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Title of the doctoral dissertation:  

RADIOLOGICAL AND IMMUNOHISTOCHEMICAL ANALYSES OF 

HYPEROSTOSIS FRONTALIS INTERNA: MULTI-LEVEL APPROACH TO 

UNDERSTANDING THE DEVELOPMENT OF THIS PHENOMENON. 

 

Summary 

Background 

 Hyperostosis frontalis interna (HFI) is the overgrowth of bony tissue on the 

inner plate of the frontal bone. Females manifest significantly higher  prevalence of HFI 

compared to males, with the peak incidence in postmenopausal women. 

Etiopathogenesis of HFI is still ambigous. Different hormonal imbalances i.e. prolonged 

estrogen stimulation during reproductive period, or abnormal progesterone effect on the 

ovaries, or inadequate androgen stimulation are pointed out in the literature as the most 

probable causes of HFI, due to its high prevalence and severity in the females, as well as 

the fact that in males only those with hypogonadism manifest advanced stages of HFI. 

Several models have tried to provide an adequate explanation of HFI developement. 

The most recent is the „global model“ which states that neovascularization originating 

from dura, might be one of the key processes in its formation. Some studies suggested 

that women with HFI tend to develop more robust skull characteristics. However, there 

are no studies that investigated whether HFI is accompanied by changes in bone 

thickness or density in postcranial skeleton. Present macroscopical classification of HFI 

is based on morphological characteristics and extension of frontal bone involvement and 

includes four different types of HFI. Relatively low percentage of radiological 

recordings of HFI may ocure due to the fact that present macroscopical method of 

identification and classification encompasses multiplanar reconstruction of head CT 

scans, which makes it complicated for routine radiological practice. Additionally, it 

remains unclear whether different macroscopic stages of HFI can be regarded as 

successive phases in the process of HFI development. 

 



Hypohesis 

The frontal bone thickening in women with HFI is accompanied by increased bone 

thickness of the entire skull 

The frontal bone thickening in women with HFI is accompanied by increased bone 

thickness and increased bone density in the postcranial skeleton 

Frontal bone is particularly affected by HFI due to specific properties of its underlying 

dura 

Morphological appearance of different types of HFI defined in macroscopic 

classification are accompanied by corresponding differences in internal bone 

architecture 

It is possible to simplify current classification of HFI for radiological practice 

 

Material and methods 

 This study comprised four research phases. The first phase was designed as a 

cross-sectional study. It was conducted in the Center for Radiological Diagnostics of 

School of Dental Medicine, University of Belgrade. Study sample included 103 women 

who underwent computerized tomography (CT) of the head, done for diagnosis of 

chronical sinusitis. Only postmenopausal women (women who had their final menstrual 

period at least 12 mounts prior) with confirmed diagnosis of chronical sinusitis and who 

performed head CT scan for the first time were eligible to participate in this study. 

Exclusion criteria were presence of bone related pathologies other than HFI, as well as 

medical history of brain tumor, meningioma, renal diseases, primary 

hyperparathyroidism and Paget’s disease. Based on the head CT scan analyses results, 

women were categorized in the control group (without HFI) and the group with HFI. 

The correlation between the presence of HFI and thickness of other cranial bones was 

assessed on head CT scans, by measuring cranial bones thickness while dual energy x-

ray absorptiometry was used to determine possible changes in bone density between two 

investigated groups. Additionally, external geometry of the proximal femur between 



women with HFI and control group was analyzed using hip structure analysis. For the 

purpose оf sample collection for the second and third research phase, frontal bone 

samples and samples of its underlying dura, were collected during routine autopsies 

from human donor cadavers at the Institute of Forensic Medicine of the School of 

Medicine in Belgrade. The second phase of our study comprised immunohistochemical 

analyses of α-estrogen and CD34 receptors on dura underlying frontal bone, collected 

from 12 women with HFI and an age-matched control group of 15 women. Modified 

„Chalkley“ count method was utilized to measure microvessel density. The third phase 

included assessment of the 3D-microarchitecture of the frontal bone in 20 women with 

various types of HFI and 14 women in age-matched control group. The study sample in 

the fourth research phase comprised 73 women with various types of HFI and included 

fractal analysis of their head computerized tomography (CT) scans. By comparing the 

values of the parameters of shape (fractal dimension and circularity) we compared 

different types of HFI.  

 

Results and conclusion 

 Apart from a thicker frontal bone compared to women without HFI, women with 

HFI had thicker occipital and parietal bones as well. Additionally, our results suggested 

that frontal bone is the first one to thicken, followed by parietal and occipital bones 

respectively. In women with HFI, values of densitometric parameters in the spine and 

hip region did not significantly differ when compared to the age-matched post-

menopausal control group. Results of external geometry of the proximal femur analysis 

also did not indicate any significant differences between investigated groups of women. 

3D-microarchitectural analysis of the frontal bone in women with HFI and in an age- 

and sex-matched control group revealed that the women with HFI showed significantly 

higher bone volume fraction in the region of diploe, along with significantly thicker and 

more plate-like shaped trabeculae and reduced trabecular separation and connectivity 

density. Moreover, inner table of the frontal bone in women with HFI displayed 

significantly increased total porosity and mean pore diameter compared to controls. 

Therefore, it is possible that larger pores occur as a result of penetration of blood vessels 

from the dura, ultimately leading to diploization of the inner table. Analysis of the 



expression of CD34 receptors on the dura of the frontal region in women with HFI and 

the control group clearly showed that in women with HFI expression of CD34 was 

significantly increased, thus the vascularization was increased. Method of fractal 

analysis of the head CT scans of women with HFI detected significant differences of 

parameters of shape only between type D of HFI in comparison to types A, B and C of 

HFI.  

 The results of our study demonstrated that increased bone thickness and altered 

bone structure in women with HFI are localized only on the skull, particularly on the 

frontal bone and indicated that in the postcranial skeleton bone density did not differ 

between women with and without HFI. If sex steroid hormone disbalance participates in 

the pathogenesis of HFI, it could be by inducing only the local changes in dura and 

therefore resulting in increased vascular formation and osteoblast proliferation on the 

skull. Increased vascularization of the dura underlying frontal bone in women with HFI 

clearly implies the correlation between the expanded blood supply, of any origin, and 

HFI formation. Macroscopic types of HFI could not be distinguished at the level of 

bone microarchitecture and their consecutive nature cannot be supported. Rather, our 

study suggests that only two different types of HFI (moderate and severe HFI) have 

microstructural and justification by the method of fractal analysis, and should be further 

considered.  

 

Keywords: Hyperostosis; frontal bone; osteoporosis; postmenopausal women; micro-

architecture; dura.  

Scientific field: Medicine  

Specific scientific field: Skeletal biology 

 

 

 

 



Наслов докторске дисертације:  

РАДИОЛОШКА И ИМУНОХИСТОХЕМИЈСКА АНАЛИЗА ХИПЕРОСТОЗЕ 

ФРОНТАЛНЕ КОСТИ: МУЛТИДИСЦИПЛИНАРАН ПРИСТУП У 

PАСВЕТЉАВАЊУ НАСТАНКА ОВОГ ФЕНОМЕНА. 

 

Резиме 

Увод 

 Hyperostosis frontalis interna (HFI tj. ХФИ), представља нагомилавање 

коштаног ткива локализовано на унутрашњој површини фронталне кости. Чешће 

се јавља код особа женског пола са највишом инциденцом забележеном код жена 

у постменопаузи. Етипатогенеза ХФИ и даље није разјашњена. Различити 

хормонски дисбалaнси као што је пролонгирана естрогена стимулација током 

репродуктивног периода, поремећена продукција прогестерона од стране 

оваријума или неадекватна андоргена стимулација су у литератури наведени као 

највероватнији узрочници настанка ХФИ, имајући у виду високу преваленцу и 

израженију манифестацију ХФИ код жена, као и чињеницу да се само код 

мушкараца са хипогонадизмом јављају изражене форме ХФИ. Неколико модела је 

понуђено као могуће објашњење процеса настанка ХФИ. Најновији је “глобални 

модел“, по коме неоваскуларизација, пореклом из дуре, може бити један од 

кључних процеса у настанку ХФИ. У појединим студијама примећено је да жене 

са ХФИ могу развити робусније морфолошке карактеристике лобање у односу на 

оне без ХФИ. Међутим, не постоје студије које су испитивале да ли је ХФИ 

праћена променама у коштаној густини и спољашњој морфологији и у 

посткранијалном делу скелета. Постојећа макроскопска класификација ХФИ је 

базирана на морфолошким карактеристикама и обиму захваћености фронталне 

кости и обухвата четири различита типа ХФИ (А, Б, Ц и Д). Релативно низак 

проценат бележења ХФИ од стране радиолога, може се објаснити чињеницом да 

постојећи макроскопски метод класификације и идентификације ХФИ обухвата 

тродимензионалну реконструкцију прегледа главе начинјених методом 

компјутеризоване томографије (CT), и да је као такав, сувише компликован за 



рутинску радиолошку праксу. Такође, и даље није познато да ли различити 

макроскопски типови ХФИ могу бити посматрани као сукцесивне фазе у процесу 

настанка ХФИ. 

 

Хипотезе 

Код жена са ХФИ, поред задебљале фронталне кости, задебљале су и остале кости 

лобање. 

 

Задебљање фронталне кости код жена са ХФИ, праћено је повећањем коштане 

густине и дебљине и на посткранијалном делу скелета. 

 

ХФИ захвата фронталну кост због специфичних особина дуре која на њу належе. 

 

Морфолошки изглед различитих типова ХФИ, дефинисаних на основу 

макроскопске класификације, праћен је одговарајућим разликама у унутрашњој 

архитектури фронталне кости. 

 

Могуће је упростити актуелну класификацију ХФИ за употребу у радиолошкој 

пракси. 

 

Материјал и методе 

Ова студија се стастојала од четири истраживачке фазе. Прва фаза је 

дизајнирана као студија пресека. Спроведена је у Центру за радиолошку 

дијагностику, Стоматолошког факултета, Универзитета у Београду. Испитивани 

узорак чиниле су 103 жене, које су обавиле радиографисање главе методом СТ, 

због хроничног синуситиса. Само жене у постменопаузи (жене које су последњи 

менструални циклус имале најмање 12 месеци пре радиографисања), са 

потврђеном дијагнозом хроничног синуситиса и које преглед главе СТ методом  

раде по први пут, укључили смо у студију. Из студије смо искључили све жене са 

обољењима костију (осим ХФИ), туморима мозга, менингеомима, бубрежним 

обољењима, примарним хиперпаратиреоидизмом и Паџетовом болешћу. На 

основу резултата прегледа главе методом СТ, испитивани узорак поделили смо у 



контролну групу (жене које немају ХФИ) и групу жена са ХФИ. Могућу 

корелацију између постојања ХФИ и дебљине кранијалних костију испитивали 

смо на СТ радиограмима главе, тако што смо мерили дебљину фронталне, 

паријеталних и окципиталне кости. Како би смо испитали могуће разлике у 

коштаној густини на посткранијалном делу скелета, између испитиваних група 

жена, користили смо двоенергетску рендгенску апсорпциометрију (DXA). Разлике 

у спољашњој геометрији проксималног фемура између жена са ХФИ и жена у 

контролној групи испитиване су структурном анализом кука (HSA).  

У циљу прикупљања узорака за другу и трећу фазу истраживања, узорци 

фронталне кости и дуре која на њу належе, сакупљени су са кадавера донора, 

током рутинских обдукција на Институту за судску медицину, Медицинског 

факултета, Универзитета у Београду. Друга фаза истраживања обухватила је 

имунохистохемијску анализу α-естрогенских и CD34 рецептора на дури која 

належе на унутрашњу површину фронталне кости, сакупљену од 12 жена са ХФИ 

и 15 истодобних жена у контролној групи. Модификовани „Chalkey“ метод 

бројања је коришћен како би се испитала густина крвних судова на дури 

квантификацијом експресије CD34 рецептора. Трећа фаза истраживања 

обухватила је процену тродимензионалне микроархитектуре фронталне кости код 

20 жена са различитим типовима ХФИ и код 14 истодобних жена у контролној 

групи. У четвртој фази истраживања испитивани узорак чинилe cy 73 жене са 

различитим типовима ХФИ. Њихови CT радиограми главе анализирани cy 

методом фракталне анализе. Поредећи вредности параметара облика добијених 

методом фракталне анализе, поредили смо различите типове ХФИ. 

 

Резултати и закључак 

У односу на контролну групу, жене са ХФИ имале су осим дебље 

фронталне кости, и дебље паријеталне и окципиталну кост. Наши резултати су 

такође указали да фронтална кост прва задебљава, а затим сукцесивно паријеталне 

па окципитална кост. Вредности дензитометријских параметара у регионима кука 

и кичме, нису се сигнификантно разликовали када смо поредили жене са ХФИ и 

контролну групу. Резултати анализе спољашње геометрије проксималног фемура 

такође нису указали на постојање сигнификантних разлика између испитиваних 



група жена. Тродимензионална микроструктурна анализа фронталне кости жена 

са ХФИ и истодобне контролне групе жена, показала је значајне разлике. Женe са 

ХФИ имале су значајно виши  проценат коштане фракције у регији диплое, 

значајно дебље трабекуле организоване у коштано ткиво “тањирасте“ структуре, 

као и значајно мање вредности степена сепарације трабекула и степена 

повезаности трабекула, у пoређењу са женама у контролној групи. Шта више, 

структура унутрашње ламине фронталне кости код жена са ХФИ показала је 

значајно више вредности тоталне порозности и просечне величине пора у 

поређењу са контролном групом. Веће поре у унутрашњој ламини фронталне 

кости жена са ХФИ могу настати као последица пенетрације крвних судова из 

дуре, доводећи до диплоизације унутрашње ламине.  Анализа ескпресије CD34 

рецептора на дури фронталног региона код жена са ХФИ у поређењу са 

контролном групом, јасно је показала значајно већу експресију овог рецептора 

код жена са ХФИ, и указала на повећану васкуларизацију. Метод фракталне 

анализе радиограма главе жена са различитим типовим ХФИ, показао је значајне 

разлике у параметрима облика само између ХФИ типа Д, у поређењу са ХФИ 

типом А, Б и Ц.  

Резултати наших истраживања показали су да се код жена са ХФИ 

повећана дебљина и измељена структура костију јављају само на лобањи, посебно 

на фронталној кости, док на посткранијалном делу скелета нема разлика између 

испитиваних група. Уколико дисбаланс полних хормона учествује у настанку 

ХФИ, свој утицај могао би да оствари индукујући локалне промене само на дури, 

које доводе до њене повећане васкуларизације и последично повећане 

пролиферације остеобласта на костима лобање. Повећана васуларизација дуре 

која належе на фронталну кост, код жена које имају ХФИ, недвосмислено указује 

на корелацију између појачане васкуларизације, било ког порекла, и настанка 

ХФИ. Макроскопски типови ХФИ не разликују се на нивоу коштане 

микроструктуре, тако да нема доказа који подржавају теорију о њиховој 

сукцесивној природи. Тачније, наши резултати анализе микроструктуре и 

фрактална анализа указују на то да само два различита типа ХФИ (умерени и 

изражени тип) треба разматрати. 

  



Кључне речи: Хиперостоза; фронтална кост; остеопороза; менопауза; микро-

архитектура; дура. 

Научна област: медицина 

Ужа научна област: биологија скелета (остеологија) 
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1 Introduction 
 

1.1 Hyperostosis frontalis interna 

 Hyperostosis frontalis interna (HFI) is the condition firstly described  by 

pathologist Giovanni Batista Morgagni, a Padua University professor of anatomy, as a 

“specific variety of bone accretion localized on the inner table of the frontal bone” (1). 

He also observed co-occurrence of HFI with obesity and hirsutism. More than 200 years 

later, Stewart (2), Morel (3) and Moore (4) described that persons with HFI often 

suffered from headache and neuropsychiatric disorders and when these conditions were 

brought to connection with hormonal disorders they altogether formed Morgagni-

Stewart-Morel-Moore syndrome (5). 

 The diverse terminology related to the phenomenon of HFI testifies to the 

variety of opinion concerning whether HFI is a sole phenomenon or it is related to other 

conditions that lead to cranial bones thickening such as hyperostosis cranii diffusa 

(HCD) and hyperostosis calvaria interna (HCI) (4, 6, 7). Moore (4) considered HFI and 

HCD to be different manifestations of the same process, with HFI occurring first, as a 

precursor to HCD. Perou (6), on the other hand, offered the term HCI which includes all 

cases of endostosis, regardless of their endocranial location and he defined it as a 

‘‘bilateral, dysplastic, slow, often self-limited and benign, occasionally progressive and 

aggressive, proliferation of bone involving primarily the inner table of the skull, with or 

without participation of the diploe, and with a predilection for the frontal squama’’. He 

also pointed out the differences between HCI and HCD. Unlike HCI, HCD is primarily 

a dystrophic and degenerative process, not related to heredity, not influenced by sex or 

age, without racial predominance and with no specific clinical picture.  

 Finally, Hershkovitz et al. (7) gave priority to the term HFI over HCI, since HFI 

is the common term in the medical literature, and due to the fact that involvement of 

other areas of endocranium may imply different etiology. They defined HFI as the 

overgrowth of bony tissue on the inner plate of the frontal bone with the presence of 

single or multiple bony nodules. Same authors reported that HFI is usually restricted to 
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the area between the superior sagittal sinus and skull midline, while posterior, the 

ascending branch of the middle meningeal artery serves as a limiting factor. 

 Based on extent of involvement of the frontal bone, appearance, border type, 

shape, location in frontal bone and involvement of other bones, Hershkovitz et al. (7) 

developed a classification method of HFI: 

Type A: Isolated, elevated bony island(s), single or multiple, unilateral or bilateral, all 

of which exhibited discrete, often indented margins. These were generally under 10 mm 

in size, and were commonly found on the anteromedial part of the frontal bone.  

Type B: Nodular bony overgrowths, without discrete margins and with only slight 

elevation identified on less than 25% of the frontal bone. Occasionally isolated nodular 

areas were also identified.  

Type C: More extensive nodular bony overgrowth, associated with irregular thickening 

of up to 50% of the frontal endocranial surface. A tendency for greater elevation and 

coalescence was observed.  

Type D: Continuous bony overgrowth, involving more than 50% of the frontal 

endocranial surface. The entire region was found to be irregularly elevated with sharp, 

clearly demarcated borders. 

 

1.2 Differential diagnosis of HFI 

 The differential diagnosis of HFI includes various pathologies: focal masses 

(i.e., meningioma, endosteal osteoma), subdural and dural calcifications, Paget’s 

disease, acromegaly, and fibrous dysplasia (8). The characteristics of HFI (including 

clear boundaries along the middle meningeal artery, unaffected midline, and a tendency 

towards bilaterality) allow us to make clear differentiation of HFI from most of the 

mentioned processes (7). Unlike HFI, osteomas tend to be localized on the ectocranial 

surface and they are rarely bilateral (8). Large bony masses such as meningiomas and 

calcified subdural hematomas do not follow the macroscopical criteria for HFI 

identification and classification, proposed by Herhskovitz et al. (7). Acromegaly is a 
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generalized process with an increase in the diploic space and significant thickening of 

inner and outer tables of all skull components. Fibrous dysplasia is a process of diploic 

space expansion, associated with the thinning of both inner and outer tables of the skull. 

Paget’s disease involves most of the cranial bones, and shows thickening of both inner 

and outer tables (7). Facial bone involvement is not recognized in HFI, while it can be 

present in Paget’s disease and fibrous dysplasia (7). 

 

1.3 Sex and age distribution of HFI 

 Moore (1955) reported that HFI occurs in 5-12% of the general population, 

while the highest incidence of HFI (40-60%) is reported in postmenopausal women (9). 

Reported rates of HFI for females and males respectively are 20% and 2% (10), 24% 

and 5.2% (7), 18% and 0.7% (11), 22.7% and 2.8% (12).  These data imply that HFI is 

relatively uncommon in males (4–5 times less frequent than in females). Additionally, 

men with HFI usually manifest mild forms of HFI, suggesting that the severity of HFI is 

also sex dependent (7). When present in men, HFI is usually moderate in extent (usually 

types A and B according to Hershkovitz`s classification), while Type D is rarely 

reported. Severe cases of HFI were found only in men who suffered from 

hypogonadism (13, 14). Sex derived discrepancy in frequency and magnitude of 

manifestation of HFI may occur as a result of different susceptibility to causative factors 

such as heredity, endocrine disorders, dysplasia, dystrophy, neoplasia and trauma (6).  

 Apart from the fact that it is rare in young population, initially there was no 

consent whether HFI is age related. Moore (4) considered that HFI is progressing with 

advancing age, while Marlet (10) was more forbearing. He stated that HFI is not a 

typical aging phenomenon, since he detected an increase in the frequency of HFI in 

women over age of 50 years, but the magnitude of manifestation of HFI did not 

correlate with age. The result of the study conducted by Nikolic et al. (11) also showed 

that older the woman was, the higher was the probability of HFI occurrence, but with no 

correlation to the extent of frontal bone involvement. Marlet (10) speculated that HFI 

can develop during an 8-year period and then remain silent for the next 6–11 years. 

Hershkovitz et al. (7) pointed out to the possible ‘‘self-limiting’’ mechanism of HFI, 
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since their results showed that, in patients aged over 70 years, the frequencies of mild 

and severe cases of HFI were almost the same. Marlet (10) claimed that ‘‘HFI is an 

irregular process which once started, can show progression but can stabilize or even 

subside’’. Based on a radiological study, Salmi et al. (15) suggested that HFI reaches its 

peak in age group of 40 to 60 years, and then rapidly diminishes. Finally, Hershkovitz et 

al. (7) concluded that HFI is an age dependent phenomenon, since it is much less 

frequent in females under 40 years of age and that advanced cases of HFI are more 

frequently found after the age of 60 years.  

 

1.4 Etiology of HFI 

 Etiology of HFI is still unclear. All the presumptions of its etiology are mainly 

based on alteration of sex steroids and its impact on adult bone growth. Richter (16) was 

the first to postulate the speculation that female hormonal changes are responsible for 

HFI formation. Perou (6) stated that hyperostosis ‘‘needs a given soil to start and a 

given stimulus to manifest itself” and suggested endocrine imbalance, due to either 

congenital inadequacy or deterioration due to advancing age, as the main cause of HFI. 

Calame (17) and Morel (18) also suggested dysendocrinism due to disturbance of the 

gonads (i.e., faulty estrogen stimulation, abnormal progesterone effect on the ovaries or 

inadequate androgen stimulation by the testis) as the most possible etiological factor in 

the development of HFI. These authors additionally speculated that the disturbance of 

the tubero-infundibular portion of the pituitary gland may influence the HFI formation, 

since the symptoms associated with HFI are the same as those of infundibulo-pituitary 

disturbance (e.g., adiposity, genital dystrophy, disturbance of sugar metabolism). They 

particularly emphasized gonadal factors and noted that male patients with HFI were 

commonly feminized, with atrophic testes. Having in mind the high prevalence and 

severity of HFI in females, Hershkovitz et al. (7) suggested that prolonged and/or 

increased estrogen stimulation during the reproductive period is the most probable cause 

of HFI. Hormonal disbalance in the etiology of HFI is not limited only to estrogens but 

on physiological balance of estrogens and androgens (12). HFI was related to altered 

androgen and pro-androgen levels (19), which result in estrogen/testosterone ratio 

changes. Thus, altered serum levels of estrogen in males were correlated with localized 



5 
 

ossification (20). Males developed extensive HFI due to extreme conditions of 

hormonal imbalance such as atrophied testes and resultant low levels of testosterone (7, 

13). Namely, androgen suppression is potentiating the effects of estrogen on bone 

metabolism. Estrogen preserves bone mass, suppresses bone turnover, maintains 

balanced ratio bone formation/bone resorption, and functionally activates osteoclasts 

and osteoblasts (21). Results of the study in males who had chemical castration due to 

prostate cancer (22) showed that androgen suppression leads to surplus of estrogen, 

resulting in increased appearance of HFI. Additionally, researchers have reported 

lesions, similar to those encountered in HFI, after estrogen administration in mice (23). 

Interestingly, it was observed, that HFI has much in common with breast cancer;  

increased and/or prolonged estrogen stimulus is associated with an elevated risk of 

breast cancer in humans as well as with the occurrence of HFI (7), both are primarily 

female phenomena, rise dramatically in frequency after menopause, associated with 

obesity and parity, and both the frontal bone and breast tissue are known to be target 

tissues for hormones such as estrogen and progesterone (24).  

One of the latest speculations of HFI etiology, pointed increased leptin levels (peptide 

that signals the feeling of satiety to the hypothalamus and helps controlling the 

metabolic rate) as one of the possible factors that cause HFI (25). Serum leptin levels 

are correlated with body mass index and it was suggested that leptin has a certain 

influence on bone metabolism, such as positive relation between serum leptin levels and 

bone area especially influencing periosteal expansion in girls (26), but these effects are 

still debated. Ruhli (25) hypothesized that during human evolution, a wider ability of 

food favored an increased metabolic rate and increased leptin levels which may have 

lead to increase in an incidence of HFI. 

 

1.5 HFI in historical and modern populations 

 The frequency of HFI differs greatly between studies conducted on the modern 

population and on population prior to the 19th century. Regardless of geographical 

location of population, HFI was rarity in populations prior the 19
th

 century (7), while in 

modern era HFI was reported to appear with a considerable frequency (up to 46%) (27). 
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Therefore, the question imposes whether HFI is a long-standing phenomenon or is it a 

relatively new one characteristic for the modern era.  

In an extensive research conducted on pre-19
th

 century skulls, Hershkovitz et al. (7) did 

not find even a single case of HFI, whereas in an early 20
th

 century collection they 

identified HFI in 12.8% cases. In a series of skeletal collections from 14
th

 century BC to 

17
th

 century AD, a total frequency of HFI was just 2.49% (28). However, in one study 

performed on an osteological collection of Ancestral Pueblans (Anasazi) the overall 

frequency of HFI was 32.4% (29). This frequency rate is very similar to the results of 

the studies conducted on the last two centuries population. In order to explain this 

phenomenon, Ruhli et al. (30) hypothesized that the eating habits and lifestyle of these 

people had many similarities to those of the modern populations since they were 

inhabited in the ancient Pueblo Bonito which was a predominantly residence of wealthy 

people.  

Some interesting suggestions have been offered in an effort to explain the higher 

frequency of HFI in modern population. The perception of increased frequency of HFI 

may be related to changes in life expectancy. Armelagos and Chrisman (31) stated that 

in this context shorter lifespan of the ancient populations should not be neglected.  

Additionally, Hershkovitz et al. (7) stated that females born in the early 19
th

 century 

were likely to manifest HFI in their postmenopausal life, unlike rare occurrence of HFI 

in historic populations, suggesting that the “turning point” was the industrial revolution 

which resulted in increased life span and changes in female lifestyle. Rapid urbanization 

reshaped the demographic characteristics of human populations, and consequently a 

new pattern of health and diseases emerged. May et al. (32) quoted that in females, 

hormonal disbalance occurs as a result of the changes in lifestyle such as a dramatic 

decrease in the number of children, shorter periods of breast feeding, extended 

reproductive period due to early onset of menarche and late onset of menopause. They 

stated that today’s females have almost tripled the number of cycles during their 

reproductive years (33) than females living 100 years ago. Hormonal alteration in 

modern females also may occur as a result of hormonal manipulation (i.e., 

contraceptives, hormonal replacement therapy) (34, 35). Finally, modern populations 

are exposed to hormones through different contaminated agents, such as  consumption 
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of meat from animals treated with hormones (36) or consumption of dietary 

phytoestrogens from sources such as soy, grains and linseed (37). 

 

1.6 Frontal bone 

 The frontal bone is a one of the bones that forms the neurocranium, which serves 

as a protective case around the brain. The name “frontal bone” derives from the Latin 

word frons (meaning "forehead"). It is made of the vertical portion (squama frontalis) 

that forms the forehead and horizontal portion (pars orbialis and pars nasalis) that forms 

the roofs of orbits and nasal cavity. 

 Frontal bone is a flat bone, composed of two thin layers of compact tissue (outer 

and inner tables) with a variable amount of cancellous tissue between them (diploe). 

The outer table is thick and tough, while the inner table is thin, dense and brittle. Red 

bone marrow is situated in the cavities of diploe (38).   

 Frontal region has specific vascularisation; soft and hard tissues form a separate 

angiosome. Dura matter of the anterior cranial fossa is vascularized from anterior 

meningeal branches of the anterior and posterior ethmoidal and internal carotid, and a 

branch from the middle meningeal artery (38). The veins returning the blood from the 

cranial dura mater anastomose with the diploic veins and end in the various sinuses 

(38). 

 The frontal bone is ossified intramembranously, from two primary centers, one 

for each half of the bone. These two primary centers are localized above each 

supraorbital margin. From each of these centers, ossification extends upward to form the 

corresponding half of the squama, and backward to form the orbital plate (38).  

The mechanisms of the intramembranous ossification are still not complitely understood 

(39). The skull is formed from cranial skeletogenic mesenchyme derived from two 

distinct embryonic sources: mesoderm and neural crest. The frontal bone is presumed to 

be derived from neural crest cells (40). The neural crest is a population of multipotent 

embryonic progenitor cells and plays an integral role in cranial morphogenesis as it 

https://en.wikipedia.org/wiki/Bone
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Forehead
https://en.wikipedia.org/wiki/Forehead
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gives rise to osteoblasts. Specifically, the cranial neural crest is the sole source of the 

frontal bone primordium and its underlying dura mater (41). 

Previous research didn`t provide an adequate explanation why the frontal bone is 

particularly affected by HFI, however there are some suggestions that imply specific 

frontal bone involvement. Since it almost always begins in the middle third of the 

frontal squama, Morel (18) suggested that this localization might correspond to the 

primary centers of ossification of this bone. Hershkovitz et al. (7) supported this 

speculation due to the fact that these centers remain active bilaterally during adulthood. 

Estrogen stimulus may reactivate the primary centers of ossification of the frontal bone 

and cause abnormal bone growth (7). The bilateral occurrence of HFI, and the fact that 

the hyperostosis is limited to areas associated with the ossification centers and excludes 

both the midline area (metopic suture) and bregmatic area (anterior fontanel), lend 

further support to the notion of primary ossification center involvement (7).  

 

1.7 HFI in relation to other skeletal sites 

 Previous studies have suggested that HFI is accompanied by increase of 

thickness of other cranial bones; Nikolic et al. (11) showed that increased bone 

thickness of frontal bone is followed by increase in temporal bones thickness as well. 

May et al. (42) demonstrated that women with HFI tend to develop more robust skull 

characteristics. Namely, in patient with HFI, cranial bones, brow ridge and external 

occipital protuberance became thicker with the increase of frontal bone involvement 

(42). The higher the grade of HFI was detected, the greater overall cranial bone 

thickening was present (42). Additionally, Kollin and Fehér (19) detected increased 

bone mineral content and bone width of the radius in women with HFI and pointed on a 

generalized alteration in morphology of the skeletal system in these women. 

 

1.8 Symptoms of HFI 

 Although most of the patients with HFI are asymptomatic  (43), the presence of 

HFI has a clinical relevance. Initially, HFI was considered one of the entities within 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Kollin%20E%5BAuthor%5D&cauthor=true&cauthor_uid=2944758
http://www.ncbi.nlm.nih.gov/pubmed/?term=Feh%C3%A9r%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2944758
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various clinical syndromes that affect multiple organ systems, such as: Morgagni-

Stewart-Morel-Moore (obesity, virilism, neuropsychiatric symptoms, and headaches), 

Troell-Junet (acromegaly, toxic goiter, and diabetes mellitus), Frolich (obesity, growth 

retardation, pituitary hypocrinism) and Klippel-Trenaunay-Weber (varicose veins, port-

wine stain, bone and soft tissue hypertrophy) (12). However, it can occur as an 

independent entity as well. 

Researchers were investigating the possible relation of HFI and different symptoms that 

have been observed (mostly based on data from case reports) in patients with this 

condition. Thay have even speculated that hormonal-based conditions such as obesity 

and high insulin levels can lead to certain forms of skeletal ossifications  and in this way 

correlated them with HFI (44). Blood sugar levels were reported to be slightly higher in 

patients with HFI (45) while HFI was reported twice as often in patients with diabetes 

(46). The possible connection between HFI and obesity was established by Morgagni 

(1). It was later reported that the prevalence of HFI is higher in obese patients (45, 47, 

48). Adipose tissue convertes testosterone to estradiol, thus HFI could be related to the 

adiposity due to increased production of estrogen by adipose tissue. Lahlou et al. (49) 

defined obesity as the primary resistance to circulating leptin, while Rhuli and 

Hanneberg (25) have even postulated a hypothesis that increased levels of leptin 

produce increase of bone overgrowth such as HFI.  

Pawlikowski and Komorowski (50, 51) reported HFI in almost half of the women 

suffering from galactorrhoea, while Fulton (52) found HFI in more than half of the 

patients with acromegaly. Acromegaly is characterised by skeletal as well as soft tissue 

and skin overgrowth, due to increased growth hormone production.  They showed 

strong association between pronounced HFI and these conditions and indirectly implied 

to the pituitary dysfunction origin of HFI. They explained that prolactin stimulates 

dehydroepiandrosterone production which leads to elevated levels of free testosterone 

and may result in menstrual troubles and hirsutism (52).  

 Latest research suggested that various symptoms may occur as a consequence of 

HFI (53). Namely, intrusive bone growth in patients with HFI may reduce intracranial 

volume or compress the cerebral cortex resulting in various symptoms (42). HFI is 

associated with cognitive slowing, mood disturbance, epilepsy, dementia, 
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schizoaffective disorders, headache and intracranial hypertension (7, 54). There are also 

studies that correlate HFI and Alzheimer’s and Parkinson’s disease (42, 55) as well as 

authors who correlated it with stroke (56).  

 The incidence of HFI was reported to be higher in emotionally disturbed women 

(53). Interestingly, Walinder (57) stated that incidence of mental morbidity was lower 

among siblings of mentally ill women with HFI than among siblings of mentally ill 

woman without HFI. This implies that HFI itself may be a cause of a certain disorders.  

 Devriendt et al. (54) speculated whether HFI causes brain atrophy through 

chronic cerebral compression or the bony nodules grow in order to occupy the 

intracranial space created by brain degeneration.  

 

1.9 Pathogenesis of HFI 

 Over the years, several possible models of the HFI pathogenesis were presumed. 

The “American model” proposed by Moore (4), describes HFI as a process that triggers 

proliferation of spongy bone and that increase in diploic volume is pushing the inner 

table towards endocranial structures. The outer table is not affected due to its greater 

thickness and durability. The “European model” was proposed by Thevoz (58). He 

defined HFI as a process which transpires exclusively in the dura, and it is triggered by 

enlargement of the intradural vasculature. The most recent is the “global model” 

proposed by Hershkovitz et al. (7). According to this model HFI begins when 

osteogenic cells cause a disorganized diploization process in the inner table. These 

changes trigger the superimposition of newly formed lamellae on the inner table by the 

periosteum. The early compact hyperostosis is composed mainly of new lamellar bony 

layers deposited by the dura. Then, numerous blood vessels penetrate the lamellar bone 

from the dura, inducing bone proliferation. Over time, the original inner table becomes 

sclerotic and the newly formed bone undergoes dramatic reorganization with numerous 

large and irregular cavities (apparently blood sinuses). These enlarged cavities support 

the raised endocranial plate, which is recognized macroscopically as the remodeled 

overgrowth called HFI. Finally, the inner plate totally disappears; the reorganized bone 
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expands towards the diploic space and the cranial cavity, while only a thin shell of 

lamellar bone remains to envelopes the bulbous cavity.  

 According to global model, neither the external plate nor the diploe are directly 

involved since the bulging of the inner plate is primarily accruing due to newly formed 

lamellar bone produced by the endosteal dura. This opposes the statement of Perou (6) 

that ‘‘the diploe is primarily affected and pushes the inner table downward’’. Both the 

European and the global model could be supported by a unique aspect of the frontal 

bone which is the adherence of the dura to its inner surface (7).   
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2 Research goals 
 

The specific aims of the current thesis are:  

1. To investigate differences in thickness of frontal, occipital and parietal bones 

between postmenopausal women with HFI and control group 

2. To compare bone mineral density of hip and vertebral region, as well as external 

hip geometry between postmenopausal women with HFI and control group  

3. To analyze differences in expression of cranial dural α-estrogen receptors 

between postmenopausal women with HFI and control group 

4. To investigate micro-architectural difference of frontal bone among 

postmenopausal women with different types of HFI 

5. To reevaluate current classification of HFI 
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3 Material and methods 
 

This study comprised four research phases. The first phase included clinical 

study, second phase included immunohistochemical analyses of α-estrogen and CD34 

receptors on dura, third phase included micro structural analyses of frontal bone 

samples and fourth phase included fractal analysis of the head computerized  

tomography (CT) scans in women with HFI.  

 

3.1 Clinical study 

 

 The first phase was designed as a cross-sectional study. It was conducted in the 

Center for Radiological Diagnostics of School of Dental Medicine, University of 

Belgrade, in the period from 2011 to 2014. During this period, 739 women underwent 

computerized tomography (CT) of the head, done for diagnosis of chronical sinusitis. 

Only postmenopausal women (women who had their final menstrual period at least 12 

mounts prior) with confirmed diagnosis of chronical sinusitis and who performed head 

CT scan for the first time were eligible to participate in this study. Exclusion criteria 

were presence of bone related pathologies other than HFI, as well as medical history of 

brain tumor, meningioma, renal diseases, primary hyperparathyroidism and Paget’s 

disease. Thus, a total of 108 women were eligible according to these criteria 

(14.6%). The study sample comprised 103 women, because 3 women refused to 

complete a questionnaire, while 2 women refused to have a DXA scan performed 

(participation rate of the women approached was 13.9% and participation rate among 

those found eligible was 95.4%). 

 The presence of HFI was detected in 48 women (46.6%), among whom 28 had a 

moderate form and 20 had a severe form of HFI. Characteristics of the study population 

are given in the Table 1. 
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Table 1. Caracteristics of the study population 

 

Parameter 

Control group 

N=55 

HFI 

N=48 

 (mean ± SD) (mean ± SD) 

Mean age (years) 65.1±8.4 68.0±7.5 

Mean age of menopause (years) 49.2±4.8 49.1±4.7 

Mean height (сm) 160.4±6.7 160.2±6.1 

Mean weight (kg) 69.8±13.9 74.4±12.5 

Mean body mass index (kg/m
2
) 26.9±5.4 28.8±4.4 

 

3.1.1 Head CT scans 

All the CT images were processed using Somatom Sensation 16 (Siemens): slice 

thickness 3mm, parallel to the Frankfurt plane, 120kV, 300-400mAs, rotation time 0.4-

0.5s, pitch 0.39, FOV 216mm, Matrix 512*512.  To detect the presence of and to 

classify HFI, head CT scans were analyzed using volume rendering (VR) technique and 

multi-planar reconstruction from slices 0.75mm thick. Based on the head CT scan 

analyses results, all participants in the study were categorized as the control group 

(without HFI) and the group with HFI. Classification of patients with HFI in our study 

was based on the modification of Hershkovitz et al.`s (7) method. Women who 

demonstrated HFI were subdivided in two groups (Figure 1): moderate HFI (comprising 

types A and B by Hershkovitz et al.`s criteria) and severe HFI (comprising types C and 

D by Hershkovitz et al.`s criteria). To detect and classify the HFI, the intra-observer test 

was performed 3 times with 2-week intervals between each sample ranking. The inter-

observer test was performed by three independent researchers. Kappa values were 

adequate at 0.725 and 0.783, respectively (59).  
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Figure 1. CT scans of the skull (A-moderate HFI, B-severe HFI). Axial scans in 

the bone window (left) and 3D reconstruction images (right), demonstrating the 

thickening of the inner table of the frontal bone. 

 

3.1.2 Cranial bones thickness 

The correlation between the presence of HFI and thickness of other cranial bones 

was assessed on head CT scans, by measuring frontal bone thickness (mm), parietal 

bones thickness (mm) and occipital thickness (mm). Using the sagittal plane in multi-

planar reconstruction, we marked the level one centimeter above the most prominent 

point of glabella. Starting from this level, we used five successive transversal slices to 

measure the cranial bones thickness. Frontal and occipital bone thickness was measured 

1 cm lateral to the mid-sagittal axes, perpendicular to the endocranial table surface 

(Figure 2). Left and right parietal bones thickness were measured 1cm anterior and 

posterior to the mid-transversal axes, perpendicular to the endocranial table surface 

(Figure 2). The mean thickness was used for each bone.  
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Figure 2. Measurement of the cranial bones thickness on the transversal CT scan 

of the head: frontal and occipital bone thickness (measured 1 cm lateral to the mid-

sagittal axes, perpendicular to the endocranial table surface) and left and right parietal 

bones thickness (measured 1cm anterior and posterior to the mid-transversal axes, 

perpendicular to the endocranial table surface). 

 

3.1.3 Symptoms and conditions related to HFI 

Based on the data collected from the literature about the demographic 

characteristics, symptoms and conditions that could be related to HFI, we used an 

investigator-developed instrument to collect this information (Figure 3). Participants in 

this study were asked whether their menstrual cycles were regular, whether they had 

given birth, had breastfed, or had had galactorrhea, hirsutism, high blood pressure, 

neurological and psychiatric disorders, thyroid gland diseases, diabetes mellitus, 

headaches, memory loss, or unilateral hearing loss or had used hormonal contraceptives. 
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Figure 3. Investigator-developed instrument used for data collection  

 

3.1.4 DXA scans and HSA analyses 

Within three months after the head CT scan, each patient included in the study 

had bone densitometry of the left hip and spine region performed by dual energy x-ray 

absorptiometry (DXA, Hologic Discovery C; S/N 83200). The scans were automatically 

evaluated by DXA software, providing values of bone mineral content (BMC; g), bone 

mineral density (BMD; g/cm
2
) and T (number of standard deviations that one’s BMD 
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differs from the value normally expected in a healthy young adult of the same sex and 

ethnic origin) and Z scores (number of standard deviations that one’s BMD differs from 

the value normally expected for someone of the same age, sex, weight, and ethnic 

origin), of the standard hip regions (neck and total) and spine lumbar region (total).  

     

Figure 4. DXA scan image of the hip regionshowing regions of intersest used in 

hip structure analysis (NN- narrowest nesk, IT- intertrochanteric region, FS- femoral 

shaft region) 

To investigate the external geometry of the proximal femur, we used hip 

structure analysis (HSA) software developed by Beck and colleagues (60) and 

implemented it on Hologic software version 2.0 to calculate parameters of the femoral 

external geometry from the DXA scan. Three regions of interest corresponding to 5-

mm-thick cross-sectional slabs of bone were assessed in this analysis: the narrowest 

neck (NN) located across the narrowest diameter of the neck, the intertrochanteric (IT) 

region traversing the bisector of the neck and shaft axes and the femoral shaft (FS) 

region located 1.5 times the neck width distal to the axes intersection (Figure 4). Outer 

diameter (OD, cm) and estimated cortical thickness (Ct. Th, cm) were calculated for 

each region of interest. Additionally, on each proximal femora hip axis length (HAL, 

mm) was measured (60). 
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3.2 Analyses of α-estrogen and CD34 receptors on dura 

 

Dural tissue samples were collected during routine autopsies from human donor 

cadavers at the Institute of Forensic Medicine of the School of Medicine in Belgrade, in 

the period from 2014 to 2015. Exclusion criteria encompassed the presence of bone 

related pathological conditions other than HFI in the HFI group, as well as a history of 

brain tumor, meningioma, renal diseases, primary hyperparathyroidism and Paget’s 

disease. The study sample comprised a group of 12 women with HFI (mean age: 

68.4±12.6) and an age-matched control group of 15 women (mean age 73.9±10.8). 

Immunohistochemical analysis of α-estrogen and CD34 receptors was performed on 5 

μm sections which were prepared from the paraffin blocks. Sections (5-μ thick) from 

the formalin-fixed, paraffin-embedded tissue samples were deparaffinized and treated 

with 3% hydrogen peroxide for 15 min to block endogenous peroxidase activity. For the 

heat-induced antigen retrieval, tissue sections were immersed in 0.01 mol/l citrate buffer 

(pH=6.0) and treated in a microwave oven for 20 min at 620 W. After cooling off for 30 

min at room temperature, blocking peptide (DAKO, Glostrup, Denmark) was utilized to 

block the non-specific staining. Thereafter, tissue sections were incubated overnight at 

4°C with the following rabbit monoclonal primary antibodies: α-estrogen receptor 

(clone NCL-ER-6F11, dilution 1:100; ; Novocastra Laboratories Ltd, Leica Biosystems, 

Germany) and  endothelial cell marker CD34 (clone NCL-L-END, dilution 1:100; 

Novocastra Laboratories Ltd, Leica Biosystems, Germany). Streptavidin-biotin 

technique using DAKO’s LSAB+ kit (DAKO, Denmark) was applied, with 

diaminobenzidine (DAB) as the chromogen solution and Mayer’s hematoxylin for the 

counterstain. Incubation with the pure antibody diluent (without the primary antibody) 

served as a negative control. As a external positive control for α-estrogen receptor 

immune staining we used breast carcinoma tissue. For CD34 external positive control 

was haemangioma. Nuclear staining for α-estrogen receptor and cytoplasmic expression 

for CD34 were treated as positive. The results of immunohistochemical staining for α-

estrogen receptor were scored qualitatively by light microscopy as possitive/negative. 

Microvessel density measurement was performed after CD 34 staining of the specimens. 

A modified Chalkley count method was utilized to measure microvessel density (61). 

Vascular hot- spots were selected and marked for each specimen. Using the Q Prodit 
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image analysing system (version 6.1; Leica, Cambridge, UK) with 30 micrometer grid 

lines the number of microvessels were counted within each separate hot-spots 

(magnification 40×) and results were presented as mean of the three counts. 

 

3.3 Micro structural analysis 

 

Frontal bone samples were collected during routine autopsies from human donor 

cadavers at the Institute of Forensic Medicine of the School of Medicine in Belgrade, in 

the period from 2014 to 2015. Exclusion criteria encompassed the presence of bone 

related pathological conditions other than HFI in the HFI group, as well as a history of 

brain tumor, meningioma, renal diseases, primary hyperparathyroidism and Paget’s 

disease. 

  

Table 2. Characteristics of the study population 

 

 Women with HFI Control group 

Type A Type B Type C Type D  

N=4 N=4 N=4 N=8 N=14 

74.1±9.7 (mean ± SD) 69.9±11.1 (mean ± SD) 

 

 The study sample comprised 34 women: 20 with HFI and 14 age-matched 

controls.  We subdivided women with HFI in 4 groups, each group demonstrating 

different macroscopic type of HFI (Figure 5). Characteristics of the study population are 

provided in the Table 2.  

 Frontal bone samples of approximately 1 cm x 1 cm were harvested using slow 

rotating medical saw from the part where the frontal bone was the thickest (Figure 5). 

They were stored in 70% ethanol and cleaned of adherent soft tissue. Each frontal bone 

specimen was placed in a sample holder with a consistent orientation and scanned in dry 
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conditions by micro-computed tomography (Skyscan 1172, Bruker, Belgium). The 

micro-CT was operated at 80 kV, 124 μA and 1200 μs exposure time, with an isotropic 

resolution of 10 μm and applied Al+Cu filter. The following regions of interest were 

determined for each investigated sample: total sample, outer table, diploe and inner 

table (Figure 6). The micro-architecture of the cortical and trabecular bone was 

evaluated automatically using micro-CT evaluation program CT.An with direct 3D 

morphometry. The threshold was set at 110/255. Investigated microstructural 

parameters for each region of interest were: total sample (bone volume fraction 

(BV/TV, %), outer table (bone volume fraction (BV/TV, %), pore diameter (Po.Dm, 

mm), total porosity (Po.Tot, %) and fractal dimension (FD)), diploe (bone volume 

fraction (BV/TV, %), trabecular number (Tb.N, 1/mm), trabecular thickness (Tb.Th, 

mm), trabecular separation (Tb.Sp, mm), structure model index (SMI), connectivity 

density (Conn.D, 1/mm
3
), degree of anisotropy (DA), total porosity (Po.Tot, %) and 

fractal dimension(FD)) and inner table (bone volume fraction (BV/TV, %), pore 

diameter (Po.Dm, mm), total porosity (Po.Tot, %) and fractal dimension (FD)). 

 

 

 

Figure 6. (left panel) A macroscopic view on the internal surface of the frontal 

bone in a woman with HFI (black rectangle shows the location of the analyzed frontal 

bone sample). (right panel) A 3D micro-computed tomography reconstruction in a 

woman with HFI, showing the segmentation of the frontal bone samples to the regions 

of outer table, diploe and inner table. 
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Figure 5. A macroscopic view on the internal surface of the frontal bone of women demonstrating different types of HFI (A-type A; B-type 

B; C-type C; D-type D) 
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3.4 Fractal analysis  

 

Based on the head CT scan analyses results, women with HFI were divided in 4 

groups, each demonstrating different type of HFI according to present 

macroscopical/radiological classification (type A, B, C and D) (7). In order to increase 

our study sample and the number of individuals within each group, we extended this 

research and continued data collection during 2015. Finally, the study sample included 

73 women with HFI. Distribution of women within groups and mean age within each 

group are given in the Table 3.  

 

Table 3. Caracteristics of the study population  

Type of HFI HFI type A HFI type B HFI type C HFI type D 

Number of individuals 

within a group 

N=9 N=19 N=22 N=23 

Age (mean ± SD) 66.89±6.25 70.89±7.15 73.72±6.13 68.43±8.76 

 

Using the sagittal plane in MPR, we marked the level one centimeter above the 

most prominent point of glabella, and used transversal slice in this level as a 2D 

representative of the head CT scan (Figure 7). When detecting and classifying the HFI, 

as well as determining the adequacy of classification based on representative transversal 

slice compared to 3D model in MPR, the results from three different radiologists were 

tested, and intra-observer testing was performed three times within a two-week interval 

between sample analyses by one of the radiologists. Kappa values were adequate at 

0.725 and 0.783, respectively  (59).  
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Figure 7. Representative transversal slice of the head CT of patients with  

different types of HFI (A, B, C and D) 

In order to test current classification scheme of HFI we used previously defined 

transversal slices of the head CT scans of women with different types of HFI and 

performed fractal analyses of these images. HFI results in irregularity of the shape of 

the inner table of the frontal bone, and consequently the inner table of the skull. Using 

the fractal analysis we quantitatively analyzed the irregular shape of the inner table of 

the skull by counting two parameters: fractal dimension and circularity.  

3.4.1 Digital image processing 

An automated image analysis protocol was developed in software "Image J", 

specialized public domain software for image analysis, developed by the National 

Institutes of Health. Image processing procedure is illustrated in Figure 8. The first step 

is the conversion of RGB images into grayscale images (Figure 8A), followed by an 

adaptive threshold selection to get binary images (Figure 8B). Binary images were then 

additionally processed by image outline (Figure 8C) by calling outline from the 
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software "Image J" processing toolbox. Finally, the outer contour of the skull 

(corresponding to the outer table) was deleted while the inner contours of the skull 

(corresponding to the inner table) remained (Figure 8D).  

 

 

Figure 8. Scheme of the image processing procedure: the grayscale image (A), the 

binary image (B), the outline image (C) and the inner contour image (D). 

 

3.4.2 Parameters of shape of the inner contour 

The shape of the inner contour of the skull was numerically expressed, using two 

parameters of shape: the fractal dimension and the circularity. We tested present 

macroscopical classification of HFI by comparing these two parameters between groups 

with different types of HFI. 

 

3.4.3 Fractal dimension of the inner contour 

Fractal dimension of the inner contour (D) defines the irregularity of its shape, 

or precisely, how its shape deviates from the corresponding circle (fractal dimension of 

the circle is D = 1.104) (Figure 9A). The image of the inner contour was analyzed by 

the fractal analysis using the box-counting method (62, 63). This method consists of 

‘‘covering’’ the image with sets of squares, with a precise length of the square edge (r) 

(Figure 9B). The number of squares (N) that covers or touches the inner contour of the 

skull is presented as a function of r (Figure 9C). D is determined from absolute slope 

value of the log–log relationship between N(r) and r (Figure 9C). In performing the 

box-counting method, the box sizes are scaled to the base of 2; that is, 2
1
, 2

2
... 2

k
; where 
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k continues until N is equal to unity. Depending on the contour image size, the box-sizes 

were taken from 2 to 512 or 1024 pixels. 

 

 

Figure 9. Illustration of the inner contour of the skull fractal dimension calculation. 

Fractal dimension of the circle is given in the upper part of figure (A). The application 

of the box-counting method to the inner contour: image is covered with a set of squares 

and the numbers of squares which cover the inner contour of the skull were counted (B). 

Log–log plot between numbers of squares (N) and square size (r) is fitted by a straight 

line (C). Obtained fractal dimension was 1.106 while R
2
 is the corresponding 

determination coefficient and p is the significance level. 

 

3.4.4 Circularity of the inner contour 

The shape of the inner contour of the skull was estimated by using the parameter 

of circularity (C). This parameter represents a measure of given shape`s deviation from 

a corresponding circle. The circularity equals one for a circle, while it`s value is less 

than one for any other shape. For the image of the inner contour this parameter was 

calculated according to formula C = 4πAP
-2

, where A is the area and P is the perimeter 

of the inner contour (Figure 10) (64).  
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Figure 10. Illustration of the circularity of the inner contour of the skull calculation (C 

= 4πAP
-2

, A is the area and P is the perimeter). Circularity of the circle is provided in 

upper part of figure. 

 

3.5 Statistical analysis 

 

 For the clinical part of the study, the sample size was calculated using MedCalc 

statistical software ver. 9.1.0.1. (Sampling: Comparison of two means) with BMD neck 

being the primary outcome variable, type I error of 0.05, type II error of 0.20, observed 

standard deviation in both groups considered as measures of variability, and biologically 

relevant difference intended to be detected of at least 0.08 g/cm
2 

 (60, 65). 

The Kolmogorov–Smirnov test was used to verify the normality of the data 

distribution.  

One-way analysis of variance was used to evaluate the significance of the 

differences in the mean values of observed densitometric and external hip geometry 

parameters, as well as the thicknesses of the skull bones, between the women with HFI 

and the control group. The same analysis was used to compare these values between the 

control group and different stages of HFI. In post-hoc multiple comparison procedures, 

a Bonferroni adjustment was used, which set the significance level to 0.05/number of 

comparisons. Given that the dimensions of the femur as well as the cross-sectional 

properties depend, at least partially, on bone size and age, all obtained data were 
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adjusted for standardized body height, weight and age to avoid the influence of these 

parameters on the results (60). Analysis of covariance was performed controlling for 

age, height and weight to assess differences in the means of all analyzed parameters 

between the groups. For multiple comparisons, a Bonferroni correction was used. To 

detect the association between thicknesses of cranial bones, a Pearson correlation was 

calculated. The association between the presence of HFI and prevalence of different 

symptoms and conditions was examined using the chi-square test.  

 When analyzing expression of CD34 receptor on cranial dura matter, differences 

in mean values (Chalkley count method) between the group of women with HFI and 

control group, independent samples T test was used. 

Independent samples t-test was used to detect the differences in microstructural 

parameters between the group of women with HFI and control group. Paired samples t-

test was used to evaluate the differences in microstructural parameters between the inner 

table and outer table in the group with HFI, as well as in control group. One-way 

analysis of variance (ANOVA) was used to assess the differences in microstructural 

parameters between the control group and different types of HFI, followed by post-hoc 

multiple-comparison procedures under Bonferroni correction.  

Since the data within different groups were not normaly distributed we used 

non-parametric test (Mann-Whitney test) to assess the differences in paremeters of 

frontal bone shape (fractal dimension and circularity) between different types of HFI.  

All analyses were conducted using SPSS statistical software (version 15.0) and 

the results were considered statistically significant at the 0.05 level. 
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4 Results 
 

4.1 Clinical research 

 

4.1.1 Symptoms and conditions related to HFI 

Women with HFI showed significantly higher prevalence of headache, 

neurological and psychiatric disorders and a significantly lower prevalence of having 

given birth (Table 4). Mean number of childbirth in the group of women with HFI was 

1.48±1.22, while in the control group it was significantly higher (1.70±0.86). Among 

women with HFI, the most frequently reported neurological disorder was paresthesia 

(16.3%), and the dominant psychiatric disturbance was depression (16.3%). 

Additionally, patients reported conditions such as dizziness (6.2%), essential tremor 

(4.2%), dementia (4.2%) and different types of phobia (4.2%).  The prevalence of prior 

breastfeeding, hirsutism, high blood pressure, diabetes mellitus, thyroid gland diseases, 

unilateral hearing loss, memory loss, hormonal contraceptives use and menstrual cycle 

regularity, did not differ significantly between the two groups of women. However, no 

woman in this study reported having ever had galactorrhea. 

Additionally, our results showed that women with HFI had higher values of BMI 

and mean value of body weight (Table 1), but without statistical significance.    

 

4.1.2 Cranial bones thickness 

The thicknesses of the frontal, occipital and left and right parietal bones were 

significantly higher in the group of women with HFI compared to the control group 

(Table 5).  

 

 



31 
 

Table 4.  Comparison of the distributions of conditions and symptoms between women 

with HFI and the control group 

 

Characteristic  Percentage  X
2 
test 

  HFI Control group  Value Df P 

Menstrual cycle 

regularity 

Yes (%) 85.7 83.6  0.084 1 0.772 

No (%) 14.3 16.4  

Breastfeeding Yes (%) 66.7 70.5  0.170 1 0.680 

No (%) 33.3 29.5  

Childbirth Yes (%) 76.2 93.4  6.304 1 0.012
*
 

No (%) 23.8 6.6  

Galactorrhea Yes (%) 0 0  / 1 / 

No (%) 100 100  

Hirsutism Yes (%) 26.8 26.2  0.005 1 0.946 

No (%) 73.2 73.8  

Hormonal 

contraceptives use 

Yes (%) 23.8 14.8  1.365 1 0.224 

No (%) 76.2 85.2  

High blood pressure Yes (%) 73.8 67.2  0.514 1 0.473 

No (%) 26.2 23.8  

Diabetes mellitus Yes (%) 21.4 19.7  0.047 1 0.828 

No (%) 78.6 80.3  

Thyroid gland diseases Yes (%) 16.7 16.4  0.001 1 0.971 

No (%) 83.3 83.6  

Headache Yes (%) 65.1 41.0  5.878 1 0.015
*
 

No (%) 34.9 59.0  

Memory loss Yes (%) 57.1 41.0  2.604 1 0.107 

No (%) 42.9 59.0  

Psychiatric disorders Yes (%) 23.8 6.6  6.304 1 0.012
*
 

No (%) 76.2 93.4  

Neurological disorders Yes (%) 33.3 8.2  10.447 1 0.001
*
 

No (%) 66.7 91.8  

Unilateral hearing loss Yes (%) 33.3 36.1  0.082 1 0.775 

No (%) 66.7 63.9  
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Table 5. Means and standard deviations of the mean cranial bones thickness in the 

control group and in women with HFI 

Cranial bone HFI  Control group Sig. 

 mean ± SD mean ± SD P 

Frontal bone 9.27±3.00 5.33±1.54 0.000* 

Occipital bone 8.19±1.88 6.66±1.07 0.001* 

Parietal bone (left) 7.18±2.04 5.32±0.84 0.000* 

Parietal bone (right) 6.99±2.03 5.63±0.95 0.005* 

 

Table 6.  Means and standard deviations of the mean cranial bones thickness in the 

control group and in women with moderate and severe HFI  

 

Cranial bone Control group Moderate HFI Severe HFI 

 mean ± SD mean ± SD mean ± SD 

Frontal bone thickness (mm) 5.33±1.54
 a, b, c

 8.09±2.45 10.06±3.10 

Occipital thickness (mm) 6.65±1.07
 b
 7.89±1.68 8.39±1.99 

Left parietal bone thickness (mm) 5.32±0.84
 a, b

 6.37±1.68 7.71±2.09 

Right parietal bone thickness (mm) 5.63±0.95
 a, b

 6.03±1.28 7.63±2.20 

 

a
 Significant difference (P<0.05) when compared moderate and severe HFI group 

b 
Significant difference (P<0.05) when compared control  and severe HFI group 

c 
Significant difference (P<0.05) when compared control and moderate HFI group 
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We detected significant differences in thickness of all measured bones in the 

severe HFI group compared to the control group, but only the frontal bone was 

significantly thicker when the moderate HFI group was compared to controls (Table 6).  

In the group of women with HFI, frontal bone thickness was positively correlated with 

the thickness of occipital, left and right parietal bones (Table 7). 

Table 7. Correlation between frontal bone thickness and thickness of occipital, left and 

right parietal bones 

 Occipital 

bone 

Parietal bone 

(left) 

Parietal bone 

(right) 

Frontal 

bone 

Pearson correlation 0.456
* 

0.544
*
 0.519

*
 

Sig. (2-tailed) 0.000 0.000 0.000 

 

4.1.3 DXA scans and hip structure analyses 

Unadjusted data revealed no significant statistical difference in bone density 

measurements between the group without and the group with HFI, except the vertebral 

Z score value, which was significantly higher in women with HFI (Table 8). However, 

after adjusting the densitometric parameters for age, height and weight, no statistically 

significant difference between the groups was detected (Table 9). Moreover, the results 

of the comparison of bone density parameters between the control group and patients 

with different forms of HFI also did not significantly differ in any site measured, after 

data adjustment (Table 10, 11).  

External hip geometry parameters (outer diameter, cortical thickness and hip 

axis length) did not differ between the women with HFI and the control group or 

between women demonstrating different forms of HFI compared with controls (Table 8-

11).  
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Table 8. Differences in densitometric and hip structure analysis parameters between 

control group and women with HFI (unadjusted data) 

 Unadjusted data 

 Control group 

N=55 

HFI 

N=48 

 

 mean ± SD mean ± SD P 

BMC neck (g) 3.64±0.89 3.65±0.82 0.941 

BMD neck (g/cm
2
) 0.69±0.15 0.72±0.12 0.199 

T score neck -1.45±1.32 -1.12±1.08 0.178 

Z score neck 0.11±1.31 0.52±1.03 0.081 

BMC total (g) 28.47±6.12 29.31±5.48 0.471 

BMD total (g/cm
2
) 0.80±0.15 0.84±0.13 0.246 

T score total -1.13±1.23 -0.87±1.04 0.243 

Z score total 0.15±1.19 0.52±0.99 0.089 

BMC vertebral (g) 49.81±14.02 52.01±14.93 0.442 

BMD vertebral (g/cm
2
) 0.87±0.19 0.93±0.17 0.063 

T score vertebral -1.58±1.74 -1.01±1.54 0.083 

Z score vertebral 0.10±1.80 0.92±1.60 0.015* 

Outer diameter 

narrowest neck (cm) 

3.36±0.28 3.42±0.33 0.319 

Outer diameter 

intertrochanteric (cm) 

5.53±0.36 5.67±0.43 0.060 

Outer diameter 

femoral shaft (cm) 

3.12±0.20 3.14±0.25 0.938 

Cortical thickness 

narrowest neck (cm) 

0.17±0.04 0.17±0.04 0.337 

Cortical thickness 

intertrochanteric (cm) 

0.34±0.08 0.35±0.06 0.208 

Cortical thickness 

femoral shaft (cm) 

0.49±0.12 0.51±0.10 0.369 

Hip axis length (mm) 106.22±6.04 104.90±8.43 0.301 

 * p≤0.05 (significant differences between control and HFI group) 
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Table 9. Differences in densitometric and hip structure analysis parameters between 

control group and women with HFI (covariates appearing in the model are evaluated at 

the following values: age=66.45 years; height=160.30cm; weight=71.91kg) 

 

 Adjusted for age, height, and weight 

 Control group 

N=55 

HFI 

N=48 

 

 mean ± SE mean ± SE P 

BMC neck (g) 3.70±0.10 3.59±0.11 0.463 

BMD neck (g/cm
2
) 0.70±0.01 0.71±0.02 0.483 

T score neck -1.37±0.13 -1.21±0.14 0.420 

Z score neck 0.25±0.14 0.37±0.15 0.553 

BMC total (g) 28.93±0.70 28.78±0.75 0.881 

BMD total (g/cm
2
) 0.81±0.01 0.83±0.02 0.527 

T score total -1.07±0.13 -0.94±0.13 0.516 

Z score total 0.28±0.12 0.37±0.13 0.658 

BMC vertebral (g) 50.75±1.81 50.94±1.94 0.944 

BMD vertebral (g/cm
2
) 0.88±0.02 0.92±0.02 0.288 

T score vertebral -1.43±0.19 -1.18±0.20 0.374 

Z score vertebral 0.32±0.19 0.70±0.21 0.224 

Outer diameter 

narrowest neck (cm) 

3.38±0.04 3.41±0.04 
0.619 

Outer diameter 

intertrochanteric (cm) 

5.55±0.05 5.65±0.05 
0.152 

Outer diameter 

femoral shaft (cm) 

3.13±0.03 3.12±0.03 
0.935 

Cortical thickness 

narrowest neck (cm) 

0.17±0.00 0.17±0.00 
0.611 

Cortical thickness 

intertrochanteric (cm) 

0.34±0.01 0.35±0.01 
0.405 

Cortical thickness 

femoral shaft (cm) 

0.49±0.01 0.50±0.01 
0.650 

Hip axis length (mm) 106.38±0.89 104.72±0.96 0.217 

 * p≤0.05 (significant differences between control and HFI group) 
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Table 10. Differences in densitometric and hip structure analysis parameters  

between control group and women with moderate and severe HFI  

*p≤0.05 (significant differences between control and moderate HFI group) 

 

 

 

 

 Unadjusted data 

 Control group 

N=55 

Moderate HFI 

N=28 

Severe HFI 

N=20 

 mean ± SD mean ± SD mean ± SD 

BMC neck (g) 3.64±0.89 3.71±0.74 3.57±0.93 

BMD neck (g/cm
2
) 0.69±0.15 0.72±0.11 0.73±0.14 

T score neck -1.45±1.32 -1.14±0.96 -1.10±1.25 

Z score neck 0.11±1.31 0.56±0.89 0.47±1.22 

BMC total (g) 28.47±6.12 29.27±5.25 29.35±5.92 

BMD total (g/cm
2
) 0.80±0.15 0.82±0.12 0.86±0.14 

T score total -1.13±1.23 -0.98±0.98 -0.70±1.13 

Z score total 0.15±1.19 0.45±0.93 0.62±1.09 

BMC vertebral (g) 49.81±14.02 51.12±14.12 53.26±16.29 

BMD vertebral (g/cm
2
) 0.87±0.19 0.92±0.17 0.96±0.18 

T score vertebral -1.58±1.74 -1.17±1.51 -0.78±1.58 

Z score vertebral 0.10±1.80* 0.82±1.53 1.05±1.53 

Outer diameter 

narrowest neck (cm) 

3.36±0.28 3.41±0.34 3.44±0.31 

Outer diameter 

intertrochanteric (cm) 

5.53±0.36 5.72±0.45 5.62±0.40 

Outer diameter 

femoral shaft (cm) 

3.12±0.20 3.16±0.28 3.10±0.23 

Cortical thickness 

narrowest neck (cm) 

0.17±0.04 0.17±0.03 0.18±0.04 

Cortical thickness 

intertrochanteric (cm) 

0.34±0.08 0.34±0.06 0.37±0.07 

Cortical thickness 

femoral shaft (cm) 

0.49±0.12 0.49±0.10 0.53±0.10 

Hip axis length (mm) 106.22±6.04 104.71±5.66 105.15±11.42 
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Table 11. Differences in densitometric and hip structure analysis parameters between 

control group and women with moderate and severe HFI (covariates appearing in the 

model are evaluated at the following values: age=66.45 years; height=160.30cm; 

weight=71.91kg) 

 

 

 

 Adjusted for age, height, and weight 

 Control group 

N=55 

Moderate HFI 

N=28 

Severe HFI 

N=20 

 mean ± SE mean ± SE mean ± SE 

BMC neck (g) 3.70±0.10 3.64±0.14 3.52±0.17 

BMD neck (g/cm
2
) 0.70±0.01 0.71±0.02 0.71±0.02 

T score neck -1.37±0.13 -1.21±0.19 -1.22±0.22 

Z score neck 0.25±0.14 0.41±0.19 0.31±0.22 

BMC total (g) 28.93±0.70 28.66±0.98 28.94±1.15 

BMD total (g/cm
2
) 0.81±0.01 0.82±0.02 0.84±0.02 

T score total -1.07±0.13 -1.03±0.18 -0.83±0.21 

Z score total 0.28±0.12 0.31±0.17 0.45±0.21 

BMC vertebral (g) 50.752±1.81 49.88±2.54 52.41±2.99 

BMD vertebral (g/cm
2
) 0.88±0.02 0.90±0.03 0.94±0.03 

T score vertebral -1.43±0.19 -1.34±0.27 -0.95±0.31 

Z score vertebral 0.32±0.19 0.56±0.27 0.82±0.32 

Outer diameter 

narrowest neck (cm) 

3.38±0.04 3.38±0.05 3.45±0.06 

Outer diameter 

intertrochanteric (cm) 

5.55±0.05 5.70±0.06 5.62±0.08 

Outer diameter 

femoral shaft (cm) 

3.13±0.03 3.14±0.04 3.10±0.05 

Cortical thickness 

narrowest neck (cm) 

0.17±0.00 0.17±0.01 0.17±0.01 

Cortical thickness 

intertrochanteric (cm) 

0.34±0.01 0.34±0.01 0.36±0.01 

Cortical thickness 

femoral shaft (cm) 

0.49±0.01 049±0.02 0.52±0.02 

Hip axis length (mm) 106.38±0.89 104.12±1.25 105.55±1.47 
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4.2 Analyses of α-estrogen and CD34 receptors on dura 

 

 Only three of all analyzed samples of cranial dura expressed positivity for α-

estrogen receptors (Figure 11), thus further analysis was impossible. However, 

immunohistochemical analysis of CD34 expression on cranial dura in women with HFI 

(Figure 13, 15) and control group was quantified using Chalkley count method and 

presented as mean of the three counts (Figure 12, 14). The results of this analysis 

showed significantly higher mean values of CD34 expression in the HFI group (Table 

12). 

Table 12. Differences in mean values of CD34 expression on cranial dura 

between women with HFI and control group 

 HFI (N=12) Control group (N=15) 

CD34 (mean ± SD) 8.42±2.54 5.67±11.59 

P 0.02 

 

 

Figure 11. Immunohistochemical staining for α-estrogen receptors on dura 

samples (A-magnification 200×, B-magnification 400×) 
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Figure 12. HE coloring of dura samples collected from the woman in the control 

group (A-magnification 200×, B-magnification 400×) 

 

 

 

 

Figure 13. HE coloring of dura samples collected from the woman with HFI (A-

magnification 200×, B-magnification 400×) 
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Figure 14. Immunohistochemical staining for CD34 receptors on dura samples 

collected from the woman in the control group (A-magnification 200×, B-magnification 

400×) 

 

 

 

Figure 15. Immunohistochemical staining for CD34 receptors on dura samples 

collected from the woman with HFI (A-magnification 200×, B-magnification 400×) 
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4.3 Micro structural analysis 

 

Bone volume fraction in women with HFI significantly increased in the region 

of diploe when compared to the control group (Table 13, Figure 16-18). No significant 

difference was detected in bone volume fraction either in the total sample or the regions 

of outer and inner tables. In the group of women with HFI the trabeculae were 

significantly thicker and more plate-like shaped in the region of diploe. Moreover, the 

trabecular separation and connectivity density significantly decreased in this region. In 

the region of inner table women with HFI demonstrated significant increase in total 

porosity (Table 13, Figure 16-18 ). 

When analyzing the differences between the control group and types A, B, C and D 

of HFI significant differences were detected only in the region of diploe (Table 14, 

Figure 19). Overall, bone volume fraction in diploic region differed significantly 

between the investigated groups, but the multiple-comparison procedures revealed no 

significant differences in mean values between the individual groups. Structural model 

index and trabecular thickness in the region of diploe differed significantly between the 

groups, with post-hoc tests revealing significant inter-group difference between the 

control group and the type D of HFI (Table 14).  

 Since the comparison between the control group and different types of HFI 

reported only significant differences between the control group and type D of HFI, we 

reclassified the group with HFI into two groups: moderate HFI (comprising original 

types A, B and C) and severe HFI (type D). When comparing the control group with the 

groups of moderate and severe HFI, significant inter-group differences were detected in 

the region of diploe and inner table (Table 15). Namely, in the region of diploe bone 

volume fraction and trabecular thickness were significantly higher in the group of 

severe HFI than in the control group, while structural model index and connectivity 

density showed significantly lower values in the group of severe HFI compared to the 

controls (Table 15). Total porosity in the region of inner table was generally affected by 

the group, while post-hoc multiple comparisons revealed again significant inter-group 

differences only between the control and severe HFI groups.  
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Table 13. Differences of microstructural parameters between control group and women 

with HFI in different regions of frontal bone 

 

Microstructural 

parameters 

 

Control group 

(N=14) 

HFI 

(N=20) 

Total sample   

BV/TV 62.33±11.63 69.53±10.68 

Outer table   

BV/TV 95.06±1.55 95.06±2.38 

Po.Dm 0.08±0.01 0.08±0.03 

FD 2.38±0.05 2.40±0.06 

Po.Tot 4.94±1.55 4.94±2.38 

Diploe   

BV/TV
 a
 46.07±11.19 56.12±13.03 

SMI
 a
 -1.02±1.75 -2.74±2.57 

Tb.Th
 a
 0.23±0.03 0.27±0.06 

Tb.N 1.96±0.33 2.09±0.40 

Tb.Sp 
a 

0.52±0.14 0.44±0.11 

DA 1.95±.54 2.09±0.69 

FD 2.60±.06 2.60±0.05 

Po.Tot 50.36±16.99 43.87±13.03 

Conn.D
 a
 39.96±17.74 27.28±14.51 

Inner table    

BV/TV 93.32±4.09 89.67±6.47 

Po.Dm 
a
 0.08±0.03 0.11±0.03 

FD 2.31±0.09 2.37±0.10 

Po.Tot
 a
 5.46±3.09 10.27±6.49 

 

Abbreviations: BV/TV (bone volume fraction, %), Po.Dm (pore diameter, mm), FD 

(fractal dimension), Po.Tot (total porosity, %), Tb.N (trabecular number, 1/mm), Tb.Th 

(trabecular thickness, mm), Tb.Sp (trabecular separation, mm), SMI (structure model 

index), Conn.D (connectivity density, 1/mm
3
), DA (degree of anisotropy) 

 

  a 
Significant difference between the groups; t test, p<0.05 
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Figure 16. A macroscopic view of the frontal bone sample of woman from control 

group (left). Cross-section micro-computed tomography images of the frontal bone 

outer table (red square), diploic region (green square) and inner table (blue square). 

  

Figure 17. A macroscopic view of the frontal bone sample of woman with HFI (left). 

Cross-section micro-computed tomography images of the frontal bone outer table (red 

square), diploic region (green square) and inner table (blue square). 
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Figure 18. Representative 3D micro-computed tomography reconstructions of the 

frontal bone in women with HFI and control group. Note between-group differences in 

the regions of diploe and inner table. 

 

Figure 19. Cross-section micro-computed tomography images of the diploic 

region of the frontal bone in women demonstrating different macroscopic types (A, B, C 

and D) of HFI  
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Table 14. Differences of microstructural parameters between control group and types A, 

B, C and D of HFI in different regions of frontal bone 

 

Microstructural 

parameters 

 

Control group 

(N=14) 

HFI type A 

(N=4) 

HFI type B 

(N=4) 

HFI type C 

(N=4) 

HFI type D 

(N=8) 

Total sample      

BV/TV
 
 62.33±11.63 78.11±6.11 65.18±6.52 68.58±7.29 67.90±14.01 

Outer table      

BV/TV 95.06±1.55 95.72±1.14 93.79±1.93 96.38±1.00 94.71±3.24 

Po.Dm 0.08±0.01 0.08±0.02 0.10±0.01 0.08±0.01 0.08±0.04 

FD 2.38±0.05 2.42±.04 2.43±0.04 2.40±.05 2.39±.08 

Po.Tot 4.94±1.55 4.28±1.14 6.21±1.93 3.61±1.00 5.29±3.24 

Diploe      

BV/TV
 b
 46.07±11.197 62.79±11.84 48.71±11.55 47.86±8.83 60.63±13.84 

SMI
 a
 -1.02±1.75 -2.83±1.74 -1.23±1.28 -1.58±1.00 -4.04±3.40 

Tb.Th
 a
 0.23±0.03 0.27±0.06 0.24±0.07 0.25±0.03 0.30±0.06 

Tb.N 1.96±0.33 2.43±0.76 2.03±0.11 1.93±.31 2.02±.24 

Tb.Sp 0.52±0.14 0.35±0.15 0.44±0.29 0.53±0.85 0.43±0.88 

DA 1.95±.54 2.16±0.58 2.57±1.01 1.90±.49 1.90±.66 

FD 2.60±.06 2.62±0.07 2.56±.05 2.59±.04 2.61±0.04 

Po.Tot 50.36±16.99 37.20±11.84 51.28±11.55 52.14±8.83 39.37±13.84 

Conn.D 39.96±17.74 36.74±21.05 32.75±21.20 28.07±8.94 19.42±3.92 

Inner table       

BV/TV 93.32±4.09 92.62±3.96 88.21±7.41 91.42±2.83 88.04±8.30 

Po.Dm 0.08±0.03 0.1±0.03 0.12±0.01 0.12±0.03 0.11±0.05 

FD 2.32±0.09 2.40±0.07 2.28±0.04 2.36±0.09 2.41±0.12 

Po.Tot 5.46±3.09 7.37±3.96 11.78±7.41 8.57±2.83 11.82±8.38 

 

Abbreviations: BV/TV (bone volume fraction, %), Po.Dm (pore diameter, mm), FD 

(fractal dimension), Po.Tot (total porosity, %), Tb.N (trabecular number, 1/mm), Tb.Th 

(trabecular thickness, mm), Tb.Sp (trabecular separation, mm), SMI (structure model 

index), Conn.D (connectivity density, 1/mm
3
), DA (degree of anisotropy) 

 
  a 

Significant difference between the control group and type D of HFI; ANOVA, p<0.05 
  b

 Significant overall inter-group differences but not between individual groups; 

ANOVA, p<0.05 

 

  Additionally, comparing microstructural parameters between the outer 

and inner tables in the group with HFI revealed a significantly higher porosity and lower 

bone volume fraction in the inner table compared to the outer table. No significant 

differences in these parameters were detected between the regions of inner and outer 

tables in the control group. Distribution of pore diameter in women with HFI suggests 

that increased porosity in the inner table compared to outer table occurs due to higher 
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number of large pores (˃100µm). Figure 20 shows the distribution of pore diameter in 

the inner and outer table in women with HFI. 

 

Table 15. Differences of microstructural parameters between control group, moderate 

form of HFI (comprising types A, B and C of HFI) and severe HFI (type D of HFI)  

 

 

Microstructural 

parameters 

 

Control group 

 

(N=14) 

Moderate HFI 

(types A, B and C) 

(N=12) 

Severe HFI  

(type D) 

(N=8) 

Total sample    

BV/TV 62.33±11.63 70.62±8.30 67.90±14.01 

Outer table    

BV/TV 95.06±1.55 95.30±1.72 60.63±13.84 

Po.Dm 0.08±0.01 0.08±0.02 0.08±0.04 

FD 2.38±0.05 2.42±0.04 2.39±0.08 

Po.Tot 4.94±1.55 4.70±1.72 5.29±3.24 

Diploe    

BV/TV
 a
 46.07±11.19 53.12±12.12 60.63±13.84 

SMI
 a
 -1.02±1.75 -1.88±1.44 -4.04±3.40 

Tb.Th
 a
 0.23±0.03 0.25±0.05 0.30±0.06 

Tb.N 1.96±0.33 2.13±0.48 2.02±0.24 

Tb.Sp 
a 

0.52±0.14 0.44±0.12 0.43±0.88 

DA 1.95±.54 2.21±0.72 1.90±0.66 

FD 2.60±.06 2.59±0.06 2.61±0.04 

Po.Tot 50.36±16.99 46.88±12.12 39.37±13.84 

Conn.D
 a
 39.96±17.74 32.52±16.70 19.42±3.92 

Inner table     

BV/TV 93.32±4.09 90.75±5.02 88.04±8.30 

Po.Dm 
a
 0.08±0.03 0.11±0.03 0.11±0.05 

FD 2.31±0.09 2.35±0.08 2.41±0.12 

Po.Tot
 a
 5.46±3.09 9.24±5.02 11.82±8.38 

 

Abbreviations: BV/TV (bone volume fraction, %), Po.Dm (pore diameter, mm), FD 

(fractal dimension), Po.Tot (total porosity, %), Tb.N (trabecular number, 1/mm), Tb.Th 

(trabecular thickness, mm), Tb.Sp (trabecular separation, mm), SMI (structure model 

index), Conn.D (connectivity density, 1/mm
3
), DA (degree of anisotropy) 

 

    a 
Significant difference between control group and severe HFI; ANOVA, p \0.05 
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Figure 20.  The distribution of pore diameters in the inner and outer tables in women 

with HFI. Note the dominance of larger pores in the inner table. 

 

4.4 Fractal analysis  

Mean values of parameters of shape (fractal dimension (D) and circularity (C)) 

are provided in the Table 16. Data show that all four types of HFI have similar values of 

the fractal dimension while type D of HFI has the smallest value of circularity in 

comparison to the other three types of HFI (A, B, and C).  

 

Table 16. Mean values and standard deviations of the fractal dimension (D) and 

circularity (C) for types A, B, C, and D of HFI. 

 

Type of 

HFI 

Fractal dimension 

(mean ± SD) 

Circularity 

(mean ± SD) 

A 1.16 ± 0.04 0.83 ± 0.03 

B 1.15 ± 0.03 0.83 ± 0.04 

C 1.16 ± 0.03 0.82 ± 0.04 

D 1.16 ±  0.03 0.74 ± 0.09 

 

Values of parameters of shape were tested between four different types of HFI 

(Table 17). Reported results showed that between four types of HFI there is no 
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significant difference in the fractal dimension. However, values of circularity 

significantly differed when compared type D of HFI to types A, B and C of HFI. 

Analysis of circularity of the inner contour suggested that types A, B and C of HFI do 

not significantly differ from each other. These three types (A, B and C) could be 

considered as a unique type (moderate form of HFI), while type D of HFI should remain 

a separate type (severe form of HFI). Additionally, significant difference in values of 

circularity remained when we compared severe form of HFI (type D) to the moderate 

form of HFI (comprising types A, B and C).     

 

 

 

Table 17. Distribution of the parameters of shape over pairs of samples tested for 

significance 

 

Compared types of HFI Fractal dimension  Circularity 

 Z p  Z p 

Type A to type B of HFI -1.182 0.237  -0.271 0.786 

Type A to type C of HFI -0.784 0.433  -0.152 0.879 

Type A to type D of HFI -0.084 0.933  -2.453 0.014* 

Type B to type C of HFI -0.785 0.432  -0.641 0.522 

Type B to type D of HFI -1.188 0.235  -3.236 0.001* 

Type C to type D of HFI -0.386 0.699  -3.419 0.001* 

Moderate form (types A, B and C) 

to severe form of HFI (type D) 

-0.784 0.433  -4.003 0.000* 
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5 Discussion 
 

 Eventhough HFI was considered one of the entities within different clinical 

syndromes (Morgagni-Stewart-Morel-Moore, Troell-Junet, Frolich, Klippel-Trenaunay-

Weber), latest research suggested that various symptoms may occur as a consequence of 

HFI independent of these syndromes (53). Systematic recording of HFI in medical 

records can be helpful in distinguishing whether reported disorders occur as a 

consequence of HFI or are related to other diseases. 

 In our study, women with HFI reported a significantly higher prevalence of 

headaches, neurological and psychiatric disorders than controls. Previous studies based 

on case reports have also reported similar findings. Kocbah et al. (66) suggested that 

HFI is accompanied with epilepsy and dementia, Chaljub et al. (67) reported women 

with HFI who demonstrated schizoaffective disorder and memory loss, while Devriendt 

et al. (54) pointed out that almost all the patients with HFI had behavioural disturbances 

and were under psychiatric care. Ramchandren and Liebeskind (14) considered that the 

significantly higher prevalence of headache can appear as a result of altered hormonal 

influence in the patients with HFI, while other investigators have related it to the frontal 

bone compression on the cerebral cortex (68). Prominent forms of HFI may compress 

soft tissues with resultant dural irritation and pressure atrophy of the brain (69). In the 

research performed by Attansaio et al. (53) patient with HFI exibited cortical atrophy 

extending to the frontal, temporal, and parietal lobes, and they attributed severity of 

their patient's psychiatric disorders to the extension of HFI and the level of cortical 

atrophy. In the cases of severe headackes in patiens with HFI, the releaf of the 

symptoms sometimes could only be acomplished by surgical decompression (69). In our 

study, the rate of women who reported headache as a symptom should be interpreted 

with caution, because the study sample included women who had a diagnosis of 

sinusitis, which might be accompanied by headache as well (70).  The prevalence of 

HFI has been reported to be higher in emotionally disturbed women and women with 

psychiatric disorders (69), which was confirmed by our results as well, with depression 

as the most frequently reported disorder. We also observed that women with HFI 

had a significantly lower prevalence of having given birth. Pregnancy and nursing are 
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decreasing estrogen exposure (32), which implies that women with HFI were under 

increased estrogen stimulation. In historic populations women demonstrated different 

reproductive patterns (later menarche, earlier menopause and spent most of their 

reproductive life ether pregnant or nursing) which have resulted in decreased estrogen 

exposures. Hence, the increase in frequency of HFI could be related to increased 

estrogen stimulation due to women altered reproductive behavior (7, 53).  

 Unlike previous studies (50), which reported HFI in 43% of women with 

galactorrhea and almost the same frequency in the group of women with 

hyperprolactinaemia (51), we haven't reported a single case of ghalactorrhoea in our 

study. Additionally, our results do not support the suggested speculation of the role of 

adipose tissue and leptin in the HFI development. The value of BMI was slightly higher 

in the HFI group of women but without significant differences. Therefore testosterone 

to estrogen conversion by adipose tissue and leptin induced bone formation are unlikely 

to be responsible for the HFI. 

 Apart from thicker frontal bone compared to women without HFI, women with 

HFI in our study had thicker occipital and parietal bones as well. Additionally, our 

results suggest that frontal bone was the first one to thicken, followed by parietal and 

occipital bones respectively. With the increase of the frontal bone thickness, the entire 

skull appeared to be thicker. Our findings are in accordance with the results of previous 

studies (22, 42, 71). These authors stated that a general increase in the cranial bone 

thickness causes reduced intracranial volume and suggested that presence of HFI might 

be correlated with the decreased brain volume. They hypothesized that the higher is the 

grade of HFI, the greater is the overall cranial bone thickening and the resultantly 

smaller intracranial volume (ICV), suggesting that HFI is somehow associated with a 

brain volume reduction process. Data in the literature showed correlation between 

intelligence and human brain size in elderly patients (72), hence in this context the 

presence of HFI may imply deterioration in mental abilities. Additionally, any cranial 

change that reduces brain size (such as HFI) may imply brain vulnerability (42). 

Additionally, our results indicated that the frontal bone might be the first one to thicken, 

followed by parietal and occipital bones respectively. These findings support the 
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suggestion made by Moore (4) who considered HFI and HCD to be different 

manifestations of the same process, with HFI occurring first, as a precursor to HCD.  

 Having in mind that the highest incidence of HFI is observed in women in the 

menopause, and in males with conditions resulting in decreased androgen stimulation, 

the role of sex steroids in development of HFI has been widely speculated (7, 19, 32, 42, 

60). Additionally, the bone changes, similar to those defined as HFI, have been detected 

after estrogen administration in experimental animals (23). The presumptions of the 

influence of altered sex steroids on the formation of HFI, mostly rely on the effects of 

these hormones on bone metabolism. Sex steroid dysendocrinism through life, not only 

limited to estrogens, but on physiological balance of estrogens, progesterone and 

androgens, is pointed out as the most probable cause of HFI.  

 In both sexes, estrogen plays a central role in the regulation of bone metabolism 

by conserving bone mass, suppressing bone turnover and maintaining balanced rates of 

bone formation and resorption. It affects functional activity of both osteoclasts and 

osteoblasts (it decreases osteoclast formation and activity by increasing its apoptosis) 

(73, 74). Osteoblasts, osteoclasts and osteocytes contain functional estrogen receptors 

(estrogen α receptor- Erα; estrogen β receptor- Erβ), although their concentration is 

lower than in reproductive tissues. Erα mediates most of the actions of estrogen on bone 

cells, whereas Erβ can even act as a negative antagonist to Erα (75, 76). Bone cells 

contain both receptors, although their distribution within bone differs. ERα is 

predominantly localized in  the cortical bone while Erβ in the cancellous bone (77). The 

major effect of testosterone on bone metabolism is reduction of bone resorptions, in 

addition to increasing the lifespan of osteoblasts and osteoclasts. Consequently, 

testosterone increases bone formation (74, 78). Testosterone accomplishes most of its 

action indirectly, via aromatization of testosterone to estrogen. Like estrogen, 

testosterone also increases the lifespan of both osteoblasts and osteoclasts. Moreover, 

testosterone and estrogen may affect osteoblasts differently at various skeletal locations 

(i.e. testosterone increases periosteal apposition of bone, whereas estrogen opposes it). 

This results in larger skeleton achieved by males than females during puberty. 

 If prolonged estrogen stimulation in the premenopausal period contributes to 

development of HFI (7, 13), we can expect estrogen to have an impact in other skeletal 



52 
 

sites as well. To test this hypothesis, we analyzed densitometric parameters in two other 

regions: vertebral spine and hip region. Women with HFI tended to have increased 

values of densitometric parameters in all the investigated regions, but without 

significant differences when compared to the age-matched post-menopausal control 

group. This trend was also present when comparing moderate HFI and severe HFI to the 

control group, i.e. women with the severe form of HFI had the highest values of BMD 

in neck, total hip and vertebral region, compared to those with moderate HFI and 

women without HFI, although the differences were not statistically significant. 

 More pronounced external morphological traits of the skull have been decribed 

in women with HFI (7, 42). Having in mind that size of brow ridge and external 

occipital protuberance are the most sexually dimorphic characteristics of the skull and 

that they are more pronounced in males (79), these results may suggest that with 

advancing manifestation of HFI, skulls of these women become more “male like”. We 

tried to determine whether similar external morphological changes were present in other 

skeletal sites, such as the femur. Comparison of the length, periosteal diameter and 

cortical thickness of femoral neck, intertrochanteric region and femoral shaft, between 

women with HFI and the age-matched control group did not indicate any significant 

differences. The results of our study suggest that new bone formation in women with 

HFI is localized only on the skull, unlike the results of Kollin and Fehér (19) who 

implied generalized nature of this condition.  

 In the “global model” of HFI pathogenesis proposed by Hershkovitz et al. (7), 

authors have suggested that  neovascularization originating from dura might be one of 

the key processes in development of HFI. The cranial dura mater is a fibrous membrane, 

consisted of two layers, endosteal and meningeal, separated by lacunar spaces and blood 

vessels. Endosteal layer serves as the internal periosteum for the cranial bones, and 

contains the blood vessels for their supply while meningeal layer is consisted of 

mesothelium (38). Both frontal bone and its underlying dura mater originate from 

cephalic neural crest cells (40, 80). This embriogenic intimacy of the frontal bone and 

its underlying dura could be important in clarifying the development of HFI. 

 Levine et al. (1998) showed that the dura mater differs in different regions of 

cranial vault (81). During research of the suture closure in experimental rats, they 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Kollin%20E%5BAuthor%5D&cauthor=true&cauthor_uid=2944758
http://www.ncbi.nlm.nih.gov/pubmed/?term=Feh%C3%A9r%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2944758
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rotated dura mater underlying patient and fusing sutures and detected that dura is 

responsible for osteogenic signals that are controlling suture fusion. This mechanism is 

important since fetal and infant dura mater is highly osteogenic and capable of 

completely re-ossifying the cranial vault (82). Yu et al. (1997) suggested that dura mater 

is capable of inducing bone formation in general (83) by activation of bone growth 

sights. Bone growth sites are secondary, adaptive regions at which bone remodeling 

takes place. They remain dormant until stimulated to make bone by some external 

signal. In the cranial vault, the stimulus arises primarily from the expanding brain which 

is sending signals by means of the dura mater (84, 85). 

 The dura plays a role in intramembranous ossification of the skull vault in a 

regionally specific manner (86). Morphogenesis of the cranial bones is dependent on 

bone-tissue interactions with the dura matter, which controls the size and shape of these 

bones (87). Cells isolated from dura are multipotent in vitro, giving rise to many 

different cells, such as osteoblasts. This fact suggests the multipotent nature of dural 

cells in vivo (88). Dura stimulates osteoblast proliferation and it is the source of 

mitogenic growth factors (89). Therefore, the dura retains the ability to form bone tissue 

when cultured in vitro and implanted in vivo (88), supporting the speculation of its 

important role in HFI formation. 

 It is still unknown if sex steroid hormones influence the dura. Only a few studies 

have investigated this issue in animal models. Lin et al. (90) examined dural androgen 

receptors and suggested that sex steroid hormones may stimulate sutural osteogenesis 

by promoting osteodifferentiation of dural cells. Also, some studies investigated 

estrogen receptors (ER) and identified ER-α receptors on both calvaria and dura (86, 

91). They found estrogen receptors localized mostly on the vascular tissue of dura and 

suggested that estrogen plays an important role in meningeal vascularity (91). This fact 

might explain specific vascularization running from the dura into the bone, which is 

proposed in the global model of HFI pathogenesis. Although dural estrogen-responsive 

cells are recognized, no explanation exists about the source of estrogen and whether it is 

regional or distant. Some researchers have suggested that the dura, as a source of 

paracrine factors important for suture fusion, could also be a source of regional estrogen 

production (86). Having in mind the regional differentiation of cranial dura (86), it can 
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be speculated that the frontal bone is particularly affected by HFI due to specific 

properties of its underlying dura. 

 In an attempt to test this speculation and the possible role of estorgen in 

pathogenesis of HFI, we tried to investigate the expression of α-estrogen receptors on 

dura of the frontal region in women with HFI and age-matched control group. 

Unfortunetly, our results were poore since positivity for α-estrogen receptors on dura of 

the frontal region was present in just three of all investigated cases. These negative 

results could bring into question the role of estrogen in the development of HFI. 

However, they can imply that the receptors for estrogen are localized on the bone 

instead of dura, but due to hypo-cellularity of the frontal bone samples in women with 

HFI, it is difficult to detect and quantify them. Also, the question imposes whether the 

number of estrogen receptors on dura is positively correlated to the concentration of 

circulating estrogen (92) or circulating estrogen causes their down regulation, thus 

whether our results support increased or decreased estrogen stimulation.  

 Additionally, previous studies focusing on HFI provided limited insights into the 

pathogenesis of this phenomenon. Current macroscopic classification defines four 

grades/stages of HFI based on the morphological appearance and size of the affected 

area; however, it remains unclear whether different macroscopic stages of HFI can be 

regarded as successive phases in the process of HFI development. Hence, we assessed 

microarchitecture of the frontal bone in women with various types of HFI expression 

and in an age- and sex-matched control group, hypothesizing that bone 

microarchitecture bears imprints of the pathogenesis of hyperostosis frontalis interna 

and may clarify the phases of its development.  

 Although it could be expected that HFI ultimately leads to bone sclerosis, our 

microstructural analysis of the whole bone thickness showed no significant differences 

in the total bone volume fraction between the frontal bone samples from HFI at any 

stage and control groups. However, micro-CT evaluation of the bone samples showed a 

different pattern of bone microarchitectural organization in women with HFI when 

compared to age- and sex-matched control group. Specifically, the samples with HFI 

displayed more porous inner table of the frontal bone, while the diploic space showed 

an increased bone volume fraction due to thicker and more plate-like trabeculae.  
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 ”Global model” of HFI proposed by Hershkovitz et al. (7) considers 

vascularization originating from the dura as one of the key factors in pathogenesis of 

HFI. Talarico et al. (68) reported  that in the woman with HFI inner table exhibited 

extensive remodeling, consisted almost exclusively of large sinuses and extended to the 

external periosteal layer of the dura.  Our findings of significantly higher porosity of the 

inner table in women with HFI compared to controls may suggest increased penetration 

of dural vessels to the inner table. Furthermore, in women with HFI a significantly 

higher porosity was evident in the inner table compared to the outer table. Analysis of 

the distribution of pore diameters between the outer and inner tables in women with HFI 

revealed that increased porosity of the inner table originates from more abundant pores 

larger than 100 µm. Considering that control group did not show such differences 

between inner and outer table it is likely that increased porosity of the inner table is 

related to the pathogenesis of HFI. Therefore, it is possible that larger pores occur as a 

result of penetration of blood vessels from the dura, ultimately leading to diploization of 

the inner table.  

 Although direct experimental evidence is still insufficient, it is likely that sex 

steroid hormones effects on development and proliferation of blood vessels may be 

involved. In general, estrogen receptors are localized mostly on the vascular tissue of 

dura and estrogen is known to play an important role in meningeal vascularity (91). 

Angiogenesis under estrogen stimulation has been widely investigated (93, 94). It has 

been suggested that estrogen activates hypoxia-inducible factor-α (HIFα) signaling 

pathway leading to activation of proangiogenic genes, primarily for vascular endothelial 

growth factor (VEGF) (94, 95). In this way estrogen can stimulate angiogenesis.  

 In order to test the possible relationship between sex steroid indouced 

vasularization and development of HFI we analyzed changes in dural vascularity in 

women with HFI by investigating the expression of CD34 receptors on the dura of the 

frontal region in women with HFI and the control group. Our result showed that in 

women with HFI expression of CD34 was significantly higher, thus the vascularization 

was increased. These results clearly imply the correlation between the HFI formation 

and expanded blood supply of any origin. This way, we supported our results obtained 

by microstructural analyses which implied increased porosity in the region of inner table 
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in women with HFI as well as pathogenesis of HFI proposed by “global model”. The 

role of altered blood supply in the pathogenesis of HFI has a practical repercussion. It is 

important to determine whether osseous thickening or a shift in vascular structures in 

patients with HFI will lead to a change in the process of operational interventions in this 

anatomical region as these bone overgrowths are close to the brain tissue (96). 

 There is also multiple evidence that bone turnover is related to bone vasculature 

(97-99). In particular, blood vessels’ endothelium may be a key factor in such a 

relationship, being not only an essential barrier limiting the movement of cells and 

molecules between the circulation and bone surface but also able to directly 

communicate with adjacent tissue and circulating blood cells (97). Endothelial cells 

(EC) are capable of responding to bone modulators (such as sex steroid hormones) and 

can release regulatory molecules (growth factors, BMPs, cytokines, endothelins, free 

radicals, prostanoids) known to affect the differentiation, metabolism, survival, and 

function of bone forming cells (97, 100). As EC also separate mesenchymal stem cells 

(MSC) in peripheral circulation from the bone surface, MSC migration may be directly 

orchestrated by endothelial cells (101). Additionally, bone marrow stromal cells exhibit 

osteogenic potential under EC guidance (102).  

 Although the “global model” of HFI pathogenesis (7) suggests that diploic space 

is not directly involved in HFI, our microarchitectural findings demonstrated clear 

differences between HFI and control group in the diploe. Clearly, after blood vessels 

from the dura penetrate the inner table and enter the diploic space, they can branch 

extensively within the intertrabecular pores and, could modulate bone remodeling (96). 

Our micro-CT analysis showing thickened trabeculae and significantly increased bone 

volume fraction of the diploe in women with HFI compared to the control group clearly 

emphasized an osteogenic phenotype of the diploic region in women with HFI (Figure 

21). Based on the molecular studies, increased osteogenesis can be accomplished by 

HIFα mediated estrogen modulation of EC functional interactions (increased migration 

of osteoblast precursors from circulation, increased production of VEGF, increased 

proliferation and differentiation of BMSC).  
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Figure 21.  Schematic presentation of the changes in bone structure during HFI 

formation 
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Thus, the changes in bone microarchitecture in the region of diploe observed in our 

study (increase in BV/TV, trabecular thickness and microvascular density) could occur 

as a result of previously reported effects of activated HIF-α signaling pathway (95, 103). 

Previous studies in patients with HFI also demonstrated similar trend of altered bone 

structure in the region of diploe such as trabecular thickening (104) and sclerotic and 

dense internal part of diploe with small cavities in the final phase of HFI formation 

(105).Common macroscopic classification of HFI describes four types of this 

phenomenon (A, B, C and D) that are often regarded as “phases” or consecutive 

“stages” in the course of HFI development. However, our study showed that these 

macroscopic phases could not be distinguished at the level of bone microarchitecture 

and their consecutive nature cannot be further supported. Specifically, the comparisons 

of types A, B, C and D of HFI and control group suggested that significant inter-group 

differences in microstructural parameters existed only between the type D of HFI and 

control group. Therefore, based on our microarchitectural evaluation of macroscopic 

stages of HFI we can suggest that only two different types of HFI should be considered: 

moderate (comprising the types A, B and C) and severe HFI (comprising type D). 

Macroscopic grades of HFI could not be distinguished at the level of bone 

microarchitecture and their consecutive nature cannot be supported. Rather, our study 

suggests that only two different types of HFI (moderate and severe HFI) have 

microstructural justification and should be further considered. It is essential to record 

HFI systematically in human postmortem subjects to provide more data on the 

mechanisms of its development. 

 Researchers have investigated the phenomenon of HFI in the context of its 

epidemiology, demographics and possible relation to different conditions (16, 51-53, 55, 

67, 106). Despite this fact, there is a limited data providing adequate classification of 

this variable change in the frontal bone thickness and morphology, practical for routine 

radiological and clinical practice. Therefore, successful radiological identification of 

HFI is relatively low. Predominantly, low percentage of recognition occur in cases of 

mild forms of HFI, while in more severe cases recognition of HFI is much more 

successful, even in standard radiographs (7). Having in mind variety of condition and 

disorders that might be related to HFI, systematic recording of HFI in medical records 
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can be helpful in distinguishing whether reported disorders occur as a consequence of 

HFI or are related to other diseases.  

 Present, widely accepted, macroscopical classification of HFI, proposed by 

Hershkovitz et al. (7), recognises four different types of HFI (A, B, C and D) based on 

extent of involvement of the frontal bone, appearance, border type, shape, location in 

frontal bone and involvement of other  bones. The same research group who proposed 

this classification of HFI, tended to simplify it throughout different research, by 

regrouping HFI in fewer categories. When May et al. (107) investigated HFI in a 

context of sexing and aging a skeleton, they modified the present classification, and 

defined two types of HFI: minor HFI (equivalent to type B) and major HFI (equivalent 

to types C and D) while when they investigated intracranial volume and cranial 

thickness in elderly patients with HFI (71), they merged type A of HFI and patients 

without HFI, while types B, C and D remained as previously described. Therefore, we 

recognized the need to simplify the current classification of HFI and test it in order to 

standardize the classification method and to eliminate the observer’s subjectivity.  

 Thickening of the frontal bone described as HFI, results in irregularity of the 

shape of the inner table of the frontal bone, and consequently the inner table of the skull. 

Irregular shapes are difficult to analyze and compare.  In order to compare them 

objectively we need to quantify them. In this study, we used the mathematical method 

of fractal analyses, which allowed us to compare the irregular shapes of the inner table 

of the skull (inner contour) in women with different types of HFI. The irregularity of the 

shape of the inner contour of the skull was quantified using the values of fractal 

dimension and the circularity. By comparing these descriptive parameters, we tested 

current classification of HFI. 

 The fractal dimension is a geometrical parameter, which describes irregularly 

shaped objects (108). Our results reported no differences in fractal dimension values 

between different types of HFI.  However, having the same fractal dimension doesn’t 

exclude that that two objects may appear morphologically very different from each 

other (109) and these results might occur due to the fact that two samples showing the 

same fractal dimension could have different morphological patterns (i.e. different types 

of HFI). Circularity is commonly used as a parameter which quantifies the shape of 2-
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dimensional objects (64). Our results reported significant differences in values of this 

parameter, between the type D and types A, B and C of HFI. These results suggest that 

types A, B and C of HFI should be considered as one type (mild HFI) while type D of 

HFI should remain separated (severe HFI). Our findings suggest that circularity could 

be considered an adequate parameter of shape of inner contour of the skull in patients 

with different types of HFI. Finally, the classification of HFI obtained by method of 

fractal analysis demonstrated the same results reported during microstructural analysis 

of bone samples from women with HFI, where significant differences in 

microarchitectural parameters were detected only between type D of HFI in comparison 

to types A, B and C of HFI. Reported results imply that HFI should be reclassified into 

two different types: moderate and severe.  

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

6 Conclusions 
 
 

1. HFI is associated with higher prevalence of headache, neurological and 

psychiatric disorders and a significantly lower prevalence of having given birth. 

2. Apart from thicker frontal bone, women with HFI have thicker occipital and 

parietal bones as well. Frontal bone is the first one to thicken, followed by 

parietal and occipital bones respectively. 

3. New bone formation and altered external morphology in women with HFI are 

localized only on the skull, while DXA results showed that with the increase of 

HFI magnitude, there is a tendency of increased bone density in the region of hip 

and spine, but without statistical significance.  

4. Negative results of estrogen receptors analysis on the dura underlying frontal 

bone still do not exclude the effects of estrogen in the development of HFI. 

5. Vascularization of the dura underlying frontal bone of women with HFI is 

increased implying the correlation between the HFI formation and expanded 

blood supply of any origin. 

6. Inner table of the frontal bone in women with HFI shows higher porosity 

originating from more abundant pores larger than 100 µm possibly as a result of 

penetration of blood vessels from the dura. 

7. Women with HFI showed microstructural differences in the region of diploe of 

the frontal bone.  Thickened trabeculae and significantly increased bone volume 

fraction clearly emphasize an osteogenic phenotype of the diploic region in 

women with HFI, while outer table remains unchanged. 

8. Macroscopic types of HFI could not be distinguished at the level of bone 

microarchitecture and their consecutive nature cannot be supported. Rather, our 

study suggests that only two different types of HFI (moderate and severe HFI) 

have microstructural justification and should be further considered. 
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9. Results of analysis of the parameters of shape of inner contour of the skull and 

microstructural analysis of the frontal bone samples both implied that HFI 

should be reclassified into two different types: moderate and severe. This way 

we also simplified the method of radiological classification of HFI. 
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