

(Di Pietro et al., 2010; Hollman et al., 2016; Josephy, 2010). Moreover, there is a growing body of 

evidence that GSTs may participate in tumor progression and affect patients’ survival by regulating a 

number of cellular processes via protein:protein interactions as endogenous negative regulators of 

protein kinases (Board and Menon, 2013; Laborde, 2010; McIlwain et al., 2006; Pajaud et al., 2012; 

Tew and Townsend, 2012).  

In this study, we noted an increased risk of both overall RCC and ccRCC development in 

carriers of GSTM1-null and GSTP1-variant genotypes, which was even more pronounced when they 

were in combination. Furthermore, 22% of all recruited ccRCC patients were carriers of combined 

GSTM1-null/GSTT1-active/GSTA1 low-activity/ GSTP1-variant genotype, which might be considered 

as “risk-associated genotype combination”. On the other hand, an unfavorable postoperative 

prognosis was found for both overall RCC and ccRCC carriers of the GSTM1-active genotype. The 

molecular mechanism underlying the role of monomeric GSTM1 and GSTP1 forms in RCC 

progression might be explained by the presence of GSTM1:ASK1 and GSTP1:JNK1/2 

protein:protein interactions.  

Due to a complex process of RCC development and progression, so far, little progress has 

been made towards the development of specific biomarkers that would be useful for the following 

RCC clinical scenarios: (a) identifying subjects who have or are very likely to develop RCC, (b) 

identifying renal masses that can be placed under active surveillance prior to resection, as opposed to 

tumors of advanced pathologic stage, and (c) precise more accurate prognosis of patients with 

developed RCC. In recent years, attention has been reverted towards genetic variants, such as 

deletional and SNP polymorphisms, often referred to as “quantitative trait loci”, that could contribute 

a small, but significant risk not only for the development, but also for the progression of complex 

disorder such as cancer (Foulkes, 2009). Hence, the panel of candidate genes, with respect to their 

different cellular functions, are currently being investigated as a part of potential future marker 

profile for renal cell carcinoma, including carcinogen detoxification genes, such as GSTs (Protzel et 

al., 2012). This xenobiotic-metabolizing enzymes play an important role in cellular protection from 

chemical stress, by conjugating reduced glutathione to a variety of electrophilic xenobiotics or 

products of oxidative stress (Hayes et al., 2005; Oakley, 2011). Presumably, GST genotyping could 
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identify individuals in whom this process is diminished, due to complete lack or alteration in GST 

enzyme activity. 

The GSTM1-null genotype was the focus of numerous investigations attempting to elucidate 

the effect of GSTM1 deficiency and susceptibility to cancers. The underlying hypothesis of these 

studies is that homozygous deletion of GSTM1 may leave susceptible tissues unprotected from 

somatic DNA mutations, due to impaired ability to detoxify electrophilic carcinogen, and may place 

GSTM1-null individuals at increased cancer risk. Many of these studies failed to demonstrate such an 

association, including the impact of GSTM1-null genotype on RCC development, which has been 

further evaluated in numerous meta-analysis (Abid et al., 2016; Cheng et al., 2012; Huang et al., 

2015; Jia et al., 2014; Liu et al., 2012; Yang et al., 2013). However, this refers only to GSTM1-null 

genotype as individual risk factor for RCC, while it has been suggested that when present together 

with polymorphisms in certain genes related to activation or detoxification of renal carcinogens 

(CYP1A1, GSTT1, GSTP1, NAT2), GSTM1-null genotype is associated with increased risk of RCC 

(De Martino et al., 2010). Still, our study did demonstrate that the GSTM1-null was a significant 

genetic risk factor for RCC development, which was further in complete agreement with our 

findings regarding the role of GSTM1 polymorphism in ccRCC development. A possible 

explanation for discrepancy in obtained results might be attributed to the evident lack of patients’ 

individual-level data that are necessary for adjusted risk analysis, as well as to differences in the study 

populations. To our knowledge, the present study is the first that was conducted on a significant 

number of RCC cases (comprising patients with clear cell RCC, papillary RCC, chromophobe RCC, 

collecting duct RCC, etc.) and respective controls, with available detailed individual information 

regarding demographic data, clinical characteristics of tumor and lifestyle factors, used for adjusted 

risk analysis.  

Another widely investigated GST polymorphism, GSTT1, seems to be even more 

controversial (Cheng et al., 2012; Salinas-Sánchez et al., 2012; Yang et al., 2013). GSTT1 deficiency 

is the result of a gene deletion. After the discovery that GSTT1 can activate some compounds to 

even more reactive intermediates (Brüning et al., 1997; Guengerich, 2005; Thier et al., 2003), the 

GSTT1 deletion polymorphism was the subject of many studies, some of which tried to determine if 

the presence of the GSTT1-active genotype was associated with RCC development, independently or 

in combination with high and long-term exposure to certain environmental or occupational hazards 

(Buzio et al., 2003; Karami et al., 2008; Longuemaux et al., 1999). Apparently, GSTT1 may play a 

role as a risk modifier only in the case of subjects exposed to relevant substrates (Buzio et al., 2003). 
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On one hand, GSTT1 is involved in detoxification of ethylene oxide, formed endogenously from 

ethene, which is present at high levels in cigarette smoke (Hayes and Pulford, 1995). On the other 

hand, there is also evidence that GSTT1-active individuals, occupationally exposed to relevant 

compounds, such as halo- and dihaloalkanes, may produce potentially nephrotoxic glutathione 

conjugated compounds resulting in toxic effects and selective vulnerability of the tubular renal 

epithelium (Buzio et al., 2003; Hayes and Pulford, 1995; Meyer et al., 1991) Thus, the knowledge of 

specific environmental compounds, involved in the carcinogenesis process, is of quite importance 

for evaluating the relationships between GSTT1 genotype and cancer susceptibility. In case of RCC, 

Buzio et al. (Buzio et al., 2003) and Karami et al. (Karami et al., 2008) reported an increased risk of this 

tumor in GSTT1-active individuals, occupationally exposed to pesticides produced from halogenated 

compounds. Moreover, Brüning et al.(Brüning et al., 1997) suggested that high occupational exposure 

to the solvent trichloroethene also increased the risk for RCC among GSTT1-active individuals. 

Regarding the present study, it has been shown that GSTT1-active genotype did not, at least 

independently, contribute to RCC susceptibility. Although the structured questioners used in this 

study comprised a question regarding the occupational title that was held for more than one year, we 

considered it a poor tool for estimating the exposure levels to specific agents. Nevertheless, our 

results are in agreement with the 2 most recent meta-analysis (Jia et al., 2014; Yang et al., 2013) who 

found no association between the GSTT1 polymorphism and RCC risk in the overall and European 

populations. 

In contrast to other GSTs, only one polymorphism has been found in the coding region of 

GSTA1 gene, whereas several SNPs have been identified in 5’ non-coding promoter region of 

GSTA1 gene, among them GSTA1*C69T (rs3957356). Although it has been suggested that GSTA1 

expression is dominantly observed in clear cell RCC (Simic et al., 2009), whereas completely absent 

in chromophobic type of this tumor (Liu et al., 2007), the data on the potential role of GSTA1 SNP 

in both onset and prognosis of RCC are limited (Searchfield et al., 2011). This is even more 

surprising, considering the fact that GST alpha is predominantly expressed in the proximal 

convoluted tubule, the main site of nephrotoxins and renal carcinogens toxicity (Dekant, 1993), and 

from which clear cell RCC originates (Simic et al., 2001, 2001). The results obtained in this study 

showed no significance in terms of increased risk for RCC and even ccRCC development in carriers 

of GSTA1-low activity genotype (CT+TT), at least when analyzed independently. The possible 

explanation would be that the effect of this particular polymorphism may be masked by the activity 

of others GSTs, due to the overlapping substrate specificities.  
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GSTP1 SNP (rs1659) is one of the most extensively studied GST polymorphisms. This SNP 

encodes the Ile105Val substitution, which influences Ile105 and Val105 variants’ catalytic efficacy 

(Dusinská et al., 2001; Hu et al., 1997) and has been investigated not only in terms of cancer 

susceptibility, but also in relation to drug resistance (Laborde, 2010; Townsend et al., 2005; 

Townsend and Tew, 2003). Some of the available data suggest that active, yet functionally different 

GSTP1 isoenzymes may play a key role in the metabolism of environmental carcinogens, hence 

affecting the risk of RCC (Longuemaux et al., 1999). However, certain meta-analyses on GST 

polymorphisms in RCC did not report any significant individual association between GSTP1 

genotype and RCC risk (Jia et al., 2014; Yang et al., 2013). Once again, the overall sample size, as 

well as the lack of some important information, such as pathological status, environmental exposure 

and lifestyle habits, prevented the authors of these meta-analysis from determining the association 

between GSTP1 variants and RCC risk. Nevertheless, it has been already established that in 

comparison with normal kidney tissue, RCC contains significantly lower GSTP1 activity 

(Longuemaux et al., 1999), suggesting that GSTP1 might act as local modifier of renal cancer 

tumorigenesis. Our results on RCC patients indeed demonstrated a significantly increased risk for 

cancer development in patients carrying GSTP1-variant (ValVal) genotype, which was in line with 

the results obtained on the subpopulation of ccRCC patients. This particular association was even 

more pronounced when the combined effect of GST polymorphism and the susceptibility to overall 

RCC and ccRCC dvelopment was assessed in various genetic models, comprising GSTP1-variant 

genotype. What is more, the relevance of the patients’ clinical data, available for the adjusted risk 

analysis in this study, enhanced the association, as demonstrated by the obtained adjusted ORs, that 

was calculated next to the crude ORs. 

 The simultaneous identification of all GST genotypes appears to be of particular importance 

for reliable interpretation of the role of the GST family in RCC development, as the impaired 

activity of the single given GST may be compensated by other isoforms, due to the overlapping 

substrate specificities. Interestingly, we found that 22% of all ccRCC patients in our study were 

carriers of combined GSTM1-null/GSTT1-active/GSTA1 low-activity/GSTP1-variant genotype, 

suggesting that this particular combination of GST genotypes might be considered as „risk-

associated genotype combination” in RCC. Moreover, a trend in OR was observed when the 

cumulative effect of GST genotypes on the risk of both overall RCC and ccRCC development was 

analyzed. So far, only a small number of case-control studies have assessed the combined effect of 

GST polymorphism and the susceptibility to RCC. Ahmad et al. (Ahmad et al., 2012) have found that 
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three-way combination of GSTM1-null, GSTT1-null and GSTP1-variant genotypes resulted in 4.5-fold 

increase in RCC risk, which partially agrees with our results, while Sweeny et al. (Sweeney et al., 2000) 

have shown an elevated risk of RCC in carriers of GSTT1-null genotype in all combinations of 

GSTM1 and GSTP1 genotypes. The effect of gene-gene interaction was further analyzed in a couple 

of meta-analysis, however, most of the genetic models showed no significant association between 

combined effect of GSTs polymorphism and RCC risk (Jia et al., 2014; Yang et al., 2013).  

 Cigarette smoking, hypotension and obesity are considered as recognized risk factors for 

RCC development, accounting for about half of the cases diagnosed in the USA (Sweeney et al., 

2000). In this study, we observed an increase in RCC risk among individuals with smoking habits 

and hypertension, which lends support to previous findings in the literature (Brennan et al., 2008; 

Hunt et al., 2005; Theis et al., 2008; Weikert et al., 2008). However, our study failed to show any 

association between obesity and RCC. This apparent lack of correlation can be possibly attributed to 

the fact that our recruited controls were hospital based and to the prevalence of overweight 

individuals that might have been higher. 

Cigarette smoking is a very well recognized risk factor for RCC development. Since GSTs 

are involved in the metabolism of carcinogens in cigarette smoke, GST genotype and smoking may 

have a synergic effect on RCC risk. Moreover, the results of recent prospective study suggested that 

smoking increases the risk of certain common RCC subtypes, such as ccRCC and pRCC, but not the 

chRCC (Patel et al., 2015). The data on GSTM1 and GSTT1 genotypes among RCC cases and 

controls, stratified by smoking status, were available only in 2 studies (Karami et al., 2008; Sweeney 

et al., 2000) and were further analyzed in meta-analysis of Jia et al. No significant association between 

tested GST genotypes and RCC risk among smokers was found, most probably due to the small 

sample size (Jia et al., 2014). In our study, the significant association between GST genotype and the 

risk of ccRCC in smokers was found only for the GSTP1 genotype. Moreover, our results have 

shown that the GSTM1-null/GSTP1-variant/GSTA1 low-activity genotype combination was present in 

94% of smokers with ccRCC, increasing the risk of ccRCC up to 7.57. Unfortunately, none of the 

ccRCC smokers in our study had the four-way „risk-associated genotype combination”. 

Interestingly, we were the first to show that ccRCC smokers with GSTM1-null genotype had 

significantly higher concentration of BPDE-DNA adducts compared to GSTM1-active ccRCC 

smokers. The hypothesized role of GSTM1 deficiency in carcinogenesis suggests that DNA damage 

may occur at a higher rate in carriers of GSTM1-null genotype than in GSTM1-active individuals 

(Rebbeck, 1997). A number of studies consistent with this hypothesis have been conducted in 
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various pathologies but RCC, some reporting an increased levels of various DNA adducts in 

GSTM1-null individuals, due to their inability to eliminate potentially harmful active carcinogenic 

compounds (studies discussed in (Alexandrov et al., 2002; Rebbeck, 1997). This seems to be 

biologically plausible, especially in the case of compounds that are known to be metabolized by 

GSTM1 and are involved in the carcinogenic process. Namely it has been shown that GSTM1 

influences sensitivity to chemical carcinogenesis in individuals exposed to widespread environmental 

contaminants such as benzo(a)pyrene, styrene-7,8-oxide, and trans-stilbene oxide (Rebbeck, 1997). 

In particular, tobacco smoke, dietary habits and indoor ambient air are important sources of 

exposure to benzo(a)pyrene (B(a)P), already implicated as one of the components of tobacco smoke 

related to the induction of lung cancer in smokers (Watanabe et al., 2009). In humans, B(a)P 

undergoes two successive oxygenation reactions, mediated predominantly by CYP1A1, ultimately 

leading to BPDE production. This highly mutagenic compound is predominately metabolized by 

GSTM1 followed by GSTP1 and GSTA1, with the different variants showing different substrate 

specificity (Alexandrov et al., 2002; Sundberg et al., 2002, 1998). The study of Lodovici et al have 

characterized subjects with GSTM1-null and GSTP1 wild-type as carriers of “high-risk” genotypes, 

associated with higher levels of BPDE-DNA adducts (Lodovici et al., 2004). Indeed, sever lines of 

evidence suggest that GSTP1*Val allelic variant of the enzyme possesses greater catalytic activity for 

BPDE and other PAH diol epoxides (Alexandrov et al., 2002; Sundberg et al., 2002, 1998). Although 

GSTM1-null ccRCC smokers in this study had significantly higher levels of BPDE DNA-adducts, 

our results failed to demonstrate any significant correlation between GSTP1 polymorphism and 

BPDE-DNA adducts, suggesting that some other GSTP1 substrates might also be important in 

RCC development. Other factors, such as CYP1A1 expression, DNA repairing processes, as well as 

cell turnover could also affect the level of such DNA adducts and should be taken in consideration 

as well (Alexandrov et al., 2002). 

Regarding the modifying effect on risk of ccRCC conferred by hypertension, it seems that 

this recognized risk factor contributed to genotype-associated ccRCC risk in all examined 

polymorphisms, once again with special emphasis on GSTM1-null and GSTP1-variant genotypes. Still, 

as hypertension alone was significantly associated with ccRCC development, the obtained results 

indicated a possible effect of exposure rather than the effect of the polymorphism itself. However, 

the obtained results might also be explained by the significant antioxidant role of GSTs, since 

oxidative stress is recognized as an important pathogenetic factor in the hypertension development 

(Polimanti et al., 2013). In this line, it has been suggested that the determination of GST genotypes 
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might be helpful in identifying individuals at high-risk for hypertension, especially in the case of 

GSTA1 polymorphism (Oniki et al., 2008).  

We found no significant association in terms of modifying effect on risk of ccRCC conferred 

by obesity. The literature data regarding the GST-BMI interaction seem to be scarce. Sweeney at al. 

have found an association between GSTT1-null genotype and RCC risk that seemed to vary by BMI, 

with the strongest association among subjects in the lowest tertile of BMI, who were otherwise at 

low risk of RCC (Sweeney et al., 2000). According to the authors, the possible mechanism might 

involve reactive oxidants, where the protection by GSTT1 is important among individuals with low 

levels of exposure, but becomes over-whelmed and does not the affect risk among the highly 

exposed. However, it is possible that the GSTT1-BMI interaction was a chance finding (Sweeney et 

al., 2000).  

 Interestingly, all of the three recognized risk factors for RCC development (smoking, 

hypertension and obesity) have been linked with increased endogenous formation of reactive 

oxidants and lipid peroxidation, as possible underlying mechanisms. Moreover, it has already been 

shown that changes in redox status in RCC tumor tissue occur as a consequence of decreased 

enzyme antioxidant capacity, together with altered GST alpha expression, contributing to both RCC 

development and tumor growth (Pljesa-Ercegovac et al., 2008). Some of the GST enzymes are 

shown to possess catalytic activity towards phospholipids, hydroperoxide, supporting the fact that 

GSTs may prevent DNA damage from lipid peroxides formed endogenously due to redox 

imbalance (Ahmad et al., 2012; Hurst et al., 1998; Seeley et al., 2006). Presumably, the presence of 

polymorphisms in GST genes may result in a lower antioxidant capacity of GST enzymes and higher 

level of oxidant DNA damage (Sweeney et al., 2000). Therefore, we determined the levels of 8-

hydroxy-2′-deoxyguanosine (8-OHdG), the most widely used fingerprint of radical attack towards 

DNA, in RCC patients that were stratified by the presence or absence of the recognized risk factors 

for RCC development, and analyzed them with respect to various GST genotypes. Although the 

acquired values were slightly higher in RCC patients with „risk-associated genotypes“ compared to 

the values observed in RCC patients with reference genotype, obtained results did not reach the 

statistical significance.  

When assessing the potential prognostic value of GST polymorphism in RCC patients, our 

result indicated that carriers of GSTM1-null genotype had significantly better survival compared to 

the carriers of GSTM1-active genotype. Moreover, GSTM1-null genotype independently predicted 

favorable postoperative prognosis for RCC patients when the association between different GST 
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genotypes and overall mortality, adjusted by covariates in three different models, was analyzed. 

Finally, the frequency of the GSTM1-null genotype was significantly higher among living overall 

RCC and ccRCC patients in comparison with the deceased. Indeed, our results on the role of 

GSTM1-null genotype in RCC patients survival are in complete agreement with previous results of 

De Martino et al. who have also reported that the GSTM1-null genotype was associated with a higher 

survival rate in RCC patients (De Martino et al., 2010). Moreover, these findings are consistent with 

a decreased death rate that was found for GSTM1-null women, however, diagnosed with breast 

cancer (Ambrosone et al., 2001). One of the possibly most clinically important observation regarding 

the GSTM1 deficiency is that it significantly contributed to survival of patients undergoing 

chemotherapy for childhood leukemia (Board and Menon, 2013). 

 Unfortunately, no statistically significant results were obtained for other investigated GST 

polymorphisms in terms of postoperative prognosis and the risk of overall mortality, although 1.7- 

fold increased risk was found for carriers of GSTP1-variant (ValVal) genotype in two investigated 

models. Previous data on the prognostic role of GSTs seem to been limited only to GSTM1 

polymorphism. Yet another study investigated whether the expression of GST α and GST π has any 

prognostic value in RCC patients, however, without assessing the effect of most common GST 

polymorphisms. Survival analysis was restricted to ccRCC and indicated a better survival of patients 

with ccRCC tumors expressing GST α (Searchfield et al., 2011). 

 Our results on the association between GST polymorphisms and tumor grade /clinical TNM 

stage of RCC have shown significant correlation only for the GSTM1 genotype. The association of 

the GSTM1-null with tumor grade II (G2) was noted for RCC and for its most frequent subtype, 

ccRCC. The results of this study are in agreement with the findings of De Martino et al. who have also 

reported that the GSTM1-null genotype was associated with a lower tumor grade (De Martino et al., 

2010). On the other hand, two case-control studies have demonstrated an association of GSTT1-null 

genotype with more advanced clinical TNM stages and tumor grades in RCC patients, which were 

further confirmed in a very recent meta-analyisis of Huang et al (Huang et al., 2015). According to the 

recent study by Tan et al, another GST µ class member, GSTM3 and its SNP rs1332018 variant, has 

proved to be not only a significant risk factor, but also significant prognostic factor for RCC 

development (Tan et al., 2013). 

 The possible molecular mechanism underlying the role of GSTM1 protein in RCC 

progression might be explained through the effect of GSTM1 on one of the major signal 

transduction pathway, which includes a cascade of three classes of protein kinases: mitogen-activated 
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protein kinase kinase kinase (MAP3K), MAPK kinase (MAP2K) and MAPK. This evolutionally 

conserved intracellular system is known for regulating the cellular stress response (Shiizaki et al., 

2013). First in line is the apoptosis signal-regulating kinase 1 (ASK1), a  MAP3K family member, 

that can activate the well-known MAPK signaling cascades, the c-Jun NH2-terminal kinase/stress-

activated protein kinase (JNK/SAPK) and the p38 (Ichijo et al., 1997), both involved in cellular 

stress-induced apoptosis (Ichijo et al., 1997; Shiizaki et al., 2013; Tobiume et al., 2001). Namely, 

ASK1 is activated by various types of stress, including oxidative stress, endoplasmatic reticulum 

stress, anti-cancer drugs and calcium overload, as well as by receptor mediated inflammatory signals 

such as TNF-α and lipopolysaccharide (Matsuzawa et al., 2010). In unstimulated cell, ASK1 is 

constitutively engaged in forming high molecular mass complex, termed ASK1 signalosome, that 

consists of homo-oligomeric ASK1, its negative regulator thioredoxin (Trx) and other mostly 

unidentified components (Noguchi et al., 2005). What is more,  the formation of an even higher 

mass complex of ASK1 (>3000kDa) seems to be induced under ROS and TNF-α stimulation 

(Shiizaki et al., 2013). There, Trx disassociates from ASK1, while tumor necrosis factor-receptor 

associated factor-2/6 (TRAF2/TRAF6) are recruited to signalosome, positively regulating ASK1 

activity by facilitating the auto-phosphorilation of ASK1 (Noguchi et al., 2005). 

 The redox regulatory protein Trx is one of the most studied negative regulators of ASK1 

(Fujino et al., 2007; Matsuzawa et al., 2010; Shiizaki et al., 2013).  However, many studies have 

revealed that a variety of antioxidant enzymes and molecular chaperons also inhibit the  activation of 

ASK1 (Matsuzawa et al., 2010). According to the results obtained booth in vivo and in vitro, mouse 

GSTMu1-1 physically interacts with ASK1 as well, functioning as another ASK1 negative regulator. 

Namely, Cho et al. have shown that under unstimulated conditions, mGSTM1-1 block ASK1 

oligomersiation, suppresses ASK1 mediated activation of JNK/SAPK signaling cascade and 

represses ASK1-dependent apoptotic cell death, independently of its transferase activity (Cho et al., 

2001; Dorion et al., 2002). Interestingly, it has been shown that the same region of ASK1 seems to 

be engaged in protein:protein interactions with either GSTM1-1 or Trx, suggesting the presence of a 

pool of GSTM1:ASK1-1 and ASK1:Trx complexes under unstressed conditions (Pajaud et al., 

2012). Various types of cell stress (heat shock or reactive oxygen species) can result in the release of 

ASK1 from GSTM1:ASK1-1 or ASK1:Trx complexes, ASK1 oligomerisation, autophosphorylation 

and subsequently the activation of the p38 signal pathway (Dorion et al., 2002). 

 The results of this study, for the first time, have confirmed the association between GSTM1 

and ASK1 in human ccRCC tissue samples. Our next goal was to assess the significance of this 
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protein:protein interaction and see if the polymorphic expression of GSTM1 may influence the 

ASK1-dependent apoptosis. As ASK1-JNK/p38 apoptotic pathway is mainly medicated by 

cytochrome c release from mitochondria and activation of Caspase-3 activity (Hatai et al., 2000), we 

determined the expression of ASK1 and Cleaved Caspase-3 in both ccRCC tumor and adjacent non-

tumor tissue samples, all stratified according to the GSTM1 genotype. Caspase-3, an executor 

caspase, represents the most downstream enzyme in the apoptosis-inducing protease pathway and is 

shown to correlate with the level of apoptosis in the best manner. Cleaved Caspase-3 is its activated 

form, responsible for the actual destruction of the cell, cleaving multiple structural and repaired 

proteins (Pljesa-Ercegovac et al., 2011). As expected, a trend of decrease in ASK1 and Cleaved 

Caspase-3 expressions was evident with grade advancement. Moreover, although there was no 

statistically significant difference in the protein level between the carriers of two GSTM1 genotypes, 

the level of both ASK1 and Cleaved Caspase-3 was obviously lower in GSTM1-active individuals 

across all tumor grades, supporting the possible role of GSTM1 as yet another negative regulator of 

ASK1-dependent apoptosis mediated by mitochondria-dependent caspase activation. The ASK1-

JNK/p38 pathway was found to be of quite importance for the occurrence of the apoptosis in RCC 

cells. Namely, Hassan et al. demonstrated that upon the induction of ASK1-JNK/p38 pathway by 

anti-Fas monoclonal antibody, the activation of Fas-Associated protein with Death Domain 

(FADD)-Caspase-8-Bid signaling occurred in studied RCC cell lines, resulting in the translocation of 

both Bax and Bak proteins, and subsequently mitochondrial dysregulation that is characterized by 

the loss of mitochondrial membrane potential, cytochrome c release and cleavage of Caspase-9, 

Caspase-3 and Poly (ADP-ribose) polymerase (PARP) (Hassan et al., 2009). Indeed, our results 

indicated a strong positive correlation between the expression of ASK1 and Cleaved Caspase-3. 

 In summary, it can be speculated that RCC patients with GSTM1-null genotype, and 

consequently deficient GSTM1, may have higher ASK1 activity, resulting in increased apoptotic 

activity in the tumor. On the other hand, patients with GSTM1-active genotype may have increased 

tumor proliferation due to decreased ASK1-dependent apoptotic activity, leading to RCC 

progression and poorer survival. The mentioned events may be even more evident when stressors, 

such as heat shock or reactive oxygen species, activate ASK1 (McIlwain et al., 2006).  

 Monomeric form of GSTP1 protein seem to be involved in  protein:protein with JNK1 or 

MAPK8, which has been demonstrated to promote one of the most important regulatory functions 

of GSTP1 - stress-dependent regulation of cell cycle progression through either differentiation, 

proliferation, senescence or apoptotic responses (Bartolini and Galli, 2016). Namely, it is known that 
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by means of protein:protein interactions, GSTP1 directly targets at least three proteins in one 

response-pathway: TRAF2 and its downstream targets, JNK and ASK1. Structural aspects of these 

interactions remain poorly characterized. Earliest and better characterized physical interactions of 

GSTP1 includes the one with kinase JNK1 (Adler et al., 1999). So far, it is known that four putative 

domains are involved in the interaction between GSTP1 subunits and JNK. Two of these are 

involved in GSTP1 binding to JNK, whereas the other two affect phosphorylation of JNK (Adler 

and Pincus, 2004). It is speculated that the proposed mechanisms by which GSTP1 inhibits 

activation of JNK comprises either blocking phosphorylation of JNK or the promotion of 

dephosphorylation of phosphorylated JNK (Adler and Pincus, 2004). The particular GSTP1:JNK1 

interaction has been reported in human leukemia, hepatic carcinoma, bladder cancer and 

neuroblastoma cells (Pljesa-Ercegovac et al., 2010). Moreover, the results of this study have 

confirmed the presence of GSTP1:JNK1/2 complex in all investigated RCC samples. This 

protein:protein interaction seems to be of particular importance as it represents the new, functional 

link between upregulated GSTP1 and malignant phenotype. In particular, the overexpression of 

GSTP1 was found in not only in tumors but in drug resistant cells, correlating with tumor stage and 

grade (Simic et al., 2009; Townsend and Tew, 2003). For a long time, the elevated expression of the 

GSTP1 in tumors has been frequently associated with detoxification reactions. However, GSTP1 

overexpression has been determined even in cases when there was no evidence that the selecting 

drug was a substrate for this enzyme. Indeed, the signaling and regulatory functions observed 

between the monomeric forms of GSTP1s and other cellular proteins, seems to perfectly coexist 

with the classical detoxification function of dimeric GSTP1, thus linking the GSTP-mediated 

detoxification and signaling response to electrophilic stressors (Bartolini and Galli, 2016). Namely, 

upregulation of GSTP in tumors would result in an increase in inactive sequestered JNK 

subsequently suppressing apoptotic signaling pathways and conferring resistance to drug induced 

cell death. This would explain the correlation observed between increased GSTP1 expression in 

tumors and survival. Identified protein:protein or metabolic/redox interactions of the monomeric 

and oligomeric forms of GSTP proteins suggest that the role of GSTP as regulatory protein 

becomes very important in tumorogenesis and drug resistance. In theory, in case of excess ROS 

generation following drug administration, GSTP1 would dissociate from JNK and trigger a cascade 

of signaling events starting with the activation of c-Jun via phosphorylation, leading subsequently to 

proliferation or apoptosis (Board and Menon, 2013).  
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 In this study, the protein level of GSTP1 increased with tumor grade advancement whereas 

the expression of JNK1/2 differed between low and high graded samples.  However, the effect of 

polymorphic expression of GSTP1 on the JNK1-dependent apoptosis was not estimated. So far, 

only one study of  Thevenin et al. have shown that GSTP1 variant Val allele is a better JNK1 

inhibitor, hence with the greater antiapoptotic effect than the wild-type Ile allele (Thévenin et al., 

2011). 

 This study has several limitations that need to be addressed. The PCR analysis of GSTM1 

and GSTT1 genotypes does not positively distinguish between homozygous wild type from 

heterozygous individuals which may not reflect the true underlying genetic model and thus may not 

provide a valid and accurate estimate of the genetic risk. Furthermore, the case-control design was 

used for estimating of associations between GST genotypes and risk of RCC and therefore the 

selection bias might influence the results. Additionally, recall bias regarding the recognized risk 

factors for RCC development might have influenced the results as well. Furthermore, the data on 

environmental or occupational exposure were not validated, hence not used in the analysis of the 

obtained results.  Our control group was hospital-based and relatively small. Therefore, the use of 

population controls may have been more appropriate. In this line, the study subjects were white 

only; therefore the possible effect of ethnicity could not be evaluated. Moreover, the BPDE-DNA 

adduct levels were not determined in control population.  
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6 CONCLUSIONS 

Based on the provided results and discussion, the following conclusions can be drawn: 

 The results of this study have confirmed that smoking and hypertension are independent risk 

factors for RCC development: 

o Smokers exhibit 1.5-fold increased risk for RCC development compared to non-

smokers 

o Hypertensive patients exhibit 3-fold increased risk for RCC development compared 

to normotensive patients 

 GSTM1-null, as well as GSTP1-variant  genotypes represent independent risk factors for RCC 

development: 

o Carriers of GSTM1-null genotype exhibit 2-fold increased risk for overall RCC and 

specifically ccRCC development compared to the carriers of GSTM1-active genotype 

o Carriers of GSTP1-variant genotype exhibit 3-ford increased risk for overall RCC and 

specifically ccRCC development compared to the carriers of GSTP1-wild type 

genotype 

 Combined GSTM1-null/GSTT1-active/GSTA1- low activity/GSTP1-variant genotype might be 

considered as “risk-associated genotype combination” in both overall RCC and ccRCC 

patients: 

o There is a dominant combined effect of GSTM1-null/GSTP1-variant genotypes on 

overall RCC and ccRCC risk development 

o There is a cumulative effect of “risk-associated genotype combination” on overall 

RCC and ccRCC risk development 

 Significant modifying effect on ccRCC risk develompent conferred by hypertension was 

observed in carriers of GST variant genotypes: 

o Hypertensive patients with GSTM1-null genotype exhbit 6-fold increased risk of 

ccRRC development in comparison with normotensive patients with GSTM1-active 

genotype 

o Hypertensive patients with GSTT1-active genotype exhbit 3-fold increased risk of 

ccRRC development in comparison with normotensive patients with GSTT1-null 

genotype 
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o Hypertensive patients with GSTA1-low activity genotype exhbit 4-fold increased risk 

of ccRRC development in comparison with normotensive patients with GSTA1-

active genotype 

o Hypertensive patients with GSTP1-variant genotype exhbit 8-fold increased risk of 

ccRRC development in comparison with normotensive patients with GSTP1-wild 

type genotype 

 The lack of modifying effect on ccRCC risk develompent conferred by obesity was observed 

in carriers of GST variant genotypes 

 Significant modifying effect on ccRCC risk develompent conferred by smoking was 

observed in carriers of GST variant genotype:: 

o Smokers with GSTP1-variant genotype exhibit 4-fold increased risk of ccRCC 

development when compared to the non-smokers with GSTP1-wild type genotype 

o Smokers with GSTP1-variant genotype exhibit 3-fold increased risk of ccRCC 

development when compared to the smokers with GSTP1-wild type genotype 

o Smokers with combined GSTM1-null/GSTP1-variant genotype exhibit 5-fold 

increased risk of ccRCC development when compared to the smokers with GSTM1-

active/GSTP1-wild type genotype 

o Smokers with combined GSTM1-null/GSTP1-variant/GSTA1-low activity genotype 

exhibit 7-fold increased risk of ccRCC development when compared to the smokers 

with GSTM1-active/GSTP1-wild type/GSTA1-active genotype 

 The presence of GSTM1-null genotype is associated with significantly higher levels of 

BPDE-DNA adduct formation in ccRCC smokers 

 The presence of GST variants is not associated with higher levels of byproducts of oxidative 

DNA damage (8-OHdG) in RCC patients, even when stratified according to the presence 

of recogized risk factors for RCC development 

 The presence of GSTM1 genotype is associated with RCC tumor grade: 

o GSTM1-null genotype was the most frequent in grade II (G2) RCC and ccRCC 

tumors 

o No association was observed between GSTA1, GSTT1 and GSTP1 genotypes and 

overall RCC and ccRCC stage 



GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in RCC 

 

100 

 

 GSTM1 genotype represents a significant prognostic factor in overall RCC and specifically 

ccRCC patients: 

o Significantly higher frequency of the GSTM1-null genotype was observed in living 

overall RCC and ccRCC patients in comparison with the frequency of GSTM1-null 

genotype in deceased overall RCC and ccRCC patients included in the follow-up 

o Shorter overall survival was found for the whole group of RCC, as well as ccRCC 

patients with GSTM1-active genotype, compared to the RCC and ccRCC carriers of 

GSTM1-null genotype  

o GSTM1-active genotype was confirmed to be an independent predictor of higher risk 

of overall mortality compared to the GSTM1-null genotype, in the whole group of 

RCC and ccRCC patients, when analyzed in 3 different proportional hazard 

regression models 

 The expression pattern of the analyzed GSTM1 and GSTP1 protein, as well as regulatory 

(ASK1, JNK1/2) and executor (Cleaved-Capsase 3) apoptotic molecules varied with tumor 

grade:  

o  Significantly lower expression of the GSTM1 protein was found in ccRCC tissue 

samples with higher grade in comparison with non-tumor kidney tissue pool 

o Significantly lower expression of ASK1 was found in G2 and G3 ccRCC tissue 

samples 

o A gradual increase of GSTP1 protein expression across tumor grade was observed in 

ccRCC tissue samples 

o JNK1/2 expressesion was higher in non-tumor and G1 tumor tissue, compared to 

G2 and G3 in ccRCC tissue samples 

o  The expression of Cleaved Caspase-3 gradually decreased across tumor grade in 

ccRCC tissue samples 

 The supposed molecular mechanism underlying the prognostic role of GSTM1 protein is the 

negative regulation of apoptotic signaling pathways through sequestration of signaling 

ASK1 kinase by GSTM1 protein: 

o The presence of GSTM1:ASK1 protein:protein interaction was found in all ccRCC 

samples studied 
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o A strong positive correlation was found between GSTM1 and expression of executor 

(Cleaved Caspase-3) apoptotic molecules 

o Cleaved Caspase-3 protein levels were lower in GSTM1-active individuals across 

tumor grade in comparison with Cleaved Caspase-3 protein levels in GSTM1-null 

individuals 

 Non-catalytical regulatory role of GSTP1 protein was confirmed in all ccRCC tissue samples: 

o The presence of GSTP1:JNK1/2 complexes was found in all ccRCC tissue samples  

 Overall, GST variants may contribute to individual RCC risk assessment in terms of both 

development and postoperative prognosis 
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LIST OF ABREVIATIONS 

4-HNE: 4-hydorxynonenal 

8-OHdG: 8-hydroxy-2′-deoxyguanosine 

APS: amonium per-sulphate 

ASK1: apoptosis signal-regulating kinase 

B(a)P: benzo(a)pyrene 

BCA: bicinchoninic acid 

BMI: bodi mass index 

BPDE: benzo(a)pyrene diolepoxide 

BSA: bovine serum albumine 

Ca: cases 

ccRCC: clear renal cell carcinoma 

chRCC: chromophobe renal cell racinoma 

CI: confidence interval 

Co: controls 

DNA: deoxyribonucleic acid 

DTT: dithiothreitol 

EDTA: Ethylenediaminetetraacetic acid 

ELISA: enzyme linked immunosorbent assays 

FAAD: Fas-Associated protein with Death Domain 

GST: glutathione S-transferase 

GSH: glutathione 

HRP: horseradish peroxidase 

IRAC:  International Agency for Research on Cancer 

ISUP: International Society of Urological Pathology 

JNK1: c-Jun NH2-terminal kinase 

MAPK: mitogen activated kinase 

mRCC: metastatic renal cell carcinoma 

OR: odds ratio 

PAH: polyaromatic hydrocarbons 

PARP: Poly (ADP-ribose) polymerase 
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PCR: polymerase chain reaction 

pRCC: papillary renal cell carcinoma 

RCC: renal cell carcinoma 

RFLP: restriction fragment length polymorphism 

RNOS: reactive nitrogen oxygen species 

ROS: reactive oxygen species 

RR: relative risk 

SAPK: stress-activated protein kinase 

SDS: sodium dodecyl sulfate 

SDS-PAGE: sodium dodecyl sulfate-polyacrilamide gel electrophoresis 

SNP: single nucleotide polyorphism 

TCC: transitional cell carcinoma 

TNM: tumor–node–metastasis 

TRAF2: factor 2 bound to the TNFα receptor 

Trx: thioredoxin 

UICC: Union for International Cancer Control  

UDP: Uridine diphosphate  

WHO: World health organisation 
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